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Abstract
Recent studies have demonstrated improved skill in numerical weather predic-
tion via the use of spatially correlated observation error covariance information
in data assimilation systems. In this case, the observation weighting matrices
(inverse error covariance matrices) used in the assimilation may be full matri-
ces rather than diagonal. Thus, the computation of matrix–vector products in
the variational minimization problem may be very time-consuming, particu-
larly if the parallel computation of the matrix–vector product requires a high
degree of communication between processing elements. Hence, we introduce a
well-known numerical approximation method, called the fast multipole method
(FMM), to speed up the matrix–vector multiplications in data assimilation. We
explore a particular type of FMM that uses a singular value decomposition
(SVD-FMM) and adjust it to suit our new application in data assimilation. By
approximating a large part of the computation of the matrix–vector product, the
SVD-FMM technique greatly reduces the computational complexity compared
with the standard approach. We develop a novel possible parallelization scheme
of the SVD-FMM for our application, which can reduce the communication
costs. We investigate the accuracy of the SVD-FMM technique in several numer-
ical experiments: we first assess the accuracy using covariance matrices that are
created using different correlation functions and lengthscales, then investigate
the impact of reconditioning the covariance matrices on the accuracy, and finally
examine the feasibility of the technique in the presence of missing observations.
We also provide theoretical explanations for some numerical results. Our results
show that the SVD-FMM technique can compute the matrix–vector product
with good accuracy in a wide variety of circumstances and, hence, has potential
as an efficient technique for assimilation of a large volume of observational data
within a short time interval.

K E Y W O R D S
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1 INTRODUCTION

In variational data assimilation (e.g., Lorenc et al., 2000;
Rawlins et al., 2007), a nonlinear least-squares problem
is solved, where observations and model forecasts are
blended, taking account of their uncertainties. The min-
imization procedure involves time-consuming computa-
tions of large matrix–vector products. In this paper, we
focus on the matrix–vector products involving the obser-
vations. These take the form R−1d, where R−1 ∈ Rm×m is
the inverse of the observation error covariance matrix and
d ∈ Rm is the observation-minus-model departure vector
(see Section 2).

In some practical numerical weather prediction appli-
cations, observation errors are assumed to be uncorrelated,
resulting in the matrix R being diagonal. This reduces the
number of operations required to compute matrix–vector
products in the minimization, and is a pragmatic strat-
egy when the characteristics of the observation uncer-
tainty are not well understood (e.g., Liu and Rabier, 2003).
However, a number of idealized and operational studies
have shown that there are significant benefits to treat-
ing full observation error covariance matrices in terms
of analysis information content, analysis accuracy, and
forecast skill, even when knowledge of the observation
error correlations is only approximate (e.g., Healy and
White, 2005; Stewart et al., 2008; 2013; Weston et al.,
2014; Simonin et al., 2019; Bédard and Buehner, 2020).
In particular, implementation of spatial observation error
correlations modifies the lengthscales of the observation
increments computed by the assimilation (e.g., Rainwater
et al., 2015; Fowler et al., 2018; Simonin et al., 2019), which
may be especially important for multiscale systems such
as convection-permitting numerical weather prediction
and reanalyses (e.g., Dance et al., 2019; Hu and Franzke,
2020) or coupled ocean–atmosphere systems (e.g., Hu and
Franzke, 2017). Furthermore, practical methods have been
developed to estimate the observation uncertainty charac-
teristics for a range of observation types (see the reviews by
Janjić et al. (2018) and Tandeo et al. (2020)). For example,
Doppler radar radial winds, geostationary satellite data,
and atmospheric motion vectors (AMVs) have been shown
to exhibit strong spatial error correlations (Waller et al.,
2016a; 2016b; 2019; Cordoba et al., 2017; Honda et al.,
2018). We note that, in practical applications, the matrix
R is typically treated as block diagonal with one block per
observation type (for a given time). The observation errors
between different types of observations are assumed to be
uncorrelated.

To give an idea of the expected size of the spatially
correlated observation error covariance matrices, we con-
sider geostationary satellite observations from the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI)

instrument (Schmetz et al., 2002; Waller et al., 2016b;
Michel, 2018). SEVIRI measures top-of-atmosphere radi-
ances in 12 channels, with a 15-min repeat cycle and
at approximately 3 km spatial resolution (excluding the
high-resolution visible (HRV) channel; Schmetz et al.,
2002; Waller et al., 2016b). Each image consists of around
107 pixels for the thermal infrared and solar channels
(Schmetz et al., 2002). Hence, there are a vast number
of SEVIRI observations, even for a regional domain. For
instance, the number of SEVIRI observations within the
domain covered by the operational AROME model from
Météo-France is around 4× 105 (Seity et al., 2011). In oper-
ational assimilation applications, to avoid treating spa-
tially correlated observation errors, spatial thinning of
SEVIRI observations is typically applied and this reduces
the number of observations by several orders of magni-
tude, but also reduces their benefits in improving forecast
skill (Waller et al., 2016b; Michel, 2018). The next gen-
eration of meteorological satellites will produce observa-
tions with even higher spatial resolutions (WMO, 2017,
Table 1). For example, the Flexible Combined Imager
(FCI) on the Meteosat Third Generation (MTG) satellite
and the Advanced Baseline Imager (ABI) on the Geo-
stationary Operational Environmental Satellite-R (Schmit
et al., 2017) both take measurements at approximately
0.5–2 km spatial resolution, and the Advanced Geosyn-
chronous Radiation Imager (AGRI) on the Fengyu-4 geo-
stationary meteorological satellite produces observations
at a resolution from 1–4 km (Yang et al., 2017).

Accounting for spatially correlated error statistics in
the data assimilation algorithm has potential to increase
the computational cost for several reasons: (a) the com-
putation of large matrix–vector products using parallel
computing techniques, (b) the need to compute products
using the inverse covariance matrix which may be dif-
ferent in each assimilation cycle, and (c) changes to the
convergence behavior of the minimization procedure. We
now review these issues in more detail.

The first issue is that the parallel computation of a large
matrix–vector product with observation data distributed
across multiple processing elements (PEs) may become
expensive due to excessive communications between PEs
and load imbalance overheads (Deng, 2012). Different par-
titions of the matrix will lead to different parallelization
schemes, which will be described in Section 2. In general,
to reduce the time spent on communication operations, it
is necessary to reduce the number and/or size of messages
transferred. In the context of data assimilation, much of
this communication can be avoided if all the observations
with mutually correlated errors are assigned to one PE, as
in Simonin et al. (2019). However, this relies on the data
volume of observations with mutually correlated errors
being small enough for the product to be calculated on one
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node. It is an open question how to implement computa-
tions for larger data volumes with distributed data. While
our paper is focused on parallel implementations for vari-
ational assimilation, studies such as Anderson (2003) and
Nino-Ruiz et al. (2019) address parallel implementations
for ensemble methods.

The second issue is that there is a need to use
the inverse observation error covariance matrix (R−1) in
the computations. The most commonly used observation
uncertainty diagnosis techniques provide an estimate of
the observation error covariance matrix itself rather than
its inverse (Desroziers et al., 2005). Since the observa-
tion distribution changes each assimilation cycle (due to
quality control, etc.) there is a different inverse matrix
each cycle. Simonin et al. (2019) deal with this by using
a Cholesky decomposition method (Golub and Van Loan,
1996), which avoids the need to compute the inverse
covariance matrix directly and is applicable to any form
of error covariance matrix. Guillet et al. (2019) model the
inverse of a spatially correlated observation error covari-
ance matrix directly using a diffusion operator and fast
unstructured meshing techniques. However, this method
only deals with spatial error correlations and it is unclear
whether this approach is also suitable when spatial error
correlations and interchannel error correlations are com-
bined.

The third issue is that the use of correlated observa-
tion error statistics changes the convergence behavior of
the minimization procedure. Indeed, the pre-operational
experiments of Weston et al. (2014) showed problems with
the minimization that were improved by reconditioning
the observation error covariance matrix. The convergence
of the minimization procedure has been further studied
by Tabeart et al. (2018; 2020a; 2021), who found that the
minimum eigenvalue of the observation error covariance
matrix is a key parameter governing the speed of con-
vergence. Hence, the use of reconditioning methods is
common in operational applications with correlated obser-
vation error statistics (e.g., Bormann et al., 2016; Campbell
et al., 2017; Tabeart et al., 2020a; 2020b).

