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ABSTRACT
The problem of statistically evaluating forecasting systems is revis-
ited. The forecaster claims the forecasts to exhibit a certain nom-
inal statistical behaviour; for instance, the forecasts provide the
expected value (or certain quantiles) of the verification, conditional
on the information available at forecast time. Forecasting systems
that indeed exhibit the nominal behaviour are referred to as reli-
able. Statistical tests for reliability are presented (based on an archive
of verification–forecast pairs). As noted previously, devising such
tests is encumbered by the fact that the dependence structure of
the verification–forecast pairs is not known in general. Ignoring
this dependence though might lead to incorrect tests and too-
frequent rejection of forecasting systems that are actually reliable.
On the other hand, reliability typically implies that the forecast pro-
vides information about the dependence structure, and using this
in conjunction with judicious choices of the test statistic, rigor-
ous results on the asymptotic distribution of the test statistic are
obtained. These results are used to test for reliability under mini-
mal additional assumptions on the statistical properties of the ver-
ification–forecast pairs. Applications to environmental forecasts are
discussed. A python implementation of the discussed methods is
available online.
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1. Introduction

There is by now a vast literature on statistical evaluation of forecasts, and a large vari-
ety of tools and performance indices have been devised, depending on the nature of the
forecasts (probabilities, ensembles, moments, intervals, etc.), the application (cost–loss
ratios, decision scenarios, economic value, etc.) and the nature of the verification (binary,
vector-valued, spacial fields, etc). Regarding the evaluation of probability forecasts, a clas-
sical article is [10]. Themeteorological community has contributed significantly to forecast
evaluation, both out of academic interest but also due to the societal need for accurate fore-
casts of meteorological phenomena. Various industries, as well as public and private sector
institutions, are reliant on meteorological forecasts to operate successfully. Hence there is
a need to evaluate the performance of forecasting systems in an objective manner, either
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with regard to certain specific applications or in a general sense. For an overview (in a
meteorological context), see the book [44] or the collection [24], containing chapters
on ensemble forecasts [42] and on probability forecasts [7]. Evaluation of meteorolog-
ical forecasts with a focus on applications in economics and decision making has been
considered in [25,27,32]; extreme event forecasting has received special attention, see for
instance [16,39]. Forecasts for binary events are considered in [23,30]. For the case of
several categories, see for instance [2].

In the present paper, rather than quantifying the ‘accuracy’ of forecasting systems as in
[10,21] and a large body of subsequent research or comparing several forecasting systems
in terms of performance [13,17,29], we are interested in assessing whether a forecasting
system adheres to a desired nominal behaviour. Examples for desired nominal behaviour
could be that the forecasting system produces the expected value of the verification (condi-
tional on the information available to the forecaster at forecast time), or as another example,
that the forecasting systemproduces ensembles that are independent draws from the distri-
bution of the verification (again, conditional on the available information at forecast time).
Forecasting systems that adhere to the desired nominal behaviour will also be referred to as
reliable. (The term calibration is sometimes used synonymously, although mostly in con-
nection with probability forecasts, i.e. forecasts that under nominal behaviour represent
the entire conditional distribution of the verification.)

Our tests for reliabilitywill use an archive of verification–forecast pairs {(Y(k), f (k)), k =
1, . . . , n}. Unless otherwise stated, the temporal index (mostly appearing as an argument in
round brackets) refers to the verification time, that is f (k) is the forecast for the verification
Y(k) which becomes available at time k. In most applications, this forecast will have to be
issued at some point of time prior to k. The tests will evaluate each forecast f (k) against
the corresponding verification Y(k) by means of an identification function� which takes
both Y(k) and f (k) as arguments and has values in RD for some D (which might be larger
than one). We use the shorthand φ(k) := �(Y(k), f (k)). The identification function, we
assume, is chosen so that if the forecasts adhere to nominal behaviour, the quantity φ(k)
has zero expectation, conditional on the information available to the forecaster at the time
when she has to issue the forecast f (k). Thus the identification function will help to quan-
tify (roughly speaking) the deviation from nominal behaviour. Two examples (which we
will revisit and treat more formally in Section 2) shall illustrate these concepts.

Example 1.1 (Conditional mean forecasts): Suppose both verifications and forecasts are
real numbers. The forecaster claims that for all k we have

E(Y(k) |F(k)) = f (k), (1)

where F(k) denotes the information available at forecast time (later formalised as a filtra-
tion). Since the forecast f (k) itself is available at forecast time, Equation (1) is equivalent to
E(φ(k) |F(k)) = 0 for all k, provided we take�(y, f ) := y − f as identification function.
The image of this identification function is one-dimensional, that is D = 1.

Example 1.2 (Probability forecasts for binary events): In this example, forecasts are real
numbers between 0 and 1, while verifications assume the values 0 or 1, only. The fore-
caster claims that for all k we have P(Y(k) = 1 |F(k)) = f (k), where again F(k) denotes
the information available at forecast time. In other words, a reliable f (k) agrees with
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the conditional probability of the event Y(k) = 1, given that information. This time, we
may take the ( one-dimensional) identification function �(y, f ) := y−f√

f (1−f )
. We obtain

that not only E(φ(k) |F(k)) = 0 but also E(φ(k)2 |F(k)) = 1, provided the forecasts are
reliable. We will call such identification functions standardised (see Section 2). In Exam-
ple 2.2 (Section 2), we will generalise the present situation to verifications with more
than two categories. The corresponding forecasts will then be probability vectors in a
higher-dimensional space and also the image of the identification function will have to
be higher-dimensional.

Our general approach will be to consider

S(n) =
n∑

k=1

φ(k). (2)

(We will later introduce somewhat more general test statistics involving stratification,
which give amore detailed picture of reliability, see Section 2.2.) Choosing an identification
function that is expected to be zero if the forecasting system is indeed reliable, we would
expect S(n)/n to be small. This will be made precise later; the key technical issue in our
framework then becomes to understand the distribution of S(n)/n (at least asymptotically)
under the null hypothesis of reliability.

