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Abstract
Recently the authors characterized the Fredholmn properties of Toeplitz operators on
weighted Fock spaces when the Laplacian of the weight function is bounded below
and above. In the present work the authors extend their characterization to doubling
Fock spaces with a subharmonic weight whose Laplacian is a doubling measure. The
geometry induced by the Bergman metric for doubling Fock spaces is much more
complicated than that of the Euclidean metric used in all the previous cases to study
Fredholmness, which leads to considerably more involved calculations.

Keywords Toeplitz operators · Fredholm properties · Doubling Fock spaces ·
Vanishing mean oscillation · Quasi-Banach spaces

Mathematics Subject Classification Primary 47B35; Secondary 30H20

1 Introduction

Let � be a domain of the complex plane C, and let μ be a positive Borel measure
on �. For 0 < p < ∞, the space L p(�, dμ) consists of all Lebesgue measurable
functions f on � for which
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‖ f ‖L p(�,dμ) =
(∫

�

| f (z)|pdμ(z)

) 1
p

< ∞.

We denote by H(�) the family of all holomorphic functions on �.
A positive Borel measure ν on C is called doubling if there exists some constant

M > 0 such that

ν(D(z, 2r)) ≤ Mν(D(z, r))

for z ∈ C and r > 0,where D(z, r) = {w ∈ C : |w − z| < r}. The smallest value ofM
above is called the doubling constant of ν.We denote by d A the Lebesgue areameasure
on C. For a subharmonic function φ, not identically zero on C, with ν = �φ d A
doubling, we denote by ρ(z) the positive radius such that ν (D(z, ρ(z)) = 1. The
function ρ−2 can be viewed as a regularized version of �φ, see [7] and [21].

For 0 < p < ∞, we write L p
φ instead of L p(C, e−pφd A) for simplicity, that is, we

say f ∈ L p
φ if f is Lebesgue measurable on C and

‖ f ‖p
p,φ =

∫
C

| f (z)|pe−pφ(z)d A(z) < ∞.

By L∞
φ we denote the set of all Lebesgue measurable functions f on C for which

‖ f ‖∞,φ = ess supz∈C| f (z)|e−φ(z) < ∞.

The doubling Fock space F p
φ is defined by

F p
φ = L p

φ ∩ H(C).

Under ‖ · ‖p,φ , F
p
φ is a Banach space when 1 ≤ p ≤ ∞ and it is a quasi-Banach space

when 0 < p < 1. It is worth noting that F p
φ is of infinite dimension if �φ d A is a

nontrivial doubling measure (see, e.g., [7,21,22]); for further details on the dimension
of weighted Fock spaces, see [4]. In a larger framework, the doubling Fock spaces F2

φ

can be viewed as Bergman spaces with admissible weights in the sense of [25], but
this connection will not be exploited in our present work.

The Fock spaces considered in the present paper cover a great deal in the literature.
In particular, when φ(z) = α

2 |z|2 with α > 0, F2
φ is the classical Fock space F p

α , which
has been studied by many authors, see, e.g. [16,31,32] and the references therein. If
φ(z) = m log |z| + |z|2, m is a positive integer, F2

φ is just the Fock-Sobolev space

discussed in [5] and [6]. For φ(z) = |z|m , F2
φ is the weighted Fock space studied

in [28] and [29]. Doubling Fock spaces also include the so-called generalized Fock
spaces F p

φ , where 0 < m < �φ < M (see [15] and the references therein).

Let K (·, ·) be the reproducing kernel of the Hilbert space F2
φ . The asymptotic

behavior of K (·, ·) has been studied in [7] and [22] for example. For 0 < p < ∞ and
z ∈ C, set kp,z(w) = K (w, z)/‖K (·, z)‖p,φ to be the normalized Bergman kernel for
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F p
φ . We simply write kz for k2,z . It is easy to see that kz(w) = K (w, z)/

√
K (z, z).

With K (·, ·), we define an integral operator P (known as the Bergman projection) by

P f (z) =
∫
C

K (z, w) f (w)e−2φ(w)d A(w)

for z ∈ C. With this integral representation, given a Lebesgue measurable function
f on C, we define the Toeplitz operator T f and the Hankel operator H f on F p

φ ,
respectively, as

T f g = P( f g)

and

H f g = (I − P)( f g) = f g − P( f g)

provided that the corresponding integral P( f g) makes sense, where I is the identity
operator on functions. The function f generating Toeplitz and Hankel operators is
referred to as the symbol of the operator under consideration.

In the present paper, we investigate the properties of Toeplitz and Hankel opera-
tors acting on doubling Fock spaces with symbols of bounded and vanishing mean
oscillation. We denote these symbol classes by BMOp and V MOp, respectively—
their precise definitions and basic properties, such as the decompositions BMOp =
BO + BAp and V MOp = V O + V Ap, will be given in the next section.

Our main focus is on the study of Fredholmness of Toeplitz operators on doubling
Fock spaces. A bounded operator T on a vector space X is said to be Fredholm if its
kernel ker T and cokernel X/T (X) are bothfinite-dimensional. Fredholmoperators are
important for a variety of reasons, such as their role in global analysis, spectral theory
and numerical analysis, and in many other branches of mathematics and mathematical
physics. The study of the Fredholm properties of Toeplitz operators on Hardy spaces
with continuous symbols is the culmination of works of several authors in the 1950s,
including Gohberg, Simonenko and Widom, depending on the precise setting of the
underlying Hardy space H p. Since then there has been a steady increase in the study
of spectral properties of Toeplitz operators on Hardy spaces and Bergman spaces,
and in particular the Fredholm properties of Toeplitz operators on these spaces are
well understood for several classes of symbols. Regarding Toeplitz operators on Fock
spaces, most efforts have been focused on the study of boundedness, compactness,
and Schatten class properties, and until recently there were only two articles on their
Fredholm properties (see [3,27], which both deal with the classical Fock space F2 and
bounded symbols of vanishing mean oscillation). In the past three years, a series of
works have appeared (see [1,2,11,15]), which has brought the level closer to that of the
other two spaces. Indeed, the following characterization was obtained independently
in [2] and [11] using different methods, which we discuss in some detail below.

123



106 Page 4 of 29 Z. Hu, J. A. Virtanen

Theorem 1.1 Let f ∈ L∞ ∩ V O, 1 < p < ∞ and α > 0. Then T f is Fredholm on
the classical Fock space F p

α if and only if there are positive numbers ε and δ such that

| f (z)| ≥ ε whenever |z| ≥ δ. (1.1)

This result naturally leads to the question of whether the preceding theorem remains
true for

(i) unbounded symbols;
(ii) small exponents;
(iii) more general weights.

Very recently, in [15], we have managed to make significant progress in answering
these questions and in particular found a condition that (1.1) should be replaced with
as stated in the following theorem.

Theorem 1.2 Let f ∈ V MO1 and 0 < p < ∞. Then the Toeplitz operator T f is
Fredholm on the generalized Fock space F p

φ with 0 < m < �φ < M if and only if

0 < lim inf|z|→∞ | f̃ (z)| and lim sup
|z|→∞

| f̃ (z)| < ∞, (1.2)

where f̃ is the Berezin transform of the symbol f .

Notice that it is not difficult to see that Theorem 1.1 follows immediately from
Theorem 1.2. To completely settle the theory of Fredholm Toeplitz operators T f with
symbols in V MO1 on all Fock spaces F p

φ with f ∈ V MO1, we prove that Theo-
rem 1.2 remains true even for weights whose Laplacian is a doubling measure. This is
our main result—see Theorem 4.9. Of course, there are Fock spaces F p

φ that cannot
be viewed as doubling Fock spaces and hence further work related to (iii) remains.
However, before such study can proceed, we would first need to characterize bounded
(and compact) Toeplitz operators on more general Fock spaces than those with dou-
bling weights. Here the main obstacle is that the Bergman kernel estimates are only
known up to the doubling weights. Another natural problem is the study of higher
dimensional setting—we discuss this and other types of Fock spaces briefly in Sect. 5.