The aim of this paper is to carry out an investigation
of a method to accelerate parallel matrix–vector products
with distributed observational data, using a novel applica-
tion of a well-known numerical approximation algorithm,
the fast multipole method (FMM; Rokhlin, 1985; Green-
gard and Rokhlin, 1997). We explore a particular type
of FMM that uses a singular value decomposition (SVD)
(Gimbutas and Rokhlin, 2003). We call this method the
SVD-FMM. The key idea of the SVD-FMM is to split up
the computation of the matrix–vector product into sepa-
rate, near-field and far-field calculations. The near-field
calculations are done by standard matrix–vector multipli-
cation of a local submatrix and subvector. The far-field

calculations are carried out using the singular values and
singular vectors of the submatrices of R−1. The subma-
trices and subvectors are determined by selecting spe-
cific rows and columns of R−1 corresponding to a parti-
tion of observations in the domain. The number of sin-
gular vectors employed in the calculation is chosen by
the user. We will show that usually only a small num-
ber of singular vectors is needed to obtain a good accu-
racy (Section 5). The SVD-FMM technique reduces the
number of floating-point operations required compared
with the standard approach for matrix–vector multipli-
cation. Additionally, we develop a novel possible parallel
algorithm for the SVD-FMM for our application in data
assimilation, which can greatly reduce the costs of com-
munication between PEs. The SVD-FMM allows us to
assimilate a large volume of observational data in a short
time interval, and has the potential to be used in practical
applications.

In this initial investigation, our numerical results focus
on evaluating the accuracy of the SVD-FMM. Thus our
experiments are carried out for an idealized problem, using
serial rather than parallel computing. Nevertheless, we
do compare the efficiency of the proposed parallelization
scheme with different parallel formulations of standard
matrix–vector multiplications in terms of communication
costs. In our current implementation, the method needs to
be applied after we obtain a representation of the matrix
R−1. In order to have a clear focus solely on computing
matrix–vector products, we do not address the computa-
tion of the inverse observation error covariance matrix.
Instead, we assume that the inverse observation error
covariance is already known.

In our experiments we show that the SVD-FMM can
work well with the inverses of a variety of covariance
matrices. In particular, we apply the SVD-FMM to the
inverses of covariance matrices created using different
correlation functions and lengthscales. We also use the
reconditioning methods of Tabeart et al. (2020b) together
with the SVD-FMM to gain insight into how the accu-
racy of the SVD-FMM should change with different levels
of reconditioning. In practice, the observation distribution
varies each assimilation cycle due to factors such as quality
control and the removal of cloudy satellite radiance obser-
vations. Therefore, we further carry out some experiments
to demonstrate that the SVD-FMM is feasible even if there
are some missing observations.

The rest of this paper is organized as follows: We pro-
vide the parallel formulations of standard matrix–vector
multiplication in Section 2. In Section 3 we present our
novel algorithm for the SVD-FMM and compare the
complexity and the communication costs between the
SVD-FMM and standard, parallel matrix–vector multipli-
cation. In Section 4 we explain our experimental design for



4 HU and DANCE

our idealized experiments. In particular, we describe the
generation of observations and observation error covari-
ance matrices as well as the reconditioning methods. In
Section 5 we show the results of our numerical exper-
iments with varying correlation functions, lengthscales,
reconditioning methods, and condition numbers. We also
show how the results change with missing observations.
Finally we give a summary in Section 6 and conclude
that our proposed algorithm has potential for use in oper-
ational data assimilation for fast computation of large
matrix–vector products.

2 PARALLELIZATION
OF STANDARD MATRIX–VECTOR
MULTIPLICATION

In this section we describe three distinct standard parallel
formulations for computing large matrix–vector products
(see Grama et al., 2003, section 8.1; Deng, 2012, section
6.2.1). We also discuss how to exploit the symmetric struc-
ture of R−1 for parallelization (Geus and Röllin, 2001).
These matrix–vector products arise in the solution of the
variational minimization problem in data assimilation in
the form

q = Ad, (1)

where A ∈ Rm×m denotes the inverse of the obser-
vation error covariance matrix, d ∈ Rm denotes the
observation-minus-model departure vector, and q ∈ Rm

denotes the result of the multiplication. For the purposes
of this description, we assume that the matrix A and vector
d are already known.

To see how matrix–vector products in the form of
Equation (1) arise in data assimilation, we consider
the observation penalty term of the variational data
assimilation cost function. This is given by multiplying
the inverse observation error covariance matrix by the
observation-minus-model differences

Jo = 1
2
{y − H(x)}TR−1{y − H(x)}, (2)

where y ∈ Rm denotes the observation vector, x ∈ Rn

denotes model state, and H denotes the observation oper-
ator that maps model state to the observation (H ∶ Rn →
Rm; e.g., Lorenc et al., 2000; Rawlins et al., 2007; Simonin
et al., 2019; Nichols, 2010). To solve the variational mini-
mization problem, the gradient of Equation (2) is needed
(e.g., Simonin et al., 2019)

𝜕Jo

𝜕x
= HTR−1{y − H(x)}. (3)

Thus matrix–vector products of the form of
Equation (1) arise in the computation of both the cost
function and its gradient, with A = R−1 and d = y − H(x).

The parallelization schemes for computing
Equation (1) start with the distribution of observations
over PEs. We consider a simple-domain decomposition,
in which the observations are distributed over a number
of PEs according to their geophysical locations. This will
result in a split of the components of matrix A and vector
d across PEs. We will introduce four different partitions
of the matrix (see Figure 1). Each of them will lead to a
unique parallelization scheme. The communication costs
of each scheme depend on various parameters, including
(a) the time to prepare a message for transmission, (b)
the time it takes for a message to travel (latency), (c) how
many words can traverse per second (bandwidth), (d)
how many PEs to communicate with, and (e) the message
size (Grama et al., 2003). Since the first three parame-
ters are determined by the configuration of the parallel
machine, we discuss the communication costs for different
parallelization schemes using the last two parameters.

2.1 Row-wise partitioning

We first consider a row-wise partitioning, in which case
each PE stores one row or several rows of A and one ele-
ment or a portion of d. Figure 1a illustrates the partitioning
using four PEs. In order for each PE to perform its com-
putation, we need to distribute the full vector among all
the PEs. This requires an all-to-all broadcast. Based on
table 4.1 in Grama et al. (2003), the communication cost
of this communication operation is ts log B + twm, where B
is the number of PEs, ts is the startup time, and tw is the
per-word transfer time (Grama et al., 2003). The two time
parameters depend on computer architecture and perfor-
mance. After the communication, each PE multiplies its
m∕B rows with the vector, which requires on the order of
m2∕B floating-point operations.

2.2 Column-wise partitioning

Instead of storing row(s), each PE can store the col-
umn(s) of A. Figure 1b shows an example of using four
PEs. With a column-wise partitioning, each PE can cal-
culate a partial result locally. Each PE multiplies m∕B
columns of A with m∕B elements of d, which requires
(m2∕B) floating-point operations. After the local com-
putation, we need to perform an all-to-one reduction to
sum up the partial results given by each PE, which takes
time (ts + twm) log B (Grama et al., 2003, table 4.1). After
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F I G U R E 1 Different
ways of partitioning matrices
(represented by squares) and
vectors (represented by bars) for
parallel computation of the
matrix–vector products.
Different colors demonstrate the
portions of matrices and vectors
that are distributed over four
PEs (P0, P1, P2, and P3)

(a) (b)

(c) (d)

the all-to-one reduction only one PE contains the full vec-
tor q, thus we may need to redistribute q. This requires a
scatter operation, which takes time ts log B + twm (Grama
et al., 2003, table 4.1). Although the column-wise partition-
ing circumvents the use of an expensive all-to-all broadcast
operation, it increases the message size for data transfer
operations. The message size for the all-to-one reduction
is m, whereas the message size for the all-to-all broadcast
used for the row-wise partitioning is m∕B. It should be
noticed that, in data assimilation applications, the matrix
A is known to be symmetric, which means that the paral-
lel algorithm using column-wise partitioning can also be
used with row-wise partitioning.