The difficulty lies in the fact that the statistical properties of the time series {φ(k), k ∈ N}
might be very complicated, and as several authors have noted (for instance [36,43]), the
verification–forecast pairs can certainly not assumed to be independent. Even if the appli-
cation of the Law of Large Numbers can be justified, the deviations of S(n)/n from zero
need to be quantified, which calls for a Central Limit Theorem. And granted the Central
Limit Theorem, there remains the problem of determining the proper scaling or variance.
As [43] has pointed out, the assumption of independence can lead to a serious underesti-
mation of the variance and thus overly optimistic (i.e. too narrow) confidence intervals. In
the same paper, the evaluation of probability forecasts is investigated using explicit (para-
metric) assumptions regarding the dependence structure and distribution of the forecasts,
but the considered situation is very specific.

On the other hand, some information about the dependence structure in the verification
is available through the forecasts. Assuming reliability, f (k) provides information about
Y(k), given the information available at the time the forecast f (k)was issued. This informa-
tionmay be harnessed to provide (at least partly) the correlation structure of the time series
{φ(k), k ∈ N}. As we will see, this is easiest in the case of forecasting systems predicting a
single time step ahead as then S(n) turns out to be amartingale. In case of larger lead times,
the situation is more complicated but we will still find that the time series {φ(k), k ∈ N}
has finite correlation length (see Equation (13) in Section 3.3 for precise statement).

This fact plays an important role in previous work on the statistical evaluation of
forecasts, which we will now review briefly. The classical paper [13] proposes a general
methodology to compare the predictive accuracy of competing forecasting systems (or
more specifically, tests for the null hypothesis of no difference in the accuracy of two com-
peting forecasts). In [17], too, the predictive accuracy of competing forecasting systems
is compared (see also Comment 6 in that paper). An important contribution of the lat-
ter work is the introduction of test functions to test predictive accuracy conditionally on
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available information. This is similar to the idea of stratification, apparently independently
discovered in the meteorological community and to be discussed Section 2.2 (see also ref-
erences in that section). The methodology in [17] also exploits the finite correlation length
of what corresponds to our {φ(k), k ∈ N} (see Theorems 1 and 3 of that paper).

In [29], the authors are interested in comparing risk measure estimating procedures.
With regard to statistical tests, the paper uses the methodology of [17] in a one step ahead
scenario. The work presented in [34,35] considers data-based evaluation of statistical
models in a prequential framework (more on this framework below). Again, the authors
consider a one-step ahead situation and are thus able to use themartingale property of S(n)
in their statistical methodology. An additional point worth noting about [17,35] is that
additional dependence of the forecasts on estimated nuisance parameters is considered.

A number of publications [3,4,14,19,20,26,28,31,40] identify positive attributes of prob-
ability and ensemble forecasts (such as reliability and resolution) as well as ways to quantify
those attributes but do not necessarily suggest a statistical methodology to test or estimate
those attributes.

In view of this previous work, the main contribution of the present paper is a rigorous
methodology for testing reliability of forecasting systems in particular for larger lead times.
Furthermore, the idea of stratification (which originates in themeteorological community)
will be rigorously embedded into this methodology, and the connection to test functions
will be clarified.

The present contribution also draws on research by Dawid, Vovk, and coworkers who
investigated forecast evaluation in a series of papers [11,12,34,35]. As was already men-
tioned, the authors consider particular forecasting systems with unit lead time only. In
addition, however, they formulate what they refer to as the weak and the strong prequential
principle which applies to any forecasting system, and we shall discuss these princi-
ples briefly. As we have seen, to evaluate a forecasting system in the present framework,
we require an archive of verification–forecast pairs, and the desired nominal statistical
behaviour of the forecasting system (i.e. what it means for it to be reliable) has to be clear.
The prequential principles imply that indeed only these two ingredients should matter in
forecast evaluation. More specifically, the weak prequential principle says that in terms
of actual data, only forecasts that were actually issued and verifications that were actually
observed should be used; no other data ( for instance, hypothetical forecasts that were in
fact never issued) should be taken into account. The strong prequential principle demands
that in terms of statistical assumptions, only the nominal forecast behaviour should be
used, and no other assumptions should be made about the statistical properties of the ver-
ification. If for instance a forecaster claims her forecasts to represent the conditional mean
and variance of the verification, it would violate the strong prequential principle to assume,
in addition, that the conditional distribution of the verification is normal (with the forecast
mean and variance as parameters); in doing so, we would evaluate not only the forecaster’s
claims but also our own assumptions about the problem, which seems unfair to the fore-
caster. Naturally, complete adherence to the strong prequential principle in particular can
be difficult to achieve.

In Section 2.1, we will fix some notation and introduce a few different classes of fore-
casting problems, while Section 2.2 discusses the strongly related concepts of stratification
and of test functions. In Section 2.3, we present three results that are key to our method-
ology: a Law of Large Numbers and a Central Limit Theorem regarding the statistic S as
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well as a Corollary introducing the eventual (χ2 or Wald-type) test statistic t2, which also
involves a consistent estimator of the variance of S (which is unknown in general). The
Law of Large Numbers and the Central Limit Theorem are stated without precise condi-
tions though. Thesewill be specified in Sections 3.1 and 3.3, adapted to different forecasting
situations. Namely, Section 3.1 considers problems with a forecast lead time (or horizon)
of a single time step (in a sense to be made precise), largely for the purpose of illustration,
while Section 3.3 considers problems with larger lead times. A few numerical examples
relating to the situations considered in Sections 3.1 and 3.3 will also be presented (in Sec-
tions 3.2 and 3.4, respectively). Section 4 concludes, while proofs to our main theorems
can be found in the Supplementary Material. All proofs can be reduced to existing Laws
of Large Numbers and Central Limit Theorems for dependent variables (see e.g. [41]),
the proof of Proposition 3.2 (covering larger lead times) requiring substantially more work
though. The SupplementaryMaterial also contains a brief overview over the software pack-
age franz [8], which contains python implementations of the methods discussed in this
paper.