We should note that recently, in [1], an attemptwasmade to address (iii) when p = 2
and in particular to prove Theorem 1.1 in the Hilbert space setting F2

φ with doubling
weights φ. However, while this generalization is true as seen from our main theorem,
its proof contains a gap in the construction of a regularizer because Proposition 4.1
of [1] is only known to be true when the vanishing (mean) oscillation is defined with
respect to the Euclideanmetric as opposed to the Bergmanmetric—see Remark 4.8 for
further details. A correct argument to this problem is given in the proof of Theorem 4.9.
This further demonstrates the complexities and pitfalls one encounters when dealing
with the geometry of doubling Fock spaces.

For further details about the history of the problem, see [2,11,15] and the references
therein. We limit our discussion here to the methodologies that have been used to treat
the problem previously.
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The first approach for the Hilbert space F2
α was based heavily on Hilbert space and

C∗-algebra techniques, the use of the Weyl operator, the Berezin transform, and the
Heisenberg group; see [3]. Aside from the Berezin transform, these are not suitable
for operators acting on Banach spaces—whether one can employ these techniques for
doubling Fock spaces F2

φ may be an interesting question but we do not address it in
our present work.

Recently developed limit operator techniques due to Hagger and his collaborators
offer an efficient way of dealing with Toeplitz operators on Banach spaces that possess
sufficiently “nice bases” (see [11] and the references therein). Briefly, the idea is to
densely embed C

n into the maximal ideal space M of BUC (the space of bounded
uniformly continuous functions), and view M \ C

n as the boundary of C
n . Then the

boundary values of an operator T in the Toeplitz algebra Tp,α atM \ C
n are obtained

by “shifting” T to the boundary (for the precise meaning, see [11]). This way, for
each x ∈ M \ C

n , one obtains the so-called limit operator Tx . Using limit operator
techniques, the following result was proved in [11].

Theorem 1.3 Let 1 < p < ∞. Then an operator T in the Toeplitz algebra Tp,α on
F p

α is Fredholm if and only if all of its limit operators are invertible.

As a corollary of the preceding result, Theorem1.1was obtained in [11]. Limit oper-
ator techniques were further developed in a more abstract setting in [12] and applied
to Toeplitz operators acting on the Fock-Sobolev spaces. However, it is currently not
known whether the limit operator techniques can be used to treat more general Fock
(or Bergman) spaces that do not possess nice bases or explicit formulas for the repro-
ducing kernels. In particular, one of the central objects is the weighted shift operator
Cz : L p

α → L p
α defined for each z ∈ C

n by

Cz f (w) = f (w − z)eα〈w,z〉−α
2 |z|2

(w ∈ C
n).

Now observe that the shift operators are connected to theWeyl operator, which cannot
be defined in the more general setting of Fock spaces F2

φ , and hence the limit operator
techniques do not seem to be suitable for more general weights without further adjust-
ments. We should say that when they can be used, they offer additional benefits, such
as the treatment of Toeplitz algebras and certain other more abstract characterizations
of Fredholm properties. On the other hand, there appears no way of using limit oper-
ators to obtain the usual formula for the index of Fredholm Toeplitz operators on F p

α

(see, e.g., Theorem 20 of [2]).
This brings us to the approach of the present work, which can be described as

function theoretic and a more direct way of dealing with the problem at hand. More
precisely, we use upper pointwise estimates for the Bergman kernel of the doubling
Fock space [22], a certain auxiliary integral operator whose kernel is related to the
reproducing kernel and the Bergmanmetric, and provide characterizations of bounded
and compact Hankel operators, which may be of interest in their own right.

The use of the Bergman metric in the context of the doubling Fock spaces F2
φ

originates in the work on interpolation and sampling [21] and no other metric has ever
been used to deal with F2

φ . This is indeed natural and expected because the Bergman
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106 Page 6 of 29 Z. Hu, J. A. Virtanen

metric corresponds to the Bergman kernel of the doubling Fock space F2
φ in the same

way as the Euclidean metric corresponds to the Bergman kernel of the standard Fock
space F2

α . The main difficulty in our work is caused by the geometry induced by the
Bergman metric for doubling Fock spaces, which is much more complicated than that
of the Euclidean metric used previously in the study of Fredholm properties, and in
particular the role of the Euclidean disks D(z, r) is played by the sets of the form
Dr (z) = D(z, rρ(z)), where ρ is not constant in general. Finally, we note that the
nesting property F p

φ ⊂ Fq
φ (p ≤ q) known for weights whose Laplacian is bounded

below and above is no longer true for doubling Fock spaces, which is yet another
complication that we have to deal with.

2 Preliminaries

In this section we recall and prove some key lemmas on the Bergman metric, the
reproducing kernel and their related integral and norm estimates.

Notation. Throughout, we use C to denote positive constants whose value may
change from line to line but does not depend on the functions being considered. We
say that two quantities A and B are equivalent, and write A � B, if there exists some
positive number C such that C−1A ≤ B ≤ CA.

Suppose that dν = �φ d A is a doubling measure. Then, for all z ∈ C and r > 0,

μ (∂(D(z, r)) = μ({z}) = 0

(so that doubling measures have no mass on circles), and, since ν is a locally finite
nonzero doubling measure on C,

0 < μ(D(z, r)) < ∞.

It follows that, for each z ∈ C,

lim
r→∞ μ (D(z, r)) = ∞, (2.1)

and the function r �→ μ (D(z, r)) is an increasing homeomorphism from the interval
(0,∞) onto itself. Thus, for every z ∈ C, there is a unique positive radius ρ(z) such
that

μ(D(z, ρ(z)) = 1.

We also note that (2.1) implies that F p
φ is of infinite dimension.

For r > 0 and z ∈ C, we write Dr (z) = D(z, rρ(z)), and D(z) = D1(z) for short.
By [21], there exist some absolute constants θ and C > 0 such that, for z ∈ C and
w ∈ Dr (z),

ρ(w) � ρ(z) if r ≤ 1, and
1

Cr θ
≤ ρ(w)

ρ(z)
≤ Cr θ if r > 1. (2.2)
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Then, for r > 0, there exists some constant α > 0 such that

1

α
ρ(z) ≤ ρ(w) ≤ αρ(z) (2.3)

for z ∈ C and w ∈ Dr (z). From (2.3) and the triangle inequality, for r > 0, it follows
that there are m1 = m1(r) and m2 = m2(r) so that

Dr (z) ⊆ Dm1r (w) and Dr (w) ⊆ Dm2r (z) whenever w ∈ Dr (z). (2.4)

Clearly, m j > 1 for j = 1, 2, and further, we have

τ = sup
0<r≤1

[m1(r) + m2(r)] < ∞.

Given a sequence {a j }∞j=1 ⊂ C and r > 0, we call {a j }∞j=1 an r -lattice if{
Dr (a j )

}∞
j=1 covers C and the disks of

{
D

r
5 (a j )

}∞
j=1

are pairwise disjoint. The exis-

tence of r -lattice follows from a standard covering lemma—see Theorem 2.1 of [23]
and also [21]. In addition, if {a j }∞j=1 is an r -lattice, for m > 0, there exists an integer

N such that, for each z ∈ C, Dmr (z) can intersect at most N discs of
{
Dr (a j )

}
.