2.3 Block 2-D partitioning

The row-wise partitioning and column-wise partitioning
are 1-D partitioning. We now consider a 2-D partitioning,
which distributes the blocks of A among PEs. An example
of the block 2-D partitioning is shown in Figure 1c. Note
that the matrix A is equally separated by four PEs, while
the vector d is only distributed among two PEs that own
the diagonal blocks of A, that is, P0 and P3. The first step is
for each PE that stores a portion of d to broadcast that por-
tion to the other PEs in the same column, which requires
a column-wise one-to-all broadcast. The communication
time of this operation is (ts + twm∕

√
B) log

√
B. The next

step is to perform a row-wise all-to-one reduction, which

requires another (ts + twm∕
√

B) log
√

B times. Grama et al.
(2003) showed that computing the matrix–vector product
using the block 2-D partitioning of the matrix can be faster
than using 1-D partitioning for the same number of PEs.
However, a potential problem is that, when using the block
2-D partitioning, the vector elements are not distributed
among all the PEs and this can result in load imbalance.

2.4 Partitioning for symmetric
matrices

A possible partitioning of A and d taking into account
the symmetric structure of A is shown in Figure 1d. The
first step is to exchange the portions of d among PEs. This
requires an all-to-all broadcast with an average message
size of m∕B. It should be noticed that not all PEs need to
send their portion of d to all other PEs. In the case of four
PEs, P0 sends data to P1, P2 and P3, P1 to P2 and P3, and P2 to
P3. The second step is to multiply the vector elements with
the local part of the matrix. The last step is to exchange
the results of local computation using an all-to-one reduc-
tion. The average message size for this operation is m∕B.
In the case of four PEs, P0 collects the results from all other
PEs, P1 collects the results from P2 and P3, and P2 collects
the result from P3. The last PE does not need to collect
the results from other PEs. Slightly different paralleliza-
tion schemes may be used for this kind of partitioning,
depending on the computer architecture (Geus and Röllin,
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2001). This partitioning saves the storage space of each
PE (only half of the matrix is stored) and keeps the load
balanced. Furthermore, this partitioning has a very large
advantage for sparse matrices, in which case each PE only
needs to communicate with neighboring PEs (Geus and
Röllin, 2001).

In the next section, we describe a different approach
for calculating large matrix–vector products that is appli-
cable to any matrix (most useful for full or dense matrices).
This approach reduces the computational cost for serial
calculations of Equation (1) and the message size for com-
munication operations.

3 APPLICATION OF THE FAST
MULTIPOLE METHOD (FMM)
TO DATA ASSIMILATION

The fast multipole method (FMM) was originally pre-
sented for the rapid evaluation of all pairwise interactions
between a large number of charged particles (Rokhlin,
1985; Greengard and Rokhlin, 1997). The mathematical
form of this fast summation is equivalent to Equation (1).
While the direct calculation of Equation (1) requires(m2)
work, the FMM needs only (m) operations. In addition,
the FMM relies on a hierarchical division of the computa-
tional domain, which is well suited for parallel computing.
In the classical FMM, the matrix A is given by some func-
tions describing pairwise interactions between particles,
such as those describing gravitational and electrostatic
potentials. In our application, however, the matrix A is
obtained by inverting the matrix R. Therefore, we need
a generalized FMM that does not require an underlying
analytic function (Gimbutas and Rokhlin, 2003).

3.1 Separation of the matrix–vector
product into near- and far-field terms

Since the SVD-FMM is not commonly used in meteorol-
ogy, we first explain the key idea behind the technique and
give a simple example to aid the reader’s understanding,
before going into the mathematical details in later sub-
sections. The basic idea of the SVD-FMM is to calculate
Equation (1) in two parts:

q = A(⋅, I1)d(I1) + A(⋅, I2)d(I2), (4)

where the column indices of A and the indices of d are
divided into two mutually independent sets denoted by I1
and I2. The indices are selected according to a partition
of observations (described in more detail in Section 3.2).
The first part of Equation (4), referred to as the near-field

calculation, is computed using a standard matrix–vector
multiplication, and the second part, referred to as the
far-field calculation, is estimated using an approximation.
In the SVD-FMM, the far-field calculation is computed
using the singular value decomposition (SVD) of A(⋅, I2).
We provide a simple example to aid the reader’s under-
standing.

Example 1. Suppose we have a matrix A ∈ R2×3 and a
vector d ∈ R3 given by

A =

(
a11 a12 a13

a21 a22 a23

)
and d =

⎛⎜⎜⎜⎝
d1

d2

d3

⎞⎟⎟⎟⎠ .
A standard matrix–vector multiplication gives

q = Ad =

(
a11d1 + a12d2 + a13d3

a21d1 + a22d2 + a23d3

)
.

We can also compute q by partitioning the problem as in
Equation (4) by letting I1 = {2} (the near field) and I2 =
{1, 3} (the far field), such that

q =

(
a12

a22

)
⋅ d2 +

(
a11 a13

a21 a23

)
⋅

(
d1

d3

)
. (5)

The singular value decomposition (SVD) of the submatrix
in the second term is given by(

a11 a13

a21 a23

)
=

2∑
i=1

ui𝜎i(vi)T ,

where u1,u2 ∈ R2 are the orthonormal left singular vec-
tors, 𝜎1, 𝜎2 are the scalar singular values, and v1, v2 ∈ R2

are the orthonormal right singular vectors. If 𝜎1 ≫ 𝜎2, then
we can truncate the SVD to give an approximation for the
far-field term of Equation (5) as

q ≈

(
a12

a22

)
⋅ d2 + u1𝜎1(v1)T ⋅

(
d1

d3

)
.

More generally, for a larger problem, we can use only
the first few singular vectors and singular values to esti-
mate the far-field calculation. If the matrix A remains
fixed, we can use the same singular vectors and singu-
lar values to compute q for any vector d. This will reduce
the cost of calculating Equation (1) (unless the matrix A
is sparse). Furthermore, storing the singular vectors and
singular values requires less memory than storing the full
far-field submatrix. Note that, if the matrix A changes too
often, then we would need to perform the SVD again and
again, which would be computationally expensive.
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F I G U R E 2 The number of floating-point operations for the
direct computation of the matrix–vector product and SVD-FMM
with our configuration of boxes and p = 10 [Colour figure can be
viewed at wileyonlinelibrary.com]

The example we have discussed in this section only
shows the basic idea of the SVD-FMM. The actual
SVD-FMM algorithm is multi-level and more complicated.
Before we can address this, we explain the partition-
ing of the observations that is needed for the multi-level
algorithm.

3.2 Partition of observations into a
hierarchical structure of nested boxes

In this section, we describe the partition of observations
and explain the notation that we use. Note that we use the
nomenclature found in the FMM literature (e.g., Gimbu-
tas and Rokhlin, 2003). Suppose that we have m obser-
vations. These could be located on a latitude–longitude
grid, or irregularly distributed. We first find a minimal
square (or rectangle) that covers the locations of all of the
observations, and then hierarchically subdivide the obser-
vation domain into smaller and smaller boxes to generate
a box-tree, a hierarchical structure of nested boxes. An
example is given in Figure 3. In the tree structure, level 0
refers to the biggest box that covers the entire observation
domain, and level l + 1 refers to the boxes that are obtained
from level l by subdividing each box into four smaller boxes
of equal size. In our particular example, we choose level 3
as the highest level, which is the minimal number of levels
required for the present SVD-FMM approach. The boxes at
the highest level are called leaf boxes.

In practical applications, the number of levels is deter-
mined such that the averaged number of observations
in the leaf boxes is smaller than a prescribed value. For

unevenly distributed observations, an adaptive tree struc-
ture could be created (Gimbutas and Rokhlin, 2003), in
which smaller boxes are generated only where data are
dense.