2. Mathematical methodology

2.1. Notation and basic definitions

We recall that {Y(k), k = 1, . . . , n} and {f (k), k = 1, . . . , n} denote the verification and the
forecasts, respectively. These we model as random variables on some measurable space
(�,A), where the Y(k) and f (k) have values in some measurable spaces (E,AE) and
(F,AF), respectively (these will be very simple spaces in the examples discussed later).
We assume that for each k the forecast f (k) depends on some information, available to the
forecaster at forecast time. We model this by assuming that {f (k), k ∈ N} is adapted to a
filtration {F(k), k ∈ N}. We remember that k represents the time at which f (k) verifies, so
the forecaster will know F(k) (and issue f (k)) at some point in time typically prior to k,
for instance at time k−T where T is called the lead time or forecast horizon. An example
for F(k) could be the sigma-algebra generated by the verifications available to the fore-
caster at the time when she has to issue the forecast f (k) (which in the example above
would be {Y(l), l ≤ k − T}). Finally, for each k ∈ N and all A ∈ AE we use the shorthand
Pk(A) = P(Y(k) ∈ A |F(k)) for what some authors call the forecast distribution.

Definition 2.1: Consider a measurable mapping� : E × F → RD, which we will refer to
as the identification function. Putφ(k) := �(Y(k), f (k)) for k ∈ N.We say that the forecast-
ing system is reliable (with respect to the identification function�) if1 E(min{0,φ(k)}) >
−∞ and

E(φ(k) |F(k)) = 0 (3)

for all k ∈ N. If the forecasting system is reliable, we say that it standardises the iden-
tification function � if E(φ(k)φ(k)t |F(k)) = 1 for all k ∈ N (where the superscript t
represents the transpose and 1 the D × D unit matrix).

The concept of identification functions has been considered in the literature albeit with
a more specific meaning. According to [29], for instance, if we fix a set P of probability
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distributions over (E,AE) and a function r : P → R, then� is an identification function
with respect to the risk measure r if∫

E
�(y, f )μ(dy) = 0 ⇐⇒ r(μ) = f . (4)

We will refer to such identification functions as explicit identification functions. Possible
risk measures are for instance quantiles or moments. For connections to the elicitability or
identifiability problem, see for instance [18,38].

Assume we are given verifications {Y(k), k ∈ N} and forecasts {f (k), k ∈ N} that are
reliable with respect to an explicit identification function � with respect to a risk mea-
sure r. Then, Equation (4) holds with μ := Pk and f := f (k), and we can conclude that
f (k) = r(Pk) for all k ∈ N; in other words, the forecasting system is reliable if and only if it
provides the correct conditional risk measure for all k.

Although strongly related, the identification functions considered in the present paper
will not necessarily be explicit identification functions (e.g. in Examples 2.1 and 2.3). There
are two reasons for this. Firstly, the reliability condition already implies an implicit relation
between f (k) and Pk for all k ∈ N. Using an explicit identification function merely allows
to solve this relation for f (k). In the applications we have inmind, this is often not essential.
It will turn out though that, assuming reliability, the identification functions considered in
the examples will always allow for representing part of the forecast as a function of other
parts of the forecast and the conditional probability.

Secondly, the null hypothesis might involve that the forecasts standardise the identifica-
tion function. This will simplify estimating the variance of the statistic S and applying the
Central Limit Theorem (more specifically the variance estimators in Corollary 2.1). It turns
out though that working with explicit identification functions and imposing standardisa-
tion can result in rather restricted or contrived null hypotheses. Indeed, when working
with an explicit identification function, the forecast is fixed to r(Pk) as soon as reliability
holds. Assuming in addition that the forecast standardises the identification function, we
would have ∫

E
�(y, r(μ))�t(y, r(μ))μ(dy) = 1 (5)

for any μ which can possibly appear as a value of Pk under the null hypothesis. This can
imply strong restrictions on the possible null hypotheses, and there appear to be two ways
to avoid this. The first way is to use explicit identification functions with invertible risk
measure whenever possible (see Example 2.2 for such a situation). This means that as soon
as reliability holds, the forecasts f (k) specify Pk completely. In this case, the left hand side of
Equation (5) can be written as a function of the forecast only. Therefore, we can divide the
identification function by this quantity and obtain a new explicit identification function
which is automatically standardised by any reliable forecast.

The second approach is to drop the requirement that the identification functions are
explicit (see Examples 2.1 and 2.3). We should stress however that there are caveats to
this second approach. That the forecasts standardise, the identification function is not any
longer a consequence of reliability but a nontrivial extension of the null hypothesis. The
proposed tests, however, do not necessarily develop a lot of power against violation of stan-
dardisation, with the result that the test size on parts of the null hypothesis might be larger
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than the power against certain alternatives. This problemwill be discussed in the context of
Example 2.1. If reliability tests against such alternatives are envisaged, it is advisable to drop
the assumption of standardisation. This will require the use of more complicated variance
estimators in Corollary 2.1 (the precise statement is Proposition 3.2).

Several examples shall illustrate Definition 2.1 and the subsequent discussion. The tests
to be presented later in Section 3 have been implemented in the context of these examples
as part of the franz software package (see Section 2 in the Supplementary Material for
more information about franz).

Example 2.1 (Mean and variance forecasts): This example expands on Example 1.1.
Again, the verifications are real numbers so that E = R. For each k ∈ N, the forecast f (k)
comprises two numbers f (k) = (f1(k), f2(k))where f2(k) > 0. Hence F = R × R>0. As an
identification function, we take�(y, f ) = y−f1√

f2
. The forecasting system is reliable and stan-

dardises the identification function whenever f1(k) and f2(k) are equal to, respectively, the
conditional expectation and the conditional variance of Y(k) given F(k). The identifica-
tion function is not explicit since reliability itself will only specify f1(k) but not f2(k). It is
also clear that a test based on Smight exhibit power problems against alternatives that are
still reliable (i.e. where f1 provides the correct conditional expectation), but f2 is larger than
the conditional variance of Y(k).