For z, w ∈ C, the distance dφ induced by the metric ρ−2dz ⊗ dz is given by

dφ(z, w) = inf
γ

∫ 1

0

|γ ′(t)|
ρ(γ (t))

dt,

where the infimum is taken over all piecewiseC1 curves γ : [0, 1] → Cwith γ (0) = z
and γ (1) = w. It is known that the Bergman metric

∂2 log K (z, z)

∂z∂z
dz ⊗ dz,

which is given by the solution to the extremal problem

sup{| f ′(x)| : f ∈ F2
φ , f (z) = 0, ‖ f ‖2,φ = 1}√
K (z, z)

,

is comparable to the metric ρ−2dz ⊗ dz (see page 355 of [8] for further details). We
write β(·, ·) for the Bergman distance onC. Therefore, there are two positive constants
C1 and C2 such that

C1dφ(z, w) ≤ β(z, w) ≤ C2dφ(z, w). (2.5)

for z, w ∈ C. We refer to [18,19] for further details on the basic properties of the
Bergman metric and distance.

We need the following estimates for the Bergman distance β, instead of dφ , because
β is more suitable for the analysis of operators on Fock spaces.
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Lemma 2.1 There exists δ ∈ (0, 1) such that for every r > 0 there exists Cr > 0 such
that

C−1
r

|z − w|
ρ(z)

≤ β(z, w) ≤ Cr
|z − w|
ρ(z)

, w ∈ Dr (z)

and

C−1
r

( |z − w|
ρ(z)

)δ

≤ β(z, w) ≤ Cr

( |z − w|
ρ(z)

)2−δ

, w ∈ C\Dr (z).

Proof A completely analogous result was proved for dφ(·, ·) in [21, Lemma 4]. Using
(2.5), it can be seen that all remain valid if dφ(z, w) is replaced by β(z, w). ��

For z ∈ C and r > 0, we set B(z, r) = {w : β(w, z) < r}. The estimate in the
following technical lemma will be very useful in our analysis.

Lemma 2.2 For p, ε > 0 and k, l ∈ R, there is some C > 0 such that

∫
C

(β(z, w) + 1)l ρ(w)ke
−p

( |z−w|
ρ(z)

)ε

d A(w) ≤ Cρ(z)k+2 for z ∈ C, (2.6)

and

lim
R→∞ sup

z∈C
1

ρ(z)k+2

∫
C\B(z,R)

(β(z, w) + 1)l ρ(w)ke
−p

( |z−w|
ρ(z)

)ε

d A(w) = 0.

(2.7)

Proof Since β(z, w) + 1 ≥ 1, to prove (2.6) and (2.7), we may assume l > 0. We
claim first that for z, w ∈ C, we have

(β(z, w) + 1)l ≤ Ce
p
2

( |z−w|
ρ(z)

)ε

. (2.8)

Observe that, for w ∈ C\D(z) (i.e., |w − z| ≥ ρ(z)), by Lemma 2.1, we get

β(z, w)l e
− p

2

( |z−w|
ρ(z)

)ε

≤ C

( |z − w|
ρ(z)

)(2−δ)l

e
− p

2

( |z−w|
ρ(z)

)ε

≤ C sup
{ξ :|z−ξ |/ρ(z)≥1}

( |z − ξ |
ρ(z)

)(2−δ)l

e
− p

2

( |z−ξ |
ρ(z)

)ε

,

where the positive constants C are independent of z, w. Thus,

sup
w∈C\D(z)

β(z, w)l e
− p

2

( |z−w|
ρ(z)

)ε

≤ C sup
r≥1

rl(2−δ)e− p
2 r

ε = C . (2.9)
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In addition, it is trivial that supw∈D(z) β(z, w)l e
− p

2

( |z−w|
ρ(z)

)ε

≤ C . Therefore,

sup
z,w∈C

(β(z, w) + 1)l e
− p

2

( |z−w|
ρ(z)

)ε

≤ C sup
z,w∈C

(
β(z, w)l + 1

)
e
− p

2

( |z−w|
ρ(z)

)ε

< ∞,

which gives (2.8). Now for all z ∈ C, (2.8) and Lemma 2.1 of [14] imply

∫
C

(β(z, w) + 1)l ρ(w)ke
−p

( |z−w|
ρ(z)

)ε

d A(w) ≤ C
∫
C

ρ(w)ke
− 1

2 p
( |z−w|

ρ(z)

)ε

d A(w)

≤ Cρ(z)k+2

and hence (2.6) follows.
Choosing r = 1 in Lemma 2.1, for β(w, z) ≥ R with R sufficiently large, we see

that the following inclusion holds:

C \ B(z, R) ⊂ C \ D(R/C1)
1

2−δ
(z).

We write N = N (R) for the integer part of (R/C1)
1

2−δ . Then by (2.9) and (2.2), we
get

∫
C\B(z,R)

(β(z, w) + 1)l ρ(w)ke
−p

( |z−w|
ρ(z)

)ε

d A(w)

≤ C
∫
C\D(R/C1)

1
2−δ

(z)
ρ(w)ke

− p
2

( |z−w|
ρ(z)

)ε

d A(w)

≤ C
∫
C\DN (z)

ρ(w)ke
− p

2

( |z−w|
ρ(z)

)ε

d A(w)

≤ C
∞∑
j=N

∫
D j+1(z)\D j (z)

ρ(w)ke
− p

2

( |z−w|
ρ(z)

)ε

d A(w)

≤ Cρ(z)k+2
∞∑
j=N

( j + 1)|k|θ+2e− p
2 jε .

This gives (2.7) because
∑∞

j=1( j +1)|k|θ+2e− p
2 jε < ∞ and N (R) → ∞ as R → ∞.

The proof is completed. ��
In 2009, Marzo and Ortega-Cerdà [22] obtained the following pointwise estimates

on the Bergman kernel.

Lemma 2.3 (A) There exist C, ε > 0 such that

|K (w, z)| ≤ C
eφ(w)+φ(z)

ρ(w)ρ(z)
e
−
( |z−w|

ρ(z)

)ε

, w, z ∈ C. (2.10)
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106 Page 10 of 29 Z. Hu, J. A. Virtanen

(B) There exists some r0 > 0 such that for z ∈ C and w ∈ Dr0(z), we have

|K (w, z)| � eφ(w)+φ(z)

ρ(z)2
. (2.11)

Proof For (A), see Theorem 1.1 of [22], and for (B), see Proposition 2.11 of [22]. ��
Corollary 2.4 For p > 0 and l ∈ R, there is some C > 0 such that

∫
C

(β(z, ξ) + 1)l |K (z, ξ)|pe−pφ(ξ)d A(ξ) ≤ Cρ(z)2(1−p)epφ(z) for z ∈ C,

(2.12)

and

sup
z∈C

ρ(z)2(p−1)e−pφ(z)
∫
C\B(z,R)

(β(z, ξ) + 1)l |K (z, ξ)|pe−pφ(ξ)d A(ξ) → 0

(2.13)

as R → ∞.

Proof By Lemma 2.3 and the estimate (2.6),

∫
C

(β(z, ξ) + 1)l |K (z, ξ)|pe−pφ(ξ)d A(ξ)

≤ C
epφ(z)

ρ(z)p

∫
C

(β(z, ξ) + 1)l ρ(ξ)−pe
−p

( |z−ξ |
ρ(z)

)ε

d A(ξ)

≤ Cρ(z)2(1−p)epφ(z),

which shows (2.12). The equality in (2.13) can be proved similarly. ��
Corollary 2.5 For s ∈ R, there are positive constants C1 and C2 such that

C1ρ(z)s−2e2φ(z) ≤ ‖ρ(·)s K (·, z)‖∞,φ ≤ C2ρ(z)s−2eφ(z)

for all z ∈ C.