We number the boxes in all levels except level 0 by
a Z-order curve as shown in Figure 3 (Gargantini, 1982).
This facilitates easy formulae for box indexing, as will be
described later in this subsection. We call boxes neighbors
if they are on the same level and connect to each other.
In each level, the near field of a box b is made of itself
and all its neighbors. The far field of the box b is made
of everything else. We use b and b to denote the lists
of boxes that are in the near field and far field of box
b, respectively. For example, the near field of box 16 in
Figure 3 consists of the nine shaded boxes, namely 16 =
{7, 10, 11, 13, 15, 16, 17, 18, 19}, and the far field of box 16 is
the other seven boxes, i.e., 16 = {4, 5, 6, 8, 9, 12, 14}. The
smallest number of boxes in a box’s near field is 4, which
occurs when the box is on a corner of the observation
domain.

In a box-tree the children of box b in level l, denoted
by b, refer to the four boxes in level l + 1 that are sub-
divided from itself, such as 4 = {20, 21, 22, 23}. In the
Z-curve ordering, the indices of the children of box b are
given by 4b + 4, 4b + 5, 4b + 6, and 4b + 7. The parent of
box b, denoted byb, refers to the box in a coarser level that
contains box b. For instance, 20 = 21 = 22 = 23 = {4}.

The interaction list of box b, denoted by b, is the
set of boxes which are children of the neighbors of box
b’s parents and which are in the far field of box b. For
example, 68 = {32, 33, 34, 44, 45, 48, 49, 50, 51, 56, 58, 64,
65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83} and
16 = {4, 5, 6, 8, 9, 12, 14}. Note that the interaction list of
a box in level 2 is exactly the same as its far field.

3.3 The SVD-FMM algorithm

In this section we describe the multi-level SVD-FMM
algorithm (Gimbutas and Rokhlin, 2003). For concreteness
we choose a particular configuration of boxes (as shown in
Figure 3) to describe the algorithm, but it can be general-
ized to other configurations. For each box b we can write
Equation (4) as

q(Ib) = A(Ib, Ib
)d(Ib

) + A(Ib, Ib )d(Ib ), (6)

where Ib, Ib
and Ib denote the sets of observation indices

in box b, b and b, respectively, and A(Ib, Ib
) = {ai,𝑗|i ∈

Ib, 𝑗 ∈ Ib
} and A(Ib, Ib) = {ai,𝑗|i ∈ Ib, 𝑗 ∈ Ib} denote

submatrices of A that comprise specific rows and columns
of A. We call q(Ib) = {qi|i ∈ Ib} the target and d(Ib) =
{d𝑗|𝑗 ∈ Ib} the source.

http://wileyonlinelibrary.com
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F I G U R E 3 Illustration of the
hierarchy of boxes of level 0–3 in our
example. Level 0 refers to the box
that covers the entire observation
domain, while level l + 1 refers to
the boxes that are obtained by
equally subdividing each box in
level l into four. The dots represent
the observation locations, and the
numbers are the box indices. The
shaded boxes in level 2 are the boxes
that are in the near field of box 16,
while the shaded boxes in level 3 are
the boxes that are in the interaction
list of box 68. The definitions of near
field and interaction list can be
found in the main text

The first matrix–vector product in Equation (6) is cal-
culated from the near-field components. It is computed
directly without using any approximation. The second
matrix–vector product in Equation (6), containing the
far-field components, is estimated by matrix decomposi-
tion, using a multi-level approach exploiting the hierar-
chical box-tree structure established in Section 3.2. Before
giving the mathematical details, we first give an overview
of the algorithm.

The key idea of the multi-level approach is to perform
the SVD of the submatrices of A given by A(Ib, Ib ) and use
the singular vectors and singular values just obtained to
create a multipole expansion, a local expansion, and three
translation operators, and then use them to estimate the
result. The multipole expansion can be interpreted as a
short representation of the subvector of d given by d(Ib),
which is obtained by projecting the components of d(Ib)
onto the basis given by p singular vectors, and hence is
a short vector with p components. The local expansion
can be considered as the short representation of the sub-
vector of d given by d(Ib ), which is also a vector with
p components. It is computed from the multipole expan-
sions of a group of boxes that are in b’s interaction list

using the translation operators. The translation operators
allow exploitation of the hierarchical structure established
in the box-tree, by transforming the projection from one
basis of singular vectors into another basis of singular vec-
tors. There are three kinds of translation operators: the
multipole-to-multipole (M2M) translation operator trans-
forms the multipole expansion of a box to the multipole
expansion of its parent (see Figure 4), the multipole-to-local
(M2L) translation operator translates the multipole expan-
sion of a box to the local expansion of another box
in the same level (see Figure 5), and the local-to-local
(L2L) translation operator converts the local expansion
of a nonleaf box to the local expansion of its children
(see Figure 6).

Due to the use of these expansions and translation
operators, the SVD-FMM computes matrix–vector prod-
ucts more efficiently than the standard approach, which
is reflected in both the serial efficiency (algorithmic com-
plexity) and parallel efficiency (see Sections 3.5 and 3.6 for
more details).

We now describe the mathematical steps of the
SVD-FMM algorithm in more detail. A schematic illustrat-
ing the algorithm is given in Figure 7.
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F I G U R E 4 Illustration of the multipole-to-multipole
translation operator: TM2M transforms the multipole expansions
(Φb′ ) of box b′ to the multipole expansion (Φb) of box b, where box b
is the parent of box b′

F I G U R E 5 Illustration of the multipole-to-local translation
operator: TM2L transforms the multipole expansions (Φb′ ) of box b′

to the local expansion (Ψb) of box b, where box b′ is in the
interaction list of box b. The arrow illustrates the transformation
from one particular b′ to b. For each b′ we have a unique TM2L

Initialization: Compute the SVD of submatrices of A
and the translation operators. We compute truncated SVDs
of submatrices of A for each box b in level 2 and 3:

A(Ib , Ib) ≈
p∑

k=1
usrc,b

k ssrc,b
k

(
vsrc,b

k

)T
,

A(Ib, Ib) ≈
p∑

k=1
utgt,b

k stgt,b
k

(
vtgt,b

k

)T
, (7)

where usrc,b
k ∈ R

mb and utgt,b
k ∈ Rmb are the k-th left sin-

gular vectors, ssrc,b
k and stgt,b

k are the k-th singular values,
and vsrc,b

k ∈ Rmb and vtgt,b
k ∈ R

mb are the k-th right singu-
lar vectors. The symbols mb and mb denote the length of
Ib and Ib, respectively. The symbol p denotes the number
of singular vectors and the number of singular values.

(Note that matrix A is symmetric for the data assim-
ilation problem discussed here. Therefore, in practice we
actually only need to compute one SVD per box b, and
for each box we have utgt,b

k = vsrc,b
k , stgt,b

k = ssrc,b
k and vtgt,b

k =

F I G U R E 6 Illustration of the local-to-local translation
operator: TL2L transforms the local expansion (Ψb′ ) of box b′ to the
local expansions (Ψb) of box b, where box b is the child of box b′

usrc,b
k . However, we retain the different notations for the

purpose of clarifying the algorithm.)
The singular vectors and singular values are then used

to generate multipole expansions and local expansions and
a set of translation operators. The M2M translation oper-
ator (see Figure 4) converts the multipole expansion of a
child box into the multipole expansion of its parent and is
defined as

TM2M(k, k′) =
∑
i∈Ib′

vsrc,b
k,i vsrc,b′

k′,i , k, k′ = 1, … , p (8)

for each b′ ∈ b, where vsrc,b
k,i and vsrc,b′

k,i denote the elements
of vsrc,b

k and vsrc,b′
k that correspond to the i-th observation

in box b′. The M2L translation operator (see Figure 5)
converts the multipole expansion of box b′ into the local
expansion of box b, for each b′ in the interaction list of b.
It is defined as

TM2L(k, k′) =
∑
i∈Ib′

vtgt,b
k,i vsrc,b′

k′,i , k, k′ = 1, … , p (9)

for each b′ ∈ b, where vtgt,b
k,i and vsrc,b′

k,i denote the elements
of vtgt,b

k and vsrc,b′
k that correspond to the i-th observation in

box b′. The L2L translation operator (see Figure 6) trans-
fers the local expansion of a parent box to its children and
is defined as