As already mentioned, testing against such alternatives requires a slightly more compli-
cated test that involves an additional estimation of the variance of S (see Proposition 3.2).

Example 2.2 (Probability forecasts for categorical events): In this example, which
expands on Example 1.2, the verifications {Y(k), k ∈ N} take values in a finite set E =
{1, . . . ,M}, which might, for example, correspond to M mutually exclusive categories
of weather. The forecasts {f (k), k ∈ N} take values in the set of probability vectors over
E, that is, the set of M-dimensional vectors p = (p1, . . . , pM) where pm ∈ [0, 1] for all
m = 1, . . . ,M and

∑M
m=1 pm = 1. We seek an identification function so that the fore-

casting system is reliable and standardised if the forecast f (k) represents the conditional
probability distribution of Y(k) givenF(k), that is fm(k) = P(Y(k) = m |F(k)) for allm,
k. Motivated by Example 1.2, we could try an identification function� with values in RM

and components �m(y, p) = (δm,y − pm)/
√pm (reminiscent of Pearson’s goodness of fit

test). But since �(y, p) ⊥ √p for any y, p (with √p being understood component-wise),
the covariance of φ(k) would always be rank deficient, having a kernel spanned by √p
and rendering standardisation impossible. We remove this problem by projecting onto the
subspace orthogonal to √p, using the following

Lemma 2.1: Define the set

S :=
{
x ∈ R

M ; xm ≥ 0 form = 1, . . . ,M;
M∑

m=1
x2m = 1

}
.

Then there exists an open neighbourhood Sε of S and a smoothmapping B : Sε → RM×(M−1)

such that for every q ∈ Sε , the columns of B(q) are orthonormal and orthogonal to q.

(The proof, omitted here for brevity, is easy and relies on the well-known fact that apply-
ing the Gram–Schmidt procedure to a set of linearly independent vectors is a smooth
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operation.) We use the identification function with values in RM−1 (so that D = M−1 in
this example) and with components �d(y, p) = 1√py By,d(

√p) for d = 1, . . . ,D = M − 1.
If py = 0 we set �(y, p) = 0 (note that under the null hypothesis of reliability, the event
pYk = 0 happens with zero probability). Regarding this identification function, we have
the following lemma:

Lemma 2.2: � is an explicit identification function with risk measure being the identity on
the set of probability vectors over E = {1, . . . ,M}. That is ∑M

m=1�(m, q)pm = 0 for two
probability vectors p, q implies p = q. Furthermore, for any probability vector p such that∑M

m=1�(m, p)pm = 0, we have

M∑
m=1

�d(m, p)�d′(m, p)pm = δd,d′

for d, d′ = 1, . . . ,M − 1.

The second statement implies that a reliable forecast will automatically standardise the
identification function. (Again, the proof is easy and omitted for brevity.)

Example 2.3 (Probability forecasts for continuous variables): In this example, E = R

so that the verifications are real numbers, while the forecasts {f (k), k ∈ N} are continuous
cumulative distribution functions (CDF’s).

Referring back to Definition 2.1, in the present example, the space F is thus given by the
space of all continuous cumulative distribution function over R. We seek identification
functions such that the forecasting system is reliable and standardises the identification
function if f (k) represents the conditional cumulative distribution function of Y(k) given
F(k), that is f (k; x) = P(Y(k) ≤ x |F(k)) for all k and all x ∈ R.

For a given y ∈ R and a given continuous cumulative distribution function G, we
consider an identification function� with values in RD and components given by

�d(y,G) = λd(G(y)) for d = 1, . . . ,D,

where λd is the Legendre polynomial of degree d on [0, 1]. These polynomials emerge
if the Gram–Schmidt procedure in L2([0, 1], dx) is applied to the standard monomials
1, x, x2, . . .. If reliability holds, the random variable R(k) := f (k;Y(k)), known as the prob-
ability integral transform (PIT) of Y(k), has a uniform distribution conditionally on F(k),
for all k ∈ N. It now follows from the properties of the Legendre polynomials that the
forecasts are reliable with respect to this class of identification functions and furthermore
standardise it. We stress that in general the {R(k), k ∈ N} are not independent.

The identification function is not explicit since reliability itself will only guarantee that
the first D moments of the PIT are those of a uniform distribution but not that the PIT
is uniformly distributed. It is possible to construct examples where the first D Legendre
polynomials of the PIT have zero expectation even though the PIT is not uniform, and the
Legendre polynomials do not have unit covariance matrix. Again, a test based on Smight
exhibit power problems against such alternatives. As with Example 2.1 one should consider
the test of Proposition 3.2 if such alternatives are a possibility.
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2.2. Stratification

As was already hinted at in the introduction, a simple performance index like the statistic
S (Equation (2)), especially with scalar values, might not develop enough power in order
to detect deviations from reliability, since the expected value of S(n)might be zero even if
the conditional expectations in Equation (3) are not zero. More specifically, suppose that
{φ(k), k = 1, 2, . . .} are ergodic so that the Law of Large Numbers can be applied to 1

nS(n).
If the forecasts are reliable, then for n → ∞ we get that 1

nS(n) converges almost surely to
E(φ(k))which is zero as a consequence of Equation (3). The converse conclusion, however,
is false: It is possible that E(φ(k)) = 0 for all k even though reliability (i.e. Equation 3),
which is a stronger condition, fails to hold. Examples for such a situation will be considered
below and in Section 3.4.

The situation is entirely analogous to rank histograms, a popular tool in the atmospheric
sciences to evaluate the reliability of ensemble forecasts. As argued in [22], a single rank
histogram might not be sufficient to detect deviations from reliability. To deal with this
problem and to build tests that can detect deviations from reliability that do not manifest
themselves in single rank histograms, the concept of stratificationwas introduced [see 2, 6,
37]; see also [1] for an in-depth discussion of this technique.