Proof From (2.11) we see that

‖ρ(·)s K (·, z)‖∞,φ ≥ ρ(z)s K (z, z) ≥ Cρ(z)s−2e2φ(z). (2.14)

To prove the reverse inequality, for ξ ∈ Dm(z) \ Dm−1(z) with some m = 1, 2, . . .,
by (2.2) we have

ρ(ξ)s = ρ(z)s
(

ρ(ξ)

ρ(z)

)s

≤ Cρ(z)s(mγ )|s|.
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Notice that {mγ |s−1|e−(m−1)ε }∞m=1 is bounded, and so

ρ(ξ)s |K (ξ, z)|e−φ(ξ) ≤ C
eφ(z)

ρ(z)
ρ(ξ)s−1e

−
( |ξ−z|

ρ(z)

)ε

≤ Cρ(z)s−2eφ(z)mγ |s−1|e−(m−1)ε

≤ Cρ(z)s−2eφ(z)

This implies

‖ρ(·)s K (·, z)‖∞,φ ≤ Cρ(z)s−2eφ(z),

which completes the proof. ��
In our analysis, we need some auxiliary function spaces. Given a Lebesgue mea-

surable function f on C, we set

ω( f )(z) = sup {| f (z) − f (w)| : β(z, w) < r} . (2.15)

When defining the following function spaces, we suppress r , because the spaces are
independent of it, and often choose r = 1.We denote by BO the class of all continuous
functions f on C for which ω( f ) is bounded on C and let V O denote the class of all
continuous functions f for which

lim
z→∞ ω( f )(z) = 0.

For f ∈ BO , set‖ f ‖BO = sup
z∈C

ω( f )(z).WithLemma2.1, for a function f continuous

on C, it is easy to verify that f ∈ BO if and only if

ω∗
r ( f )(z) = sup

{| f (z) − f (w)| : w ∈ Dr (z)
} ∈ L∞ (2.16)

with the equivalent semi-norm supz∈C ω∗
r ( f )(z), and f ∈ V O if and only if

limz→∞ ω∗
r ( f )(z) = 0.

Given a Lebesgue measurable function f , write

f̂ (z) = 1

A (D(z))

∫
D(z)

f d A

for the average of f over D(z). For 0 < p < ∞, we use BAp to denote the space of
all f ∈ L p

loc(C) such that

‖ f ‖BAp = sup
z∈C

[
(̂| f |p)(z)

] 1
p

< ∞.
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The space V Ap consists of all f ∈ BAp such that

lim
z→∞ (̂| f |p)(z) = 0.

Given a Lebesgue measurable function f which is positive or satisfies the condition
f |kz |2 ∈ L1

2φ for all z ∈ C, we define the Berezin transform f̃ of f by

f̃ (z) =
∫
C

f (w) |kz(w)|2 e−2φ(w)d A(w). (2.17)

For f ∈ L p
loc(C), take dμ = | f |pd A, p = q and t = 2 in Theorems 3.2 and 3.3 of

[14] to obtain

sup
z∈C

(̂| f |p)(z) � sup
z∈C

(̃| f |p)(z)

and

lim
z→∞ (̂| f |p)(z) = 0 ⇐⇒ lim

z→∞ (̃| f |p)(z) = 0.

For 1 ≤ p < ∞, BMOp is defined as the space of all f ∈ L p
loc(C) such that

‖ f ‖BMO p = sup
z∈C

MOp( f )(z) < ∞,

where

MOp( f )(z) =
(

1

A (D(z))

∫
D(z)

∣∣ f − f̂ (z)
∣∣p d A

) 1
p

.

We say f ∈ V MOp if f ∈ BMOp and lim
z→∞ MOp( f )(z) = 0. Finally, we observe

that

BMOp = BO + BO p and V MOp = V O + V Ap, (2.18)

which can be obtained bywriting f = f̃ +( f − f̃ ); for further details, see Theorem2.5
of [13].

3 Hankel Operators with BO Symbols

In this section, we show that for 0 < p < ∞, the Hankel operator H f : F p
φ → L p

φ is
bounded if f ∈ BO and compact if f ∈ V O . In addition to the intrinsic interest, these
properties will be needed for our characterization of Fredholm Toeplitz operators.
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We start with an auxiliary operator. For l ∈ R, with kernel (β(·, ·) + 1)l |K (·, ·)|
we define an integral operator Gl by

Gl( f )(z) =
∫
C

f (ξ)(β(z, ξ) + 1)l |K (z, ξ)|e−2φ(ξ)d A(ξ).

To show that Gl is bounded from F p
φ to L p

φ also for 0 < p < 1, we need the following
generalization of a result in [21].

Lemma 3.1 Let 0 < p < ∞. For any r > 0, there is a C > 0 such that

∣∣∣ f (z)e−φ(z)
∣∣∣p ≤ C

1

A(Dr (z))

∫
Dr (z)

∣∣∣ f (ξ)e−φ(ξ)
∣∣∣p d A(ξ) (3.1)

for all f ∈ H(C) and z ∈ C.

Proof When 1 ≤ p < ∞, estimate (3.1) is just Lemma 19 (a) of [21]. To deal with
the other values of p, notice that the function f e−Hz with Hz defined as in [21] is
holomorphic in Dr (z). Then

∣∣ f e−Hz
∣∣p is subharmonic for 0 < p < 1 so that the

sub-mean value estimate can be applied as in the case 1 ≤ p < ∞. This shows that
the proof of Lemma 19 (a) in [21] works for all 0 < p < ∞. ��
Lemma 3.2 For 1 ≤ p ≤ ∞, the operator Gl is bounded on L p

φ ; and for 0 < p ≤ ∞,

Gl is bounded from F p
φ to L p

φ .

Proof We begin with the case 1 ≤ p ≤ ∞. For f Lebesgue measurable, it follows
from Lemmas 2.2 and 2.3 that

‖Gl f ‖L1
φ

≤
∫
C

e−φ(z) d A(z)
∫
C

| f (ξ)|(β(z, ξ) + 1)l |K (z, ξ)|e−2φ(ξ) d A(ξ)

=
∫
C

| f (ξ)|e−2φ(ξ) d A(ξ)

∫
C

e−φ(z)(β(z, ξ) + 1)l |K (z, ξ)| d A(z)

≤ C
∫
C

| f (ξ)|e−φ(ξ) d A(ξ)

∫
C

(β(z, ξ) + 1)l
1

ρ(ξ)ρ(z)
e
−
( |z−ξ |

ρ(z)

)ε

d A(z)

≤ C‖ f ‖L1
φ
.

Similarly, we have

‖Gl f ‖L∞
φ

≤ sup
z∈C

e−φ(z)
∫
C

| f (ξ)|(β(z, ξ) + 1)l |K (z, ξ)|e−2φ(ξ)d A(ξ)

≤ ‖Gl f ‖L∞
φ
sup
z∈C

e−φ(z)
∫
C

(β(z, ξ) + 1)l |K (z, ξ)|e−φ(ξ)d A(ξ)

≤ ‖Gl f ‖L∞
φ

.

By interpolation (see Theorem 3.5 of [24]), we know that Gl is bounded on L p
φ when

1 ≤ p ≤ ∞.
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Next we treat the case 0 < p < 1. By Lemma 2.1, we get β(w, ξ) ≤ C1 for
ξ ∈ D(w). Then, for z, w ∈ C and ξ, ζ ∈ D2(w), we have

β(z, ξ) ≤ β(z, ζ ) + β(ζ,w) + β(w, ξ) ≤ β(z, ζ ) + 2C2

and so

sup
ξ∈D(w)

β(z, ξ) ≤ (2C2 + 1) inf
ξ∈D2(w)

(β(z, ξ) + 1) (3.2)

for all z, w ∈ C. Therefore, for an r -lattice {z j }∞j=1 and f ∈ H(C), using Lemma 3.1,
we get

|Gl ( f )(z)|p ≤
⎛
⎝ ∞∑

j=1

∫
D(z j )

| f (ξ)|β(z, ξ)|K (z, ξ)|e−2φ(ξ)d A(ξ)

⎞
⎠

p

≤
∞∑
j=1

(∫
D(z j )

| f (ξ)|β(z, ξ)|K (z, ξ)|e−2φ(ξ)d A(ξ)

)p

≤ C
∞∑
j=1

sup
ξ∈D(z j )

(
| f (ξ)|β(z, ξ)|K (z, ξ)|e−2φ(ξ)

)p
ρ(z j )

2p

≤ C sup
ξ∈D(z j )

∫
D2(z j )

(
| f (ξ)| (β(z, ξ) + 1) |K (z, ξ)|e−2φ(ξ)

)p
ρ(ξ)2p−2d A(ξ)

≤ C
∫
C

(
| f (ξ)| (β(z, ξ) + 1) |K (z, ξ)|e−2φ(ξ)

)p
ρ(ξ)2p−2d A(ξ).