TL2L(k, k′) =
∑

i∈Ib′

vtgt,b
k,i vtgt,b′

k′,i , k, k′ = 1, … , p (10)

for each b′ = b, where vtgt,b
k,i and vtgt,b′

k′,i denote the elements
of vtgt,b

k and vtgt,b′

k that correspond to the i-th observation in
the far field of box b′.
Step 1: Compute the multipole expansion for the leaf boxes.
The multipole expansion for each leaf box is computed by

Φb
k =

∑
𝑗∈Ib

vsrc,b
k,𝑗 d𝑗 , (11)

where b = 20, … , 83 and k = 1, … , p.
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F I G U R E 7 Illustration of the SVD-FMM algorithm
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Step 2: Compute the multipole expansion for the nonleaf
boxes. The multipole expansion for each box in level 2 is
computed by translating the multipole expansions from its
children in level 3 using the TM2M translation operator,

Φb
k =

∑
b′∈b

p∑
k′=1

TM2M(k, k′)Φb′
k′ , (12)

where b = 4, … , 19, k = 1, … , p, and b′ denotes the child
of b.
Step 3: Compute the first part of the local expansion. For
each box in level 2 and 3, we translate the multipole expan-
sions from boxes in its interaction list into local expansions
by

Ψb,(1)
k =

∑
b′∈b

p∑
k′=1

TM2L(k, k′)Φb′
k′ , (13)

where b = 4, … , 83, k = 1, … , p, and b′ is in the interac-
tion list of b.
Step 4: Compute the second part of the local expansion. We
transfer the local expansions for each box in level 2 to their
children in level 3 using the TL2L translation operator:

Ψb,(2)
k =

p∑
k′=1

TL2L(k, k′)Ψb′,(1)
k′ , (14)

where b = 20, … , 83, k = 1, … , p, and b′ is b’s parent.
Step 5: Complete the local expansion for the leaf boxes. For
each leaf box, the final local expansion is given by adding
two parts together:

Ψb
k = Ψb,(1)

k + Ψb,(2)
k , (15)

where b = 20, … , 83 and k = 1, … , p.
Final Step: Adding the far-field calculation to the near-field
calculation. The final result for each leaf box (b = 20,
… , 83) is obtained by adding the far-field calculation to
the near-field calculation:

qi = q(1)
i + q(2)

i , (16)

where i ∈ Ib. The near-field calculation is given by

q(1)
i =

∑
𝑗∈Ib

ai,𝑗d𝑗 . (17)

The far-field calculation is given by

q(2)
i ≈

p∑
k=1

utgt,b
k,i stgt,b

k Ψb
k. (18)

We note that the stepwise algorithm presented does not
give a necessary order for the calculations. For example,

the computation of local expansions for leaf boxes in step
3 can be carried out once step 1 is done.

3.4 Accuracy

In this section we discuss which factors affect the accu-
racy of the SVD-FMM. The first aspect to consider is the
relative magnitude of the near-field and far-field terms in
Equation (6). The near-field term is computed directly,
while the far-field term is approximated. Numerical
roundoff error for the direct calculation of the near-field
term is expected to be small. Therefore, the main source
of error for the SVD-FMM is from the far-field calcu-
lation. Thus, if the magnitude of the near-field term is
much larger than the far-field term, the error in the final
result due to the SVD-FMM approximation will tend to
be small.

The accuracy of the far-field calculation is determined
by the accuracy of the truncated SVD of the submatrices
A(Ib , Ib) or A(Ib, Ib) in Equation (7) and the accuracy
of the translation operators given by Equations (8–10).
The truncation error in Equation (7) is dependent on the
number of singular vectors used (p) and the (p + 1)th sin-
gular value of the submatrices A(Ib , Ib) or A(Ib, Ib) (e.g.,
Bernstein, 2009, Fact 9.14.28). Additionally, Gimbutas and
Rokhlin (2003) show that the error bounds on the trans-
lation operators rely on the (p + 1)th singular value of the
submatrices. Thus, the optimal number of the singular
vectors used in the SVD-FMM may depend on the applica-
tion. It should be determined by considering the trade-off
between accuracy and efficiency, as the more the singu-
lar vectors are used, the more accurate the results but the
slower the computation.

The SVD-FMM algorithm uses truncated SVDs
(Equation (7)) and, thus, may cause rank deficiency of the
matrix A. Nevertheless, the Hessian of the full variational
problem will still be full rank (e.g.,Tabeart et al., 2021). In
addition, the matrix A used in the solution of the varia-
tional problem is not exactly the inverse of the matrix R.
However, only the matrix A (and not R) is used in the solu-
tion of the variational problem. Furthermore, studies have
shown that even approximate forms of spatial observation
error correlations provide significant benefits to analysis
accuracy compared with diagonal approximations (e.g.,
Healy and White, 2005; Stewart et al., 2008; 2013).

3.5 Algorithmic complexity

In this section we compare the number of floating-point
operations (flops) required for computing matrix–vector
products using the standard approach and the SVD-FMM.
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Let s = mb be the average number of observations in a
leaf box (for b in the highest level), and B=m⋅s−1 be
the number of leaf boxes, where m is the total number
of observations. Computing Equation (11) for a fixed b
and a fixed k requires 2mb operations (mb multiplication
and mb add operations). Hence, calculating Equation (11)
for each value of k requires 2mbp operations. Finally, for
each value of b, Equation (11) requires

∑83
b=202mbp = 2mp

operations. Similarly, Equation (12) requires 2Bp2 opera-
tions. Equation (13) requires less than 2 × 27Bp2 opera-
tions for leaf boxes and 2 × 12 × B∕4 × p2 operations for
boxes in level 2, because there are at most 27 entries
in the interaction list of each leaf box and 12 of each
box at level 2. Equation (14) requires 2Bp2 operations.
Equation (17) requires at most 2 × 9 ms operations, since
the maximum number of boxes in the near field of each box
is 9. Finally, Equation (18) requires 2mp operations. Thus,
the operation count of the entire algorithm (excluding the
initialization step) approximately sums to 18ms + 4mp +
64Bp2 or 18ms + 4mp + 64(m∕s)p2.

The SVDs and translation operators only need to be
computed once if the distribution of observations does not
change. The singular vectors, singular values, and trans-
lation operators can be used for any vector d. However,
if the distribution of the observations varies too often,
then the computational costs in the initialization step and
the computational cost of inverting the observation error
covariance matrix could make the algorithm very expen-
sive.

For comparison, the direct matrix–vector multiplica-
tion of Equation (1) requires 2m2 operations. In data
assimilation, q is often computed using a forward and
backward substitution (Golub and Van Loan, 1996;
Weston et al., 2014; Simonin et al., 2019), which also
requires (m2) operations. Figure 2 compares the oper-
ation counts for direct computation and the SVD-FMM
with our configuration of boxes and p = 10. We observe
that, once the number of observations exceeds 500, the
SVD-FMM requires fewer floating-point operations than
direct matrix–vector multiplication, and the difference
increases with the number of observations.

3.6 Parallelization

In this section we describe a novel parallel algorithm
for the SVD-FMM. The FMM has several opportunities
for parallelism (Greengard and Gropp, 1990), and our
approach is not the only possibility. We include this section
to provide a preliminary exploration of the potential of
the SVD-FMM as a practical technique for operational
data assimilation. However, we note that, for our experi-
mental results (Section 5), we have not used this parallel

algorithm. The number of observations considered in our
idealized experiments is much smaller than in operational
applications, so that the serial calculations can be done
within an acceptable time.

We should first distribute the matrix and vector ele-
ments across PEs according to the partitioning of observa-
tions in the box-tree. For each leaf box b, we should assign
the subvector of d given by d(Ib) and the submatrix of A
given by A(Ib, Ib ∪ Ib) to one PE. For each box b in level 2,
we should allocate the submatrix of A given by A(Ib, Ib)
to one PE. For our particular configuration of boxes, we
have 64 leaf boxes and 16 nonleaf boxes in level 2, hence
we could use 80 PEs. However, to make our parallelization
scheme easily comparable with the parallel formulations
of matrix–vector multiplication given in Sections 2.1–2.4,
we actually discuss the case where we choose 16 PEs out of
64 and let them store the data for level 2 boxes. We describe
a possible parallelization of each mathematical step of the
SVD-FMM as follows:

• Parallelization of the initialization step.