Although developed independently in the meteorological community, the basic idea is
analogous to the concept of test functions presented in [17] and will be used here as well
in simplified form. Suppose that Y(k), k = 1, 2, . . . are verifications with f (k), k = 1, 2, . . .
corresponding forecasts that are reliablewith respect to an identification function� (which
we assume for the moment has values in R). We note that the forecasts will still be reliable
(i.e. Equation (3) will still hold) with respect to a modified identification function �̃ of the
form

�̃(y, f ) = �(y, f )ζ(f ), (6)

where ζ is any measurable and bounded function which one may call a test func-
tion (by considering bounded test functions we avoid any integrability issues). Indeed,
for any such test function ζ , Equation (3) implies that E[�(Y(k), f (k)) · ζ(f (k))] = 0
for any k. Hence, modifying the identification function in this way, we can expect
to obtain power against alternative hypotheses for which E(�(Y(k), f (k))) = 0 but
E
[
�(Y(k), f (k)) · ζ(f (k))] �= 0.
To illustrate this point, we discuss a special case of Example 1.1. Suppose that forecasts

and verifications take real values and are connected through

Y(k) = f (k)+ r(k), k = 1, 2, . . .

where the forecasts are independent and identically distributed with mean zero, and
the r(k), k = 1, 2, . . . (representing some form of noise) are likewise independent and
identically distributed with mean zero, and furthermore independent of the forecasts.
We assume that at time k, the forecaster knows f (k) as well as (Y(l), f (l)) for all l< k
(i.e. these variables generate F(k)). Now indeed Equation (1) is satisfied and the fore-
casts are reliable if we take �(y, f ) = y − f as identification function. We may look at
the forecasts g(k) := αf (k) instead, for some α �= 1 and all k = 1, 2, . . .. The filtration
{F(k), k = 1, 2, . . .} remains unchanged but the new forecasts are not reliable. However,
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still E(�(Y(k), g(k))) = 0 for all k so that 1
nS(n) will converge to zero and the lack of

reliability will not be detected. This changes if we introduce the test function ζ(g) :=
sign(g), as now E

[
�(Y(k), g(k)) · ζ(g(k))] = (1 − α)E|g(k)|, which is nonzero (unless

α = 1, in which case the forecast is reliable). Hence 1
nS(n) will be significantly different

from zero (provided a sufficient amount of data).
The general idea behind stratification is, roughly speaking, to improve the power by

using several test functions in parallel. We will further generalise on the ideas outlined
above by allowing for identification functions with values in RD (as in Definition 2.1) and
by allowing for test functions that at time k depend not only on the current forecast f (k) but
may bemeasurable with respect toF(k), that is, the entire information available at forecast
time. More specifically, we consider a randomly weighted sum with values in RD×L with
the components being of the form

Sd,l(n) =
n∑

k=1

�d(Y(k), f (k))Zl(k).

Here, the weights {Z(k), k ∈ N} are adapted to {F(k), k ∈ N} and take values in the set
of canonical basis vectors {el, l = 1, . . . , L} of RL for some L ∈ N. That is, Z(k) is an
L-dimensional vector with zero coordinates except for a single unit entry in a random
position.

In [17,29], the {Z(k), k ∈ N} are called test functions and permitted to take values in
RL. However, Equation (3) is in fact equivalent to E(φ(k)Z(k)) = 0 for any weight (or test
function) Z(k) with values 0 or 1. So using weights with discrete values does not impose
a restriction from that perspective. In the present paper, weights will have discrete values
mainly for reasons of interpretability though. The different values assumed by the variable
Z(k) should be seen as indicators of different forecasting scenarios, for instance, different
synoptic weather patterns in atmospheric contexts or different global economic regimes. A
weather forecaster, for example, might be interested in checking whether there is a differ-
ence in the performance of the forecasting system under monsoon conditions (or during
El Niño) as opposed to the absence ofmonsoon (or la Niña, respectively). The requirement
that {Z(k), k ∈ N} is adapted to {F(k), k ∈ N} is natural as the forecasterwould knowabout
these conditions at forecast time.

In case the image of � has more than one dimension (i.e. D > 1), we multiply each
component with the same set of weights. From now on, we will use the shorthandψ(k) :=
(φd(k)Zl(k))d,l; note that ψ(k) ∈ RD×L. Assuming that the forecasts are reliable with
respect to�, a straightforward calculation will show that

E(ψd,l(k) |F(k)) = E(φd(k)Zl(k) |F(k)) = E(φd(k) |F(k))Zl(k) = 0,

while if the identification function is standardised, we get

E(ψd,l(k)ψd′,l′(k) |F(k)) = E(φd(k)Zl(k)φd′(k)Zl′(k) |F(k)) = Zl(k)δl,l′δd,d′ . (7)

We have seen that taking Z(k) to be a function of the forecast f (k) for all k ∈ N is a possible
stratification as this will render {Z(k), k ∈ N} adapted to {F(k), k ∈ N}, and that in this
caseψ(k) can be written as a function of the verification and the forecast. Therefore, it can
be interpreted as a new identification function (see Equation (6)). This is fine, except that
the new identification function will not be standardised, as Equation (7) shows.
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2.3. The law of large numbers, the central limit theorem, and a generalised χ2 -test

If the forecasting system is reliable and the identification function is standardised,wewould
expect the statistic S(n)/

√
n to be asymptotically normal with a mean zero. More specif-

ically, we would expect the following Law of Large Numbers and Central Limit Theorem
to hold. We will formulate these as theorems here albeit without providing the required
assumptions yet. Specific sets of assumptions will be stated in Sections 3.1 and 3.3.

Theorem 2.1 (Law of Large Numbers): If the forecasting system is reliable and under
additional conditions stated in Sections 3.1 and 3.3, we have

1
n
S(n) = 1

n

n∑
k=1

ψ(k) → 0 for n → ∞.

The convergence takes place in mean square and with probability one.

Theorem 2.2 (Central Limit Theorem): If the forecasting system is reliable and under
additional conditions stated in Sections 3.1 and 3.3, the quantity

1√
n
S(n) = 1√

n

n∑
k=1

ψ(k)

converges in distribution (for n → ∞) to a normal distribution with mean zero and covari-
ance v2.