Thus, for f ∈ H(C) and 0 < p < 1,

|Gl( f )(z)|p ≤ C
∫
C

(
| f (ξ)| (β(z, ξ) + 1) |K (z, ξ)|e−2φ(ξ)

)p
ρ(ξ)2p−2d A(ξ).

(3.3)

Applying (2.12) and Fubini’s theorem, we get

‖Gl( f )‖p
L p

φ

≤C
∫
C

e−pφ(z)d A(z)
∫
C

(
| f (ξ)| (β(z, ξ) + 1) |K (z, ξ)|e−2φ(ξ)

)p

× ρ(ξ)2p−2d A(ξ)

=C
∫
C

(
| f (ξ)|e−2φ(ξ)

)p
ρ(ξ)2p−2d A(ξ)

∫
C

(β(z, ξ) + 1)p

× |K (z, ξ)|pe−pφ(z)d A(z)

≤C
∫
C

| f (ξ)|pe−pφ(ξ)d A(ξ),

which completes the proof. ��
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Relative to the Bergman projection P , there is another operator P+, known as the
absolute Bergman projection, which has been studied in the Bergman space case. In
the context of Fock spaces, we define P+ : L p

φ → F p
φ analogously by setting

P+ f (z) =
∫
Cn

f (ξ)|K (z, ξ)|e−2φ(ξ)dv(ξ), z ∈ C.

The following boundedness properties of P+ follow directly from the preceding
lemma.

Corollary 3.3 The operator P+ is bounded on L p
φ for 1 ≤ p ≤ ∞, and it is bounded

from F p
φ to L p

φ for 0 < p < 1.

Lemma 3.4 For each R > 0 and ε > 0, there is a function hR defined on C such that
supp hR, the support of hR, is compact and

hR |B(z,R) ≡ 1, ‖hR‖L∞ = 1, ‖hR‖BO < ε.

Proof Without loss of generality, we may assume R > 1
ε
. Define

hR(z) =

⎧⎪⎨
⎪⎩
1, β(z, 0) < R;
2 − β(z,0)

R , R ≤ β(z, 0) < 2R;
0, β(z, 0) ≥ 2R.

We show that this function satisfies the required properties.
Clearly, supp hR is compact and hR |B(z,R) ≡ 1. For z with β(z, 0) ≤ R − 1 or

β(z, 0) ≥ 2R + 1, we see that ω(hR)(z) = 0. For z with R + 1 ≤ β(z, 0) ≤ 2R − 1
and w ∈ B(z, 1), we have

|hR(w) − hR(z)| =
∣∣∣∣β(w, 0)

R
− β(z, 0)

R

∣∣∣∣ ≤ β(w, z)

R
<

1

R
.

Now for z with R − 1 ≤ β(z, 0) < R + 1, when R ≥ 1, and w ∈ B(z, 1), we have

|hR(w) − hR(z)| ≤ 1 −
(
2 − R + 1

R

)
= 1

R
.

Similarly, for z with 2R − 1 ≤ β(z, 0) < 2R + 1, when R ≥ 1, and w ∈ B(z, 1), we
have

|hR(w) − hR(z)| ≤
(
2 − 2R − 1

R
− 0

)
= 1

R
.

It follows from these estimates that we have ω(hR)(z) ≤ 1
R < ε. ��

The following lemma is well known in other weighted Fock spaces but requires
extra work when the Laplacian of the weight function is a doubling measure.
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106 Page 16 of 29 Z. Hu, J. A. Virtanen

Lemma 3.5 Let 0 < p < ∞. If f ∈ L∞(C) has compact support, then the Hankel
operator H f is compact from F p

φ to L p
φ .

Proof We denote by B(F p
φ ) the unit ball of F p

φ . To show that H f is compact from

F p
φ to L p

φ , we only need to show that H f (B(F p
φ )) is relatively compact in L p

φ . By

Lemma 3.1, there is some constant C such that, for f ∈ B(F p
φ ) and z ∈ C,

| f (z)e−φ(z)|p ≤ Cρ(z)−2‖ f ‖p
p,φ ≤ Cρ(z)−2.

This implies that B(F p
φ ) are uniformly bounded on any compact subset of C. Thus,

B(F p
φ ) is a normal family. Hence, to prove H f (B(F p

φ )) is relatively compact in L p
φ ,

it suffices to prove that

lim
j→∞ ‖H f (g j )‖p,φ = lim

j→∞ ‖ f g j − P( f g j )‖p,φ = 0 (3.4)

for any bounded sequence {g j }∞j=1 in F p
φ converging to 0 uniformly on any compact

subset of C. But this will be an easy consequence of the limits

lim
j→∞ ‖ f g j‖p,φ = 0 (3.5)

and

lim
j→∞ ‖P( f g j )‖p,φ = 0. (3.6)

The equality(3.5) is trivial for f ∈ L∞ with compact support and {g j }∞j=1 bounded

in F p
φ converging to 0uniformlyon compact subsets.As a simple consequence, observe

that (3.5) implies (3.6) for 1 ≤ p < ∞ because P is bounded on L p
φ .

It remains to prove (3.6) for 0 < p < 1. Without loss of generality, we may assume
that the support of f is contained in some D(0, σ ). Write dμ = | f |d A. As stated on
page 869 of [21], there are some C > 0 and 0 < s < 1 such that ρ(z) ≤ C |z|s for
|z| > 1. Hence

lim|z|→∞ |z| − ρ(z) = ∞, (3.7)

and so there is an R > 0 so that μ̂(ξ) = ∫
D(ξ)

dμ/A(D(ξ)) = 0 when |ξ | ≥ R. Then
applying Lemma 2.4 of [14] gives the following estimate:
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|P( f g j )(z)| ≤
∫
C

| f (ξ)g j (ξ)K (z, ξ)|e−2φ(ξ)d A(ξ)

=
∫
C

|g j (ξ)K (ξ, z)|e−2φ(ξ)dμ(ξ)

≤ C
∫
C

|g j (ξ)K (ξ, z)|e−2φ(ξ)μ̂(ξ)d A(ξ)

≤ | f ‖L∞
∫
D(0,R)

|g j (ξ)K (ξ, z)|e−2φ(ξ)d A(ξ).

Now, with the same approach as that of (3.3) we obtain

|P( f g j )(z)|p ≤ C‖ f ‖p
L∞

∫
D(0,2R)

|g j (ξ)K (ξ, z)|pe−2pφ(ξ)ρ(ξ)2p−2d A(ξ)

where we have chosen R large enough so that |ξ |+ρ(ξ) ≤ 2R for |ξ | ≤ R. Therefore,
by Corollary 2.4, we get

‖P( f g j )‖p
p,φ ≤C‖ f ‖p

L∞

∫
C

e−pφ(z)d A(z)
∫
D(0,2R)

|g j (ξ)K (ξ, z)|p

× e−2pφ(ξ)ρ(ξ)2p−2d A(ξ)

=C‖ f ‖p
L∞

∫
D(0,2R)

|g j (ξ)|pρ(ξ)2p−2e−2pφ(ξ)d A(ξ)

∫
C

|K (ξ, z)|p

× e−pφ(z)d A(z)

≤C‖ f ‖p
L∞

∫
D(0,2R)

|g j (ξ)pe−pφ(ξ)d A(ξ) → 0

as j → ∞, which completes the proof. ��
The next theorem provides useful properties of Hankel operators with BO (and

V O) symbols and it plays an important role in the study of Fredholmness of Toeplitz
operators. While we give the proof for all values of p, we note that for 1 ≤ p < ∞,
the result is also a consequence of Theorem 3.3 of [13].