– Each PE can calculate Equation (7) independently.
Once the singular vectors and singular values are
obtained, the submatrices stored on each PE can be
discarded.

– To compute Equation (8), each PE that is assigned to
a parent box should send vsrc

k to three PEs that are
assigned to its children. The calculation of the M2M
translation operators would require 16 one-to-all
broadcast operations to be performed simultane-
ously. The message size for each operation should be
mp∕16, and four PEs should be involved.

– To compute Equation (9), each PE should send a
portion of vtgt

k to at most 27 PEs, because the maxi-
mum number of boxes in an interaction list is 27. The
calculation of the M2L translation operators should
require an all-to-all broadcast with the message size
of mp∕B.

– To compute Equation (10), each PE should send a
portion of vtgt

k to the PE that is assigned to its parent.
The computation of the L2L translation operators
would require 16 all-to-one reduction operations to
be carried out in the same time. The message size
for each operation should be mb p for b being a level
2 box. The communications required for calculat-
ing three translation operators can be done together
using an all-to-all broadcast. After the initialization
step, each PE that is assigned only to a leaf box will
store vsrc

k , sk, TM2M and TM2L, and those assigned to
both a leaf box and a level 2 box will store TM2L and
TL2L.
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T A B L E 1 Communication time for four distinct parallel formulations of matrix–vector multiplication with full matrices and
the parallelization scheme for the SVD-FMM

Parallelization scheme Communication operation # PEs Message size Communication time

Row-wise All-to-all broadcast B m∕B ts log B + twm

Column-wise All-to-one reduction B m (ts + twm) log B

Scatter B m∕B ts log B + twm

Block One-to-all broadcast
√

B − 1 m∕
√

B (ts + twm∕
√

B) log
√

B

All-to-one reduction
√

B − 1 m∕
√

B (ts + twm∕
√

B) log
√

B

Symmetric All-to-all broadcast B ≈ m∕B < ts log B + twm

All-to-all reduction B ≈ m∕B < ts log B + twm

SVD-FMM All-to-one reduction 4 p (ts + twp) log(4)

All-to-all broadcast B p, 2p or m∕B < ts log B + twm

One-to-all broadcast 4 p (ts + twp) log(4)

Note: The number of observations is m, the number of leaf boxes is B, and the number of singular vectors is p. # PEs represents the number of PEs that
are involved in a communication operation. The symbols ts and tw are the startup time and the per-word transfer time, respectively, which are
determined by the configuration of the parallel machine.

• Parallelization of step 1. This step is perfectly parallel.
• Parallelization of step 2. Each PE should compute TM2M ⋅

Φ and then send the result to the PE that is assigned
to its parent. Computing the multipole expansions for
level 2 boxes would require an all-to-one reduction. The
message size for this communication operation should
be p.

• Parallelization of step 3. Each PE should compute TM2L ⋅
Φ and then send the result to another PE. Each PE
should collect the partial result of Equation (13) from at
most 27 PEs. This step would need an all-to-all broad-
cast with a message size of p or 2p.

• Parallelization of step 4. Each PE that is assigned to a box
in level 2 should compute TL2L ⋅Φ and then send the
result to the PEs that are assigned to its children. This
step would use an one-to-all broadcast with a message
size of p.

• Parallelization of step 5. This step is perfectly parallel.
• Parallelization of final step. The far-field calculation for

each leaf box is perfectly parallel. For the computation
of the near-field calculation, each PE should obtain the
elements of d from at most eight PEs, which is the max-
imum number of neighbors for one box. This would
require an all-to-all broadcast. The average message size
for this operation is m∕B. We can use one all-to-all
broadcast to complete the communication tasks for this
step and step 3.

Table 1 summarizes the communication costs for
the SVD-FMM and four parallel formulations of the
matrix–vector multiplications described in Section 2. The

major advantage of using the SVD-FMM is that the
message size for each communication operation is dramat-
ically reduced.

In the proposed parallelization scheme, we suggested
using B PEs and letting one of every four PEs conduct
the computations for boxes in level 2. This could be par-
ticularly useful if the supercomputer configuration has
nonuniform memory access (NUMA) nodes with locally
shared memory (Grama et al., 2003). In this case, we could
avoid the remote communications required in step 2, step
4, and similar steps in the initialization. Alternatively, we
could assign the tasks for level 2 and level 3 to different
PEs, that is, using 80 PEs for our configuration of boxes.
This could allow each PE to carry out a similar amount
of work. More generally, we note that the practical imple-
mentation of the given parallelization scheme should be
adjusted to suit the configuration of the supercomputer.

4 EXPERIMENTAL DESIGN

Our numerical experiments are designed to demon-
strate the potential of applying the SVD-FMM to com-
pute the matrix–vector products involved in operational
data assimilation. We investigate the accuracy of using
the SVD-FMM under different scenarios that may occur
in practical applications. We conduct serial calculations
rather than using parallel computing because in this ini-
tial study we have chosen to study idealized problems of
moderate size as this is sufficient for our goals.

For this initial study, we have not included matrix
inversion as part of the SVD-FMM algorithm. However,
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to obtain our experimental results, we require an inverse
observation error covariance matrix. We use the INV
function in MATLAB (MATLAB, R2020b(a)) to compute
the inverses of R and reconditioned R. The generation of
the R matrix is described in Section 4.2, and reconditioning
methods are given in Section 4.3. The INV function uses
an LDL decomposition (Golub and Van Loan, 1996). The
required SVDs of submatrices of R−1 (denoted A) are com-
puted using the SVDS function in MATLAB (MATLAB,
R2020b(b)), which uses a Lanczos method and is efficient
for finding a few singular values and vectors of a large
matrix (Larsen, 1998; Baglama and Reichel, 2005).

In the results section (Section 5) we use the log of
root-mean-squared error (RMSE) to assess the accuracy of
SVD-FMM, which is defined as

log(RMSE) = log

⎛⎜⎜⎜⎜⎝

√√√√∑m
i=1

(
qfmm

i − qref
i

)2

m

⎞⎟⎟⎟⎟⎠
, (19)

where the superscript fmm denotes the matrix–vector
product computed using the SVD-FMM and ref denotes
the matrix–vector product obtained by the standard
approach. Note that the log(RMSE) shown in Section 5
is averaged over 100 realizations of qfmm

i , where each one
uses a different d.

4.1 Observation distribution
and observation-minus-model departures

To simulate observation data, we assume our observations
are regularly distributed over a region from 54◦ to 60◦ N
and 6◦ W to 6◦ E with a grid length of 12 km. This is similar
to moderately thinned geostationary satellite data used in
operational forecasting over the UK (Waller et al., 2016b).
This results in 3,456 observations and an error covari-
ance matrix of size 3,456 × 3,456. For convenience, we
directly sample the observation-minus-model departure
vector d from a Gaussian distribution with mean zero and
(innovation) covariance given by R plus background error
covariance. The background error covariance is modeled
using the SOAR correlation function with a lengthscale
of 20 km and a standard deviation of 0.6 (Section 4). The
correlation lengthscale and standard deviation are selected
according to Ballard et al. (2016) to be appropriate for
kilometer-scale numerical weather prediction. The results
presented in Section 5 have been averaged over 100 real-
izations of d.

In practice, the observation distribution may be dif-
ferent at each assimilation cycle because of factors such
as quality control. Therefore, in some of our experiments,

we have also applied the SVD-FMM to compute the
matrix–vector product with randomly chosen missing
observations.