The Law of Large Numbers provides a justification for using the statistic S as a means
of assessing reliability and thus of the entire methodology. According to the Central Limit
Theorem, we can refer 1√

nS(n) to the normal distribution in order to assess whether the
deviations from zero are unduly large. A final problem presents itself with applying this in
practice, namely, that the variance v referred to in the Central Limit Theorem is in general
not known (even if the forecasting system is standardised, we will have v �= 1 in general).
The following corollary of Theorem 2.2 is, therefore, relevant.

Corollary 2.1 (Generalised χ2-test or Wald-type test): Assume the Central Limit
Theorem (Theorem 2.2) holds and v is positive definite3. If for each k, there are estimators
v(k) (measurable with respect to F(k)) so that v(k) → v when k → ∞, where v is as in the
Central Limit Theorem, then

t2 := 1
n
S(n)tv(n)−1S(n) (8)

has asymptotically a χ2-distribution with D · L degrees of freedom.

(For some w ∈ R(D×L)×(D×L), the inverse w−1 is an element from the same space such
that

∑
k,l(w

−1)i,j,k,lwk,l,m,n = δi,mδj,n holds.) In Sections 3.1 and 3.3, we will discuss the
precise assumptions to these theorems in the context of Examples 2.1–2.3. In particular,
we will illustrate the usage of the Generalised χ2-test (Corollary 2.1) and provide explicit
formulae for estimators of the variance v (see Propositions 3.1, 3.2). All proofs are deferred
to Section 1 in the Supplementary Material.
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3. Application: forecasts with specified lead time

3.1. Forecasts with unit lead time

We start with the observation that if Y(k) were F(k) -measurable, then the verification
would be a function of the information available at forecast time and hence not any more
uncertain. Although finding this function might still be difficult in practice, here we are
interested in ‘truly random problems’ where Y(k) is not F(k)-measurable for any k. In
many practical situations, it is true though that

Y(k) is F(k + T)−measurable for some T > 0 and all k. (9)

That is, when forming the forecast f (k + T), the forecaster knows Y(k). An example of
such a situation is if verification and forecast information are obtained from the same
observational network, but the forecasts have a forecast horizon or lead time T.

In this section, we assume T = 1. The next section will deal with larger lead times, that
is T>1. As mentioned in the introduction, the papers [34,35] deal exclusively with the
situation of lead time T = 1. (In fact, the authors make the even stronger assumption that
F(k) is the sigma-algebra generated by Y(1), . . . ,Y(k − 1), but this does not afford much
simplification of the analysis.) Therefore, the present section mainly serves the purpose
of illustration, while originality is limited to considering a wider range of identification
functions than those papers.

We assume that the forecasting system is reliable and standardises the identification
function. Condition (9) with T = 1 then leads to a very strong decorrelation property
of the {ψ(n), n ∈ N}. Indeed, from Condition (9), we obtain that in fact Y(k) is F(n)-
measurable for any k ≤ n − 1 and since the same is true for f (k) and Z(k), we can conclude
that the ψ(k) are F(n)-measurable for any k ≤ n − 1. In other words, when issuing f (n),
the forecaster knows ψ(k) for all k = 1, . . . , n − 1. The law of the iterated expectation in
conjunction with reliability implies for all k:

E(ψ(k) |ψ(n), n = 1, . . . , k − 1) = E
[
E(ψ(k) |F(k)) |ψ(n), n = 1, . . . , k − 1

] = 0.

This means that {S(n), n ∈ N} is a martingale and {ψ(n), n ∈ N} a process of martin-
gale differences or a fair process [see for instance, the books [9,15], which contain introduc-
tory chapters on the subject]. In particular, fair processes satisfy Laws of Large Numbers
and Central Limit Theorems, under appropriate additional conditions:

Proposition 3.1: We assume the following conditions

(i) The forecasting system is reliable.
(ii) The forecasting system standardises the identification function.
(iii) Condition (9) is satisfied with T = 1.

Then the Law of Large Numbers (Theorem 2.1) holds. If in addition we have

(iv) {Z(k), k ∈ N} is an ergodic process with ql := E(Zl(k)) > 0 for all l = 1, . . . , L.
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(v) The following Lindeberg condition holds:

1
n

n∑
k=1

E(ψ2(k)1ψ2(k)≥εn |F(k)) → 0 in probability

for all ε > 0.

Then the Central Limit Theorem (Theorem 2.2) holds with a covariance v having compo-
nents

vd,l,d′,l′ = qlδd,d′δl,l′ . (10)

Further, still under the same conditions, theGeneralisedχ2-test (Corollary 2.1) is in force, and
an estimator for v is provided by replacing ql in Equation (10) with the following estimator:

q̂l = 1
n

n∑
k=1

Zl(k). (11)

The proof, which can be found in Section 1 of the Supplementary Material, is a direct
application of the Martingale Law of Large Numbers and Central Limit theorems. See
also [34] for a similar statement under a slightly different set of assumptions. Note that
q̂l is simply the observed relative frequency of the event Zl(k) = 1 or ‘being in stratum l’.
The Lindeberg condition is satisfied if � is bounded, which is the case in Examples 2.2
and 2.3 (thanks to Lemma 2.1 in the former case). Alternatively, the Lindeberg condition
is satisfied if {ψ(k), k ∈ N} is square integrable and stationary. To see this, let �(ε, n) for
fixed n ∈ N and ε > 0 be the random variable on the left hand side of the Lindeberg con-
dition. Due to stationarity, we have E(�(ε, n)) = E(ψ2(1)1{ψ2(1)≥εn}) and this converges
to zero for n → ∞ sinceψ(1) is square integrable. Hence�(ε, n) → 0 for any ε > 0 even
in mean square sense and thus also in probability.