Theorem 3.6 Suppose that 0 < p < ∞.

(i) If f ∈ BO, then H f is bounded from F p
φ to L p

φ and we have the following norm
estimate:

‖H f ‖F p
φ →L p

φ
≤ C‖ f ‖BO . (3.8)

(ii) If f ∈ V O, then H f is compact from F p
φ to L p

φ .

Proof For f ∈ BO , it is easy to verify that

| f (z) − f (ξ)| ≤ ‖ f ‖BO(β(z, ξ) + 1). (3.9)
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As shown in the proof of Theorem 3.2 of [20], we have

P(g) = g for g ∈ F p
φ with 0 < p ≤ ∞. (3.10)

Then

|H f (g)(z)| ≤
∫
C

| f (ξ) − f (z)||g(ξ)||K (z, ξ)|e−2φ(ξ)dv(ξ)

≤ C‖ f ‖BO
∫
C

(β(z, ξ) + 1) |g(ξ)||K (z, ξ)|e−2φ(ξ)dv(ξ).

Therefore, Lemma 3.2 implies that, for 0 < p < ∞, H f is bounded from F p
φ to L p

φ

with the norm estimate (3.8).
Now we suppose f ∈ V O . For ε > 0, fix r > 0 so that ω( f )(w) < ε whenever

β(w, 0) ≥ r . Then, for w with β(w, 0) > r , we have some η(w), β(η, 0) = r so that
β(w, 0) = β(w, η) + β(η, 0). Hence, by

| f (w) − f (0)| ≤ ‖ f ‖BO(β(η, 0) + 1) + ε(β(w, η) + 1)

there is an R > r so that, when β(w, 0) > R,

| f (w)|
β(w, 0)

≤ ‖ f ‖BO(r + 1) + | f (0)|
β(w, 0)

+ ε
r + 1

β(w, 0)
< 2ε.

Set fR = f hR with hR to be as in Lemma 3.4. For such fR , it is easy to see that
ω( f − fR)(z) = 0 when β(z, 0) < R − 1, and ω( f − fR)(z) = ω( f )(z) when
β(z, 0) > 2R+1. For those z that satisfy R−1 ≤ β(z, 0) ≤ 2R+1 andw ∈ β(z, 1),
we have

|( f (z) − fR(z)) − ( f (w) − fR(w))|
≤ | f (w)| |hR(z) − hR(w)| + (1 − hR(z)) | f (w) − f (z)|
≤ | f (w)|ω(hR)(z) + ω( f )(z) ≤ | f (w)| 1

R
+ ω( f )(z)

= | f (w)|
β(w, 0)

β(w, 0)

R
+ ω( f )(z) ≤ 6ε + ε.

Therefore, by (3.6),

‖H f − H fR‖F p
φ →L p

φ
≤ C‖ f − fR‖BO ≤ Cε, (3.11)

where the constant C is independent of ε. Notice that H fR is compact, and so is H f

since the family of all compact linear operators from F p
φ to L p

φ is closed under the
operator norm. The proof is completed. ��
Remark 3.7 A careful check of the preceding proof shows that the continuity of f ∈
BO (or V O) is not needed for the conclusion of Theorem 3.6.
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4 Fredholm Theory

A linear mapping T on a topological vector space X is said to be Fredholm if

dim ker T < ∞ and dim X/T (X) < ∞.

When X is a Banach space, it is well known that T is Fredholm if and only if T +K (X)

is invertible in the Calkin algebra B(X)/K (X), where B(X) and K (X) stand for the
spaces of bounded and compact operators, respectively. From this, it follows that an
operator on a Banach space is Fredholm if and only if there are bounded operators A
and B on X such that

AT = I + K1 and T B = I + K2

for some compact operators K1 and K2 acting on X . Because two Toeplitz operators
often commute modulo compact operators, the previous characterization for their
Fredholmness is almost tailor-made for large classes of symbols.

These characterizations of Fredholm operators are not true in general if X is not a
Banach space. However, an adequate theory can still be developed for quasi-Banach
spaces under some additional conditions, which is important in certain PDE problems;
see, e.g. [17]. A pair (X , ‖ · ‖) is said to be a quasi-Banach space if ‖ · ‖ satisfies all
the properties of a norm except for the triangle inequality and if there is a constant
C > 0 such that

‖x + y‖ ≤ C(‖x‖ + ‖y‖)

for all x, y ∈ X . Observe that all generalized Fock spaces F p
φ are quasi-Banach spaces.

We now define an additional property for quasi-Banach spaces as in [26].

Definition 4.1 A quasi-Banach space X is said to be dual rich if for all nonzero vectors
x ∈ X , there is a continuous linear functional x∗ such that x∗(x) = 1.

As an example, we mention that every Banach space is dual rich, and so are �p

with 0 < p < 1, while none of the L p(Cn, dv) spaces with 0 < p < 1 is dual rich;
see [26].

For the Fock space F p
φ with a small exponent, we have the following lemma which

is an easy consequence of Theorem 5.1 of [20].

Lemma 4.2 If 0 < p < 1, then the Fock space F p
φ is a dual rich quasi-Banach space.

The following result is needed when we characterize Fredholm operators on F p
φ

for 0 < p < 1.

Theorem 4.3 A bounded linear operator on a dual rich quasi-Banach space X is
Fredholm if and only if it has a regularizer; that is, there exists a bounded linear
operator S on X such that ST − I and T S − I are both compact on X.

Proof See Sect. 3.5.1 of [26]. ��
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Before we can embark on the proof of our main theorem, we need a few preliminary
results that illustrate the role played by the Berezin transform and the normalized
reproducing kernel function.

Lemma 4.4 Let f ∈ V O. Then

lim
z→∞

(
f − f̃

)
(z) = 0. (4.1)

Proof We start by applying Lemmas 2.2 and 2.3 to get

sup
z∈C

∫
C\B(z,R)

(β(z, ξ) + 1)|kz(ξ)|2e−2φ(ξ)dv(ξ)

≤ C sup
z∈C

∫
C\B(z,R)

(β(z, ξ) + 1)ρ−2(ξ)e
−2

( |z−ξ |
ρ(z)

)ε

d A(ξ) → 0

as R → ∞. Thus, for each ε > 0, there is an R > 0 such that

∫
C\B(z,R)

(β(z, ξ) + 1)|kz(ξ)|2e−2φ(ξ)dv(ξ) < ε (4.2)

for all z ∈ C. Since f ∈ V O , there is some ρ > 0 such that

sup
ξ∈B(z,R)

| f (ξ) − f (z)| < ε

whenever |z| > ρ. Notice also that
∫
C

|kz(ξ)|2e−2φ(ξ)dv(ξ) = 1. Thus, for |z| > ρ,

∣∣ f − f̃
∣∣ (z) ≤

∫
C

| f (z) − f (ξ)| |kz(ξ)|2e−2φ(ξ)dv(ξ)

≤
{∫

B(z,R)

+
∫
C\B(z,R)

}
| f (z) − f (ξ)| |kz(ξ)|2e−2φ(ξ)dv(ξ)

≤ ε + ‖ f ‖BO
∫
C\B(z,R)

(β(ξ, z) + 1) |kz(ξ)|2e−2φ(ξ)dv(ξ)

≤ (1 + ‖ f ‖BO) ε,

which gives (4.1) and hence the proof is complete. ��
Lemma 4.5 Let 0 < p < ∞ and let f ∈ V O. If z j ∈ C,

lim
j→∞ z j = ∞, lim

j→∞ f (z j ) = 0,

then

lim
k→∞ ‖T f (kz j ,p)‖p,φ = 0. (4.3)
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Proof We treat the case 0 < p ≤ 1 first. Suppose f ∈ V O . For ε > 0, Corollary 2.4
gives some R > 1 such that

∫
C\B(z,R)

(β(z, ξ) + 1)pρ(ξ)2p−2|kz,p(ξ)|pe−pφ(ξ)d A(ξ) ≤
(

ε

2‖ f ‖BO + 1

)p

(4.4)

for all z ∈ C. Furthermore, for the fixed ε and R, we have some ρ > 0 so that

sup
ξ∈B(z,R)

| f (ξ) − f (z)| < ε

whenever |z| > ρ. Notice also that ( f (·) − f (z j ))kz j ,p(·)K (·, z) ∈ H(C). With a
similar approach as that of proving (3.3), we have

{∫
C

∣∣ f (ξ) − f (z j )
∣∣ |kz j ,p(ξ)||K (ξ, z)|e−2φ(ξ)d A(ξ)

}p

≤ C
∫
C

∣∣ f (ξ) − f (z j )
∣∣p |kz j ,p(ξ)|p|K (ξ, z)|pe−2pφ(ξ)ρ(ξ)2p−2d A(ξ).