4.2 Modeling of the observation error
covariance matrix

Modeling observation error covariance matrices using cor-
relation functions is a useful approach to deal with obser-
vation error correlations (e.g., Stewart et al., 2013; Tabeart
et al., 2018). Here we use several correlation functions to
model the observation error covariance matrices. The first
is the Gaussian correlation function (e.g., Haben, 2011),

C(i, 𝑗) = exp
(
−
|ri,𝑗|2

2l2

)
, (20)

where l > 0 is the correlation lengthscale and ri,𝑗 denotes
the great-circle distance between two observations. The
second is the first-order autoregressive (FOAR) correlation
function, also called the Markov correlation function (e.g.,
Stewart et al., 2013),

C(i, 𝑗) = exp
(−|ri,𝑗|

l

)
. (21)

We also use the SOAR correlation function (e.g., Daley,
1994; Tabeart et al., 2018),

C(i, 𝑗) =
(

1 +
|ri,𝑗|

l

)
exp

(−|ri,𝑗|
l

)
, (22)

and the Matérn 5/2 correlation function (e.g., Rasmussen
and Williams, 2006),

C(i, 𝑗) =

(
1 +

√
5ri,𝑗

l
+

5r2
i,𝑗

3l2

)
exp

(
−

√
5ri,𝑗

l

)
. (23)

The observation error covariance matrix can be gener-
ated using the correlation functions by

R = DCD, (24)

where D is a diagonal matrix whose diagonal elements
are a prescribed standard deviation. For our experiments,
we choose the standard deviation as one and the cor-
relation lengthscales as l = 80, 160, 240 km. These cor-
relation lengthscales are selected based on the horizon-
tal error correlations estimated for geostationary satellite
data used in operational kilometer-scale data assimila-
tion (Waller et al., 2016b) and for AMVs (Cordoba et al.,
2017). It should be noted that the Markov and Matérn 5/2
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correlation functions may lead to a sparse A, in which case
the SVD-FMM may not be optimal to use. We use these
correlation functions in our experiments because we wish
to show that the SVD-FMM can be applied to a variety of
matrices.

4.3 Reconditioning of the observation
error covariance matrix

In practical applications, observation error covariance
matrices are often ill-conditioned (Haben et al., 2011a;
Tabeart et al., 2020b). Moreover, if the matrix R has a large
condition number, this can lead to poor convergence of
the minimization problem in variational data assimilation
(Weston et al., 2014; Tabeart et al., 2018; 2020a). In our
applications, the condition number of the matrices that
are created using correlation functions is dependent on the
chosen function and correlation lengthscale (Haben, 2011;
Haben et al., 2011b).

We use two common matrix reconditioning techniques
to reduce the matrix condition number in our experiments:
the ridge regression method and the minimum eigen-
value method (Weston et al., 2014; Bormann et al., 2016;
Campbell et al., 2017; Tabeart et al., 2020b). In the ridge
regression (RR) method, the reconditioned matrix is given
by

RRR = R + 𝛿I, (25)

where I is the identity matrix and

𝛿 =
𝜆max − 𝜆min𝜅req

𝜅req − 1
, (26)

where 𝜆max is the maximum eigenvalue of R, 𝜆min is the
minimum eigenvalue of R, and 𝜅req is the required new
condition number.

The minimum eigenvalue (ME) method changes the
eigenvalue spectrum of the matrix R by setting all eigenval-
ues smaller than a threshold value to the threshold value.
The threshold value (T) is given in terms of the required
condition number as

T = 𝜆max∕𝜅req. (27)

The reconditioned matrix is then constructed via

RME = EΛMEET, (28)

where E is a square matrix whose columns are the eigen-
vectors of R andΛME is a diagonal matrix with the diagonal
elements being the new eigenvalues.
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F I G U R E 8 The log(RMSE) for the SVD-FMM against the
number of singular vectors (p) used in the approximation. The
matrices A are given by inverting the FOAR and SOAR covariance
matrices with correlation lengthscale l = 80 km. The log(RMSE) is
averaged over 100 realizations of d [Colour figure can be viewed at
wileyonlinelibrary.com]

5 RESULTS

5.1 The number of singular vectors
and the size of singular values

We carried out an experiment to assess the accuracy of the
SVD-FMM, as the number of singular vectors (p) changes.
As discussed in Section 3.4, we expect the accuracy to
depend on both p and the (p + 1)th singular values for
each submatrix. Figure 8 provides the log(RMSE) for the
SVD-FMM with the FOAR and SOAR covariance matrices
as a function of p. As anticipated, the log(RMSE)decreases,
and hence the accuracy increases, as more singular vec-
tors are used. Moreover, Figure 9 demonstrates that the
log(RMSE) for the SVD-FMM using p singular vectors has
an approximately linear relationship with the log of the
mean (p + 1)th singular value of the submatrices, which is
given by

log(sp+1) = log
(

ssrc,b
p+1

)
= log

(
stgt,b

p+1

)
(29)

for p = 1, … , 9 and b = 4, … , 83. Additionally, we note
that the SVD-FMM with the FOAR covariance matrix
is more accurate than with the SOAR covariance matrix
for all the values of p considered. This is because the
mean (p + 1)th singular value of the submatrices of the
FOAR matrix is consistently smaller than that of the SOAR
matrix (Figure 9). We have also carried out several other
experiments using different correlation lengthscales, dif-
ferent correlation functions, and reconditioned covariance

http://wileyonlinelibrary.com
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FOAR and SOAR covariance matrices
used in Figure 8 [Colour figure can be
viewed at wileyonlinelibrary.com]

matrices and found similar qualitative results: the accu-
racy of the SVD-FMM using p singular vectors relies on the
(p + 1)th singular values of the submatrices.

These results using the mean singular values of the
submatrices provide some guidance as to how to set the
value of p in a given application. However, as they require
the computation of the SVDs of all of the relevant subma-
trices of A, they are time-consuming to compute.

5.2 Varying correlation lengthscale

Different observations can exhibit correlated errors over
different lengthscales. To examine how correlation length
affects the accuracy of the SVD-FMM, we use three corre-
lation lengthscales for the SOAR correlation function: l =
80, 160, and 240 km. Figure 10 reveals an increase of the
log(RMSE) of the SVD-FMM with correlation lengthscale.
Nevertheless, we still only need a few singular vectors to
obtain a small log(RMSE). However, if we desire to obtain
a given accuracy, we may need to use a larger value of p for
longer lengthscales. In addition, we note that the magni-
tude of the elements of A increases as correlation length-
scale increases. For a smaller lengthscale, the far-field
elements of A are close to zero and could be neglected to
give a sparse matrix. Moreover, compared with the SOAR
correlation function, the Matérn and Markov functions are
more likely to give a sparse A if the correlation lengthscale
is small.

The variation of the accuracy of the SVD-FMM with
correlation lengthscale can also be explained by the sin-
gular values of the submatrices. We find in our numerical
experiments (not shown) that the singular values of the
submatrices are smaller when the correlation lengthscale
is smaller. It is known that the maximum singular value
of the full matrix (inverse SOAR covariance matrix) also
decreases as the correlation lengthscale reduces (Haben,
2011, section 5.3.2). Therefore, we investigated whether it
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F I G U R E 10 As Figure 8, but matrices A are given by
inverting the SOAR covariance matrices with three correlation
lengthscales [Colour figure can be viewed at wileyonlinelibrary.com]

would be possible to use the singular values of the full
matrix to estimate the accuracy of the SVD-FMM. Thomp-
son (1972) showed that the singular values of the subma-
trices are bounded by the singular values of the full matrix,
i.e.,

𝜎i(B) ≤ 𝜎i(A), i = 1, 2, 3, … ,min{𝛼, 𝛽} (30)

where B ∈ R𝛼×𝛽 denotes a submatrix of A, 𝜎i(B) denotes
the i-th singular value of B, and 𝜎i(A) denotes the i-th sin-
gular value of A. Equality can be obtained for some choices
of B. However, since the dimensions of the submatrices
used in SVD-FMM are much smaller than the dimensions
of the full matrix, our numerical experiments showed that
𝜎i(B) is typically much smaller than 𝜎i(A) in practice. We
compared the maximum singular values of different full
matrices numerically and found that they could provide a
rough guide to relative accuracies: for a given value of p,
the best accuracy was obtained for the full matrix with the
smallest maximum singular value.

http://wileyonlinelibrary.com
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5.3 Reconditioned covariance matrices

The observation error covariance matrices used in data
assimilation procedures are often ill-conditioned, and
thus, in order to invert them, we need to reduce their con-
dition numbers using proper techniques (Tabeart et al.,
2020b). Reconditioning the covariance matrices may also
improve the convergence behavior of the minimization
procedure (Weston et al., 2014; Tabeart et al., 2020a; 2021).
We evaluate how reconditioning affects the accuracy of the
SVD-FMM; we reduce the condition number of the SOAR
covariance matrix with l = 80 km to three required new
condition numbers (𝜅req = 1,000, 2,000, and 3,000) using
the RR and ME methods. Figure 11 shows that recon-
ditioning the SOAR correlation matrix can improve the
accuracy of SVD-FMM; the smaller the condition number
of the SOAR covariance matrices after reconditioning, the
better the accuracy.