It is also worth noting that in Example 2.3 and in the context of the current section
(i.e. if Condition (9) is satisfied with T = 1), it can be shown that the PITs {R(k), k ∈ N}
are even independent. This is a classical result due to [33] in the case where F(k) =
σ(Y(1), . . . ,Y(k − 1)) for all k, but is easily seen to remain true in the current situation.
As the distribution of {R(k), k ∈ N} is furthermore uniform over [0, 1] in Example 2.3,
applying a standard test for the uniformity of the distribution of the {R(k)} (such as a Kol-
mogorov–Smirnov test) constitutes a test for reliability. A test of this form, however, would
not involve any stratification and thereforemerely assess whether the unconditional (rather
than the conditional) distribution of the {R(k)} is uniform.

3.2. Numerical examples with unit lead time

To illustrate themethodology outlined in this paper, wewill discuss a fewnumerical experi-
ments, relating to the Examples 2.1–2.3. In the present subsection, wewillmainly introduce
the systems on which the methodology is to be tested and perform a few experiments
for unit lead time; more experiments for larger lead times that will further illustrate the
methodology will be discussed in Section 3.4.
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The first forecasting system concerns verifications from a one-dimensional autoregres-
sive process ( AR-process) of order one, given by

Y(n + 1) = aY(n)+ R(n), n ∈ N,

with a = 0.5 and {R(n), n ∈ N} standard normal and independent. Further,Y(0) is normal
with mean zero and variance 1

1−a2 . We consider conditional mean and variance forecasts
for these verifications as discussed in Example 2.1. More specifically, f1(k) = aY(k − 1)
and f2(k) = 1 for all k ∈ N. The forecasts were divided into two strata along the conditional
mean {f1(k), k ∈ N}, using a threshold of zero. This means we set

Zl(k) =
{
δl,1 if f1(k) < c
δl,2 if f1(k) ≥ c

(12)

for c = 0. In all experiments, n = 600 time instances were considered.
The second forecasting system uses synthetic data from a caricature model for monthly

precipitation over a region. In this model, the time index k represents months, and the
verification Y(k) represents precipitation averages for the corresponding month. The pre-
cipitation depends on an underlying random variableX(k) representing the ‘climate’ of the
region which is modelled as a Markov process with three states {1, 2, 3} representing ‘dry’,
‘normal’, and ‘wet’ climate, respectively. The distribution of Y(k) given X(k) is a gamma
distribution with a density of the form

γ (y,X(k)) = 1
2θ(X(k))2

y exp
(

− y
θ(X(k))

)

with θ(x) = 2x−1. The Markov process X(k) representing the climate has a nonhomoge-
nous (but periodic in time) transition matrix P(k) = Pi,j(k) (representing the probabilities
of transition from i to j) given by

P(k) =
⎛
⎝ 3/5 2/5 0

c(k) · 4/5 1/5 (1 − c(k)) · 4/5
0 4/5 1/5

⎞
⎠ .

where i110 c(k) = 1
2 + 1

2 sin(ωk), ω = 2π
12 . Basically, if the system is in the normal state,

it either stays put or jumps to one of the other states with a probability of 4/5. Whether
a jump ends up in the wet or the dry state depends on probabilities alternating with a
seasonal cycle c(k) in opposite directions (i.e. p21(k)+ p23(k) = const.). If the system is in
the wet state, it either stays put or jumps to the normal state with a probability of 4/5. If the
system is in the dry state, it either stays put or jumps to the normal state with a probability
of 2/5. A typical time series from this model is shown in Figure 1, along with a one-year
running average. As this system constitutes a Hidden Markov model, using the theory of
filtering, forecasts for this system can be constructed in the form of cumulative distribution
functions, representing the probability distribution of Y(k) given previous observations
Y(k), . . . ,Y(k − T) (with T = 1 in the present section). By construction, these cumulative
distribution functions are reliable in the sense of Example 2.3.Using elementary probability
calculus, we can likewise construct mean and variance forecasts and probability forecasts
for categorical events.We used the three categoriesY(k) < 2, 2 ≤ Y(k) < 4, and 4 ≤ Y(k).
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Figure 1. A typical time series from the precipitation model. The ordinate shows amounts of precipita-
tion (note the logarithmic scale), while the abscissa shows time in years. The red line (light grey in print)
shows the running average over the previous 12 months.

Again by construction, these forecasts are reliable in the sense of Examples 2.1 and 2.2,
respectively. Further, they standardise the employed identification functions.

The forecasts were divided into two strata along the mean forecast (i.e. the condi-
tional expectation under reliability) as for the AR process; see Equation (12) but with
c = 3.98. This gives roughly equal population of the strata. In all experiments, n = 600
time instances were considered.

We note that the conditions of Proposition 3.1 are met both for the ARmodel as well as
the precipitation model, except that strictly speaking {Z(k), k ∈ N} are not ergodic for the
precipitation model since the underlying Markov process is not homogenous. The ergod-
icity is only needed though to prove that the observed strata populations converge to their
expected values, which seems plausible also for the present case as the Markov process has
periodic dynamics.

To confirm that the methodology performs as would be expected from Proposi-
tion 3.1 (also in case of the precipitation model), we repeated each experiment 1000 times
independently, computing the t2-statistic from the Generalised χ2-test (Equation 8 in
Corollary 2.1) and eventually the p-value every time (using a χ2-distribution with the
appropriate number of dof’s). According to our theory, the realisations of the p-value
should follow a uniform distribution, at least for data from the ARmodel. This was indeed
confirmed for all four examples, using a Kolmogorov–Smirnov test.

3.3. Forecasts with larger lead times

In this section, we assume that Equation (9) holds albeit with some T>1, essentially
corresponding to situations with larger forecast lead time. We obtain that Y(k) is F(n)-
measurable for any k ≤ n − T and since the same is true for f (k), we can conclude thatψ(k)
isF(n)-measurable for any k ≤ n − T. The law of the iterated expectation in conjunction
with reliability then implies

E(ψ(k) |ψ(n), n = 1, . . . , k − T) = E (E(ψ(k)|F(k))|ψ(n), n = 1, . . . , k − T) = 0
(13)

for all k. In contrast to the previous sections though, the time series {φ(k), k ∈ N} is no
longer a fair process. Equation (13) does not yield information about E(ψ(k) |ψ1:k−l) for
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l = 1, . . . , L − 1, meaning that we have less control over the correlation structure of the
time series {φ(k), k ∈ N}; the consequence is that the conditions of Proposition (3.1) are no
longer sufficient to guarantee the Central Limit Theorem, and compensating assumptions
have to be made to care for this lack of information.