Then for |z j | > ρ, by Corollary 2.4, we get

∫
C

(∫
C

∣∣ f (ξ) − f (z j )
∣∣ |kz j ,p(ξ)||K (ξ, z)|e−2φ(ξ)d A(ξ)

)p

e−pφ(z)d A(z)

≤ C
∫
C

∣∣ f (ξ) − f (z j )
∣∣p |kz j ,p(ξ)|pe−2pφ(ξ)

× ρ(ξ)2p−2d A(ξ)

∫
C

|K (ξ, z)|pe−pφ(z)d A(z)

= C
∫
C

∣∣ f (ξ) − f (z j )
∣∣p |kz j ,p(ξ)|pe−pφ(ξ)d A(ξ)

≤ C

(
ε p
∥∥kz j ,p∥∥pp,φ

+ ‖ f ‖p
BO

∫
C\B(z j ,R)

(β(ξ, z) + 1)p|kz j ,p(ξ)|pe−pφ(ξ)d A(ξ)

)

≤ Cε p.

The constantsC above are independent of ε. This, together with Lemma 2.2, Corollary
3.3 and the obvious inequality

∣∣T f (kz j ,p)(z)
∣∣ ≤

∫
C

(
| f (ξ) − f (z j )| + | f (z j )|

)
|kz j ,p(ξ)|K (ξ, z)|e−2φ(ξ)dv(ξ),
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implies

lim sup
j→∞

∥∥T f (kz j ,p)
∥∥p
p,φ

≤ Cε p + lim sup
j→∞

| f (z j )|p
∥∥P+(|kz j ,p|

∥∥p
p,φ

= Cε p,

which gives (4.3) and completes the proof. ��
Lemma 4.6 If 0 < p < ∞ and T is compact linear operator on F p

φ , then

lim
z→∞ T̃ (z) = 0, (4.5)

where T̃ is the Berezin transform of the operator T defined by T̃ (z) = 〈T kz, kz〉 for
z ∈ C and 〈·, ·〉 is the inner product on F2

φ .

Proof When 1 ≤ p < ∞, the conclusion (4.5) is trivial because F p
φ is a Banach

space. Our proof here works well for all 0 < p < ∞. As stated on page 476 of [14] or
alternatively using the approach of Theorem 7 in [10], a subset E ⊂ F p

φ is relatively

compact in F p
φ if and only if for each ε > 0 there is some R > 0 such that

sup
f ∈E

∫
|z|≥R

∣∣∣ f (z)e−φ(z)
∣∣∣p d A(z) < ε.

Since T is compact on F p
φ , we have

lim
R→∞ sup

f ∈F p
φ ,‖ f ‖p,φ≤1

∫
|z|≥R

∣∣∣T f (z)e−φ(z)
∣∣∣p d A(z) = 0. (4.6)

Hence, by the reproducing formula for functions in F p
φ , given in (3.10), we have

T̃ (z) = ‖Kz‖p,φ

K (z, z)
〈T (kz,p)(·), K (·, z)〉 = ‖Kz‖p,φ

K (z, z)
T (kz,p)(z).

This and (4.6) imply

|T̃ (z)|p ≤ C
∣∣∣ρ(z)

2
p T (kz,p)(z)e

−φ(z)
∣∣∣p

≤ C
∫
B(z,1)

∣∣∣T (kz)(ξ)e−φ(ξ)
∣∣∣p d A(ξ) → 0

as z → ∞. This completes the proof. ��
Theorem 4.7 Let 0 < p < ∞ and f ∈ V O. Then

(i) T f − f̃ is compact on F p
φ .

(ii) The Toeplitz operator T f is compact on F p
φ if and only if f̃ (z) → 0 as z → ∞.
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Proof (i) First we show that the Berezin transform f̃ is continuous on C. By
Lemma 2.3, for w ∈ B(z, 1),

∣∣∣ f (ξ) |kw(ξ)|2 e−2φ(ξ)
∣∣∣ ≤ C

(
| f (ξ) − f (z)| + | f (z)|

)
ρ(w)−2e

−2
( |ξ−w|

ρ(w)

)ε

≤ C
(
‖ f ‖BO + | f (z)|

)
ρ(z)−2e

−
( |ξ−z|

ρ(z)

)ε

,

and
∫
C
e
−
( |ξ−z|

ρ(z)

)ε

d A(ξ) < ∞. Therefore, by Lebesgue’s dominated convergence
theorem, it follows that

lim
w→z

∫
C

f (ξ) |kw(ξ)|2 e−2φ(ξ)d A(ξ) =
∫
C

f (ξ) |kz(ξ)|2 e−2φ(ξ)d A(ξ).

Hence f − f̃ ∈ C(C), which together with Lemma 4.4 implies that f − f̃ ∈
L∞ ∩ V O .

That T f − f̃ is compact on F p
φ is an easy consequence of the stronger assertion that

Tg is compact if g ∈ L∞ and limz→∞ g(z) = 0. Indeed, to verify this, write χR

for the characteristic function of D(0, R). Theorem 3.2 of [14] tells us that T|g|χR

is compact on F p
φ , and so is TgχR . Now, since ‖g − gχR‖L∞ → 0 as r → ∞, we

have

‖TgχR − Tg‖F p
φ →F p

φ
≤ C‖g − gχR‖L∞ → 0

as R → 0, and hence Tg is compact on F p
φ .

(ii) Suppose that T f is compact. Then limz→∞ T̃ f (z) = 0 by Lemma 4.6. Notice that,
for f ∈ V O ⊆ BO , from (3.9) and Corollary 2.4 we obtain

∫
C

|kz(ξ)|e−2φ(ξ)d A(ξ)

∫
C

| f (ζ )kz(ζ )K (ξ, ζ ))|e−2φ(ζ )d A(ζ ) < ∞.

Then, applying Fubini’s theorem, we get

T̃ f (z) = 〈T f kz, kz〉
=
∫
C

f (ζ )kz(ζ )e−2φ(ζ )d A(ζ )

∫
C

kz(ξ)K (ξ, ζ )e−2φ(ξ)d A(ξ) = f̃ (z).

(4.7)

Therefore, we have limz→∞ f̃ (z) = 0. The converse follows from the simple
identity

T f = T f̃ + T f − f̃ ,

and the proof is complete. ��
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Before proving our main result, we comment briefly on the previous attempt to
prove it in the Hilbert space setting.

Remark 4.8 In Proposition 4.1 of [1], the following statement was given. Let f : C →
C be a continuous function in A, where A = L∞ ∩ V O or A = L∞ ∩ V MO1. Then
f is bounded away from zero on C \ D(0, R), for some R > 0, if and only if there is
a continuous function g ∈ A such that f (z)g(z) → 1 as z → ∞.