We also find that the RR method gives smaller
log(RMSE) than the ME method for the same required
condition number. This difference is caused by the dif-
ferent ways the two reconditioning methods reduce the
condition number, which leads to different size singular
values of the full inverse covariance matrices satisfying:

𝜎max(ARR) < 𝜎max(AME), (31)

where 𝜎max(ARR) and 𝜎max(AME) denote the maximum
singular value of the reconditioned matrices obtained
using the RR and ME method, respectively. Combing

Equation (30) and Equation (31), the leading singular
values of the submatrices of ARR are expected to typi-
cally be smaller than the leading singular values of the
submatrices of AME. Hence, the SVD-FMM with recon-
ditioned matrices using RR method will usually have
smaller error. A derivation of Equation (31) is presented in
Appendix.

5.4 Varying correlation functions

To provide more numerical evidence for the wide appli-
cability of the SVD-FMM, we use other correlation func-
tions than SOAR and FOAR to create covariance matrices.
To allow for comparison with Figure 11, we use the RR
method to reduce the condition number of all the matrices
to 1,000 before inverting them. Figure 12 shows that the
SVD-FMM can work well with the inverses of the matri-
ces given by different correlation functions. We note that,
although the condition number of each matrix is identi-
cal after reconditioning, the accuracy of the SVD-FMM
still relates to the original condition numbers; the larger
the condition number prior to reconditioning, the greater
the log(RMSE). In our experiments, the FOAR correlation
matrix has a condition number on the order of thousands,
while the Gaussian correlation matrix is extremely poorly
conditioned and has a condition number on the order of
1015 prior to reconditioning.

By comparing Figure 12 with Figure 11, we also
observe that reducing the condition number of the Gaus-
sian correlation matrix to 1,000 using the RR method
gives larger log(RMSE) than reducing the condition num-
ber of the SOAR correlation matrix to 3,000 using the
same method. Therefore, to acquire a comparable accu-
racy using the SVD-FMM with the same value of p, we may
need to reduce the condition number of two matrices to
different values. The matrix with a larger condition num-
ber prior to reconditioning may need a smaller condition
number after reconditioning.

5.5 Removing a portion of observations

In operational data assimilation, the number of observa-
tions varies each assimilation cycle due to quality con-
trol, among other reasons. This will lead to a decrease
of the dimension of covariance matrix and disrupt the
structure of the matrix. The resultant covariance matrix
lacks some of the rows and columns of the original one.
The missing observations may cause a problem if a leaf
box becomes empty or contains fewer observations than
p. This could be solved by using a different partition of
observations. In our experiment, we randomly select the

http://wileyonlinelibrary.com
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locations of the missing observations, and with up to
25% missing observations, every leaf box always contains
enough observations. Figure 13 shows that the SVD-FMM
can still work well with missing observations without los-
ing accuracy. In our experiments using an inverse SOAR
covariance matrix, we find that the missing observations
actually lead to a slight decrease in the log(RMSE) com-
pared with the full set of observations. The difference in
the log(RMSE) between removing 10% of the observations
and removing 25% of the observations is not statistically
significant.

6 CONCLUSION
AND DISCUSSION

Some observations have been shown to exhibit strong spa-
tial error correlations, e.g., Doppler radar radial winds,
geostationary satellite data, and AMVs. Accounting for
this information in data assimilation systems can improve
analysis accuracy and forecast skill. However, it can make
the computation of the products of observation weight-
ing matrices and observation-minus-model departure vec-
tors very expensive, in terms of not only the compu-
tational complexity, but also the communication costs
in parallel computing. We have therefore investigated
the use of the SVD-FMM for the rapid computation of
these matrix–vector products. This numerical approxima-
tion method is best suited for full or dense precision
matrices. If the observation weighting matrix is sparse,
it might be appropriate to only compute the near-field
calculation. Moreover, the SVD-FMM is suitable for use
for large problems, when the overhead of computing the
SVD-FMM expansions is outweighed by the reductions in
floating-point operations and communication costs com-
pared with alternative approaches, and where each PE
has enough memory to store its part of the error covari-
ance matrix of these observations. The exact range of the
number of observations that makes the SVD-FMM useful
depends on the computer architecture and the constraints
of the operational schedule.

We proposed a novel possible parallelization scheme
for the SVD-FMM in our application. In comparison with
the parallel formulations of direct matrix–vector multi-
plication (Section 2), the parallelization scheme for the
SVD-FMM largely reduces the size of the messages trans-
ferred. This reduces communication costs, making the use
of full observation error covariance matrices associated
with large spatial extents potentially feasible in operational
data assimilation.

In our idealized experiments, we have examined the
accuracy of the SVD-FMM, in terms of applying it to the
inverses of various observation error covariance matrices.
These matrices are created using commonly used corre-
lation functions, such as Gaussian and SOAR correlation
functions, and different correlation lengthscales. In some
of our experiments, we have applied reconditioning meth-
ods to the covariance matrices before inverting them. We
have also investigated the feasibility of the SVD-FMM with
randomly chosen missing observations. We find consis-
tent results as discussed in Section 3.4: (a) the accuracy
of the SVD-FMM increases as more singular vectors are
used, and (b) the variation of the accuracy is approximately
linear with the mean spectrum of singular values of the
submatrices used in the approximation. Furthermore, our
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experiments indicate that a comparison of the maximum
singular values of the full inverse matrices themselves can
be used as a rough guide to determine which matrices will
give more accurate results with the SVD-FMM.

The most computationally expensive parts of our cur-
rent implementation of the SVD-FMM are the inversions
of covariance matrices and the SVDs of the submatrices
of inverse matrices. They need to be re-performed every
time the observation error covariance matrix is changed.
This happens when the number of observations or the dis-
tribution of observations are changed. Nevertheless, our
work has shown that the SVD-FMM has potential for use
in operational data assimilation for fast computation of the
products of the inverse observation error covariance matri-
ces and observation-minus-model departure vectors. This
will allow a large volume of observational data to be assim-
ilated within a short time interval, which is particularly
important for applications such as convection-permitting
hazardous weather forecasting.
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APPENDIX A. MAXIMUM SINGULAR VAL-
UES OF RECONDITIONED MATRICES
USING RR AND ME METHODS

In this appendix we derive the result given in
Equation (31). The RR method increases each of eigenval-
ues of the original matrix by the same amount via adding
an increment given by Equation (26) to the diagonal. In
contrast, the ME method changes only the smallest eigen-
values to a value given by Equation (27). Let 𝜆min(RRR)
denote the minimum eigenvalue of RRR and 𝜆min(RME)
denote the minimum eigenvalue of RME, then we have

𝜆min(RRR) =
𝜆max − 𝜆min𝜅req

𝜅req − 1
+ 𝜆min

>
𝜆max − 𝜆min𝜅req

𝜅req
+ 𝜆min = 𝜆max

𝜅req
= 𝜆min(RME).

(A1)

The reciprocal of the minimum eigenvalue of a matrix
is the maximum eigenvalue of its inverse, hence we have

𝜆max(ARR) =
1

𝜆min(RRR)
<

1
𝜆min(RME)

= 𝜆max(AME). (A2)

Since the eigenvalues and singular values of a symmet-
ric positive semidefinite matrix are the same (Bernstein,
2009, Definition 5.6.1), we obtain

𝜎max(ARR) = 𝜆max(ARR) < 𝜆max(AME) = 𝜎max(AME) (A3)

as required.
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