There are two problems with this statement. First, it is only known in the setting of
the standard Fock spaces when the space V O is defined using the Euclidean metric
(see Proposition 9 of [2] and Lemma 17 of [3]); that is, when the Bergman metric is
replaced by the Euclideanmetric in (2.15) (or, equivalently, when Dr (z) is replaced by
the Euclidean disk D(z, r) in (2.16)). Second, the claim that g is continuous does not
seem correct in general when f is only in L∞ ∩ V MO1. In [1], the above statement
was then used to construct a regularizer of T f as follows:

T f Tg = I + T f g−1 − PM f Hg.

The proof of the following theorem indicates how these problems can be avoided.

We are now ready to state and prove our main result.

Theorem 4.9 Let f ∈ V MO1 and 0 < p < ∞. Then the Toeplitz operator T f is
Fredholm on F p

φ if and only if

0 < lim inf|z|→∞ | f̃ (z)| ≤ lim sup
|z|→∞

| f̃ (z)| < ∞. (4.8)

Proof According to (2.18), we have V MO1 = V O + V A1, that is, f ∈ V MO1 if
and only if there are functions f1 ∈ V O and f2 ∈ V A1 such that

f = f1 + f2. (4.9)

Set μ = | f2| d A. Then

lim
z→∞

1

|D(z)|
∫
D(z)

dμ = 0,

which means thatμ is a vanishing Fock-Carleson measure. Thus, Theorem 3.3 of [14]
(see also Theorem 4.1 of [24] for the case 1 ≤ p < ∞) yields

lim
z→∞ |̃ f2|(z) = 0. (4.10)

Then, T f2 is compact on F p
φ for all possible 0 < p < ∞. Consequently, T f is Fredholm

if and only if T f1 is Fredholm. Furthermore, (4.10) implies

lim inf|z|→∞ | f̃ (z)| = lim inf|z|→∞ | f̃1(z)| and lim sup
|z|→∞

| f̃ (z)| = lim sup
|z|→∞

| f̃1(z)|. (4.11)
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Therefore, we need only to prove the desired conclusion for symbols in V O .
Now we suppose f ∈ V O and that T f is Fredholm on F p

φ . Then, T f is bounded

on F p
φ . We treat the case 0 < p ≤ 1 first. By Lemma 2.3 and Corollary 2.5, we have

∥∥∥ρ2− 2
p (·)

(
ρ

2
p −1

(z) kz(·)
)∥∥∥∞,φ

≤ C

for all z ∈ C. Notice that

∣∣〈T f kz, kz〉
∣∣ �

∣∣∣〈T f kz,p, ρ
2
p−1

(z) kz〉
∣∣∣ .

Then by (4.7), as shown in the proof of Theorem 5.1 from [20],

| f̃ (z)| ≤ C‖T f kz,p‖p,φ

∥∥∥ρ2− 2
p (·)

(
ρ

2
p−1

(z) kz(·)
)∥∥∥∞,φ

≤ C‖T f ‖F p
φ →F p

φ
.

Hence,

lim sup
z→∞

| f̃ (z)| < ∞. (4.12)

Now for 1 < p < ∞, using (4.7) and Hölder’s inequality, we have | f̃ (z)| ≤
C‖T f ‖F p

φ →F p
φ
.

If lim inf z→∞ | f̃ (z)| > 0 were not true, we would have some sequence {z j }∞j=1 in

C such that lim j→∞ z j = ∞ and lim j→∞ f̃ (z j ) = 0. According to Lemma4.5,

lim
j→∞ ‖T f̃ (kz j ,p)‖p,φ = 0,

which implies that

lim
j→∞

∥∥∥(ST f̃

)
kz j ,p

∥∥∥
p,φ

= 0

for any bounded operator S on F p
φ . Notice that

∣∣∣∣
(
ST f̃

)̃
(z j )

∣∣∣∣ �
∣∣∣〈(ST f̃

)
kz j ,p, ρ

2
p −1

(z j ) kz j

〉∣∣∣ if 0 < p ≤ 1,

and
∣∣∣∣
(
ST f̃

)̃
(z j )

∣∣∣∣ �
∣∣∣〈(ST f̃

)
kz j ,p, kz j ,p′

〉∣∣∣ if 1 < p < ∞,

where p′ is the conjugate exponent of p. Thus,

lim
j→∞

∣∣∣∣
(
ST f̃

)̃
(z j )

∣∣∣∣ = 0 (4.13)
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On the other hand, by Theorem 4.7, we know that T f̃ = T f + T f̃ − f is also Fredholm

on F p
φ , and so we can apply Lemma 4.2 and Theorem 4.3 to get some bounded linear

operator S on F p
φ such that

ST f̃ = I + K ,

where I is the identity operator and K is some compact operator on F p
φ . By Lemma

4.6, we have limz→∞ K̃ (z) = 0 and hence

lim
j→∞

∣∣∣∣
(
ST f̃

)̃
(z j )

∣∣∣∣ ≥ 1 − lim
j→∞

∣∣K̃ (z j )
∣∣ = 1,

which contradicts (4.13). This completes the proof of the necessary condition.
Conversely, suppose that f ∈ V O and f̃ satisfies (4.8). Then there are positive

constants R, c and C such that

c ≤ | f̃ (z)| ≤ C (4.14)

for |z| ≥ R. On the other hand, it follows easily from Lemma 4.4 that f̃ ∈ V O ∩ L∞.
We define a function g on C by

g(z) =
{
0, |z| < R;
1
f̃

, |z| ≥ R.

Then

g ∈ L∞ and ω(g)(z) ≤ 1

c2
ω( f̃ )(z) → 0

as z → ∞. Using Theorem 3.6 and Remark 3.7, we see that Hg is compact from F p
φ

to L p
φ . Furthermore,

f̃ (z)g(z) =
{
0, |z| < R;
1, |z| ≥ R.

Therefore, T f̃ g = I − TχR on F p
φ . Thus,

T f̃ Tg = PM f̃ PMg

= PM f̃ [I − (I − P)]Mg

= T f̃ g − PM f̃ Hg

= I − TχR − PM f̃ Hg = I + K1,
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where K1 = −TχR − PM f̃ Hg is compact on F p
φ because PM f̃ is clearly bounded

from L p
φ to F p

φ . Similarly, TgT f̃ = I + K2 for some compact operator K2 on F p
φ . We

conclude that T f̃ is Fredholm and the proof is complete. ��

Corollary 4.10 Let 0 < p < ∞ and f ∈ V MO1. If (4.8) holds, then

σess(T f ) =
⋂
R>0

f̃ (Cn \ B(0, R)) (4.15)

and the essential spectrum σess(T f ) is connected.

Proof The previous theorem gives the description in (4.15) and the connectedness
follows from this because f̃ is continuous. ��

5 Open Problems and Conclusions

Our work completes the study of Fredholm Toeplitz operators on the most general
weighted Fock spaces F p

φ where their boundedness and compactness are well under-
stood but only in dimension one. As our work makes use of a number of results, for
example, on the reproducing kernel and the Bergman distance that are only known in
dimension one, it seems that the generalization to the higher dimensions is an oner-
ous task. However, we still think that the ideas presented in our current work may
well serve as a blueprint for such generalizations and we conjecture that our main
result remains true for doubling Fock spaces over C

n . It is worth noting that pointwise
estimates for the weighted Bergman kernel in several complex variables was recently
obtained in [9], which may serve as (partial) substitutes for the estimates used in our
present work.

Perhaps another suitable starting point for further study is the notion of Fock spaces
A2(�) in C

n defined with logarithmic growth functions �; for further details about
these types of Fock spaces, see [30]. In particular, we note that both the spaces F p

φ

and Ap(�) serve as generalizations of the classical Fock space that have potential to
stimulate further interest in function-theoretic operator theory and interplay between
several branches of analysis.
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