Proposition 3.2: We assume the following conditions:

(i) The forecasting system is reliable.
(ii) {ψ(k), k ∈ N} are square integrable and ergodic.

Then the Law of Large Numbers (Theorem 2.1) holds. If in addition we have

(iii) Condition (9) holds for some L.

Then the Central Limit Theorem (Theorem 2.2) holds. If furthermore

(iv) The covariance v is positive definite.

Then the following estimator for the covariance (with d, d′ = 1, . . . ,Dand l, l′ = 1, . . . , L)

v̂d,l,d′,l′ = 1
n

n∑
k=1

{
ψd,l(k)ψd′,l′(k)

+ψ(k)d,l
(T−1∑
k′=1

ψd′,l′(k + k′)

)
+ ψ(k)d′,l′

(T−1∑
k′=1

ψd,l(k + k′)

)}
(14)

satisfies the requirements of Corollary 2.1 and therefore, the corresponding Generalised χ2-
test from Corollary 2.1 is valid.

Remark 3.1: The conditions of Proposition 3.2 are stronger than that of Proposition 3.1
only in that now the ergodicity of {ψ(k), k ∈ N} is assumed (already in the Law of
Large Numbers), and that the covariance v is required to be non-degenerate (see also
Remark 3.6).

Remark 3.2: Note that the third term on the right is just the second term but with (d, l)
and (d′, l′) interchanged.

Remark 3.3: We stress that for lead times larger than one, the variance v in the Central
Limit Theoremwill need to be estimated even if the forecasts standardise the identification
function (this will also be confirmed in the numerical examples). The only benefit of stan-
dardisation is then that the very first term on the right hand side of Equation (14), which
estimates the covariance of ψ(k), can be replaced by the estimator from Proposition 3.1,
Equation (11) for the case of unit lead time. In particular, this term will be diagonal, that
is, nonzero only if d = d′ and l = l′ so only these entries have to be estimated.

Remark 3.4: As has beenmentioned several times, Proposition 3.2 has to be used even for
lead time T = 1 if standardisation is not part of the null hypothesis.
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Remark 3.5: The ergodicity of {ψ(k), k ∈ N} cannot usually be inferred in a real-world
example, and is in fact wrong in the context of the synthetic precipitation model since this
model is not time homogenous. As discussed, this implies that by invoking the Central
Limit Theorem, we are assessing the consistency between the forecaster’s claims and the
data under the additional assumption that {ψ(k), k ∈ N} is ergodic.

Remark 3.6: It would be desirable to have primitive conditions guaranteeing that the
covariance v is non-degenerate. Unfortunately, this does not seem to be a universal
property under the null hypothesis of reliability but rather is dependent on the precise cor-
relation structure of the time series {ψ(k), k ∈ N}. Nor is it obvious that non-degeneracy
of v can be guaranteed under reasonably general conditions by suitable design of the iden-
tification function. A step in that direction is identification functions that are standardised
by the forecasts. This will at least guarantee the covariance of ψ(k) to be invertible, and
this often appears to be the dominant contribution to v.

3.4. Numerical examples with larger lead times

Forecasts for both the precipitation model as well as the AR model can be constructed
for higher lead times as well. As before, mean and variance forecasts (for both systems),
probability forecasts for categorical events, and cumulative distribution forecasts (for the
precipitation model) were generated that are reliable in the sense of the corresponding
Examples 2.1–2.3; the forecasting systems furthermore standardise the employed identifi-
cation functions. Assuming also ergodicity, Proposition 3.2 is in force, and we estimate v
using estimators v(n) from Equation (14). All experiments were conducted with n = 600
time instances and for various lead times; stratification (whenever present) was performed
in the same way as for unit lead time.

As in the previous section, we repeated the experiments 1000 times, each time comput-
ing the test statistic t2 for these forecasting systems (including estimators for the variance).
Despite the fact that strictly speaking, the precipitation model is not ergodic and hence
Proposition 3.2 is not applicable, we nonetheless find that realisations of the t2-statistic
from these experiments exhibit a distribution that does not significantly deviate from
the χ2 -distribution, or in other words, the p-values follow a uniform distribution as is
confirmed through Kolmogorov–Smirnov tests.

For the remainder of this section, we will discuss a few more experiments to illustrate
the methodology and the information it provides about forecasting systems. Firstly, we
present a typical estimate of the covariance v. It was obtained for cumulative distribution
forecasts for the precipitation model with lead time 4 and Legendre polynomials of order
up to 6, but no stratification. The covariance is thus a 6 × 6matrix, and as estimate (for the
correlation matrix) we obtain

v̂i,j√
v̂i,iv̂j,j

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 −0.05 −0.09 −0.10 0.12 −0.05
−0.05 1.00 −0.06 −0.02 0.18 0.08
−0.09 −0.06 1.00 0.07 0.04 −0.04
−0.10 −0.02 0.07 1.00 −0.08 −0.12
0.12 0.18 0.04 −0.08 1.00 0.09

−0.05 0.08 −0.04 −0.12 0.09 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠
, (15)
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Figure 2. A typical estimate of the covariance v (in fact the correlationmatrix, see Equation (15)). It was
obtained for cumulative distribution forecasts for the precipitationmodel with lead time 4 and Legendre
polynomials of order up to 6, but no stratification.

and a grey-scale plot is shown in Figure 2. For unit lead time, this would be the unit matrix,
but here we seem to have genuine correlations off the diagonal (although we have not
conducted a true significance test).

The next experiment shows that these correlations cannot be ignored in the test. The
experiment considers categorical forecasts for the precipitation model with a lead time
of 4 months. The t2-statistic was computed assuming no correlations in the time series
{ψ(n), n ∈ N} (or equivalently assuming v = 1). This experiment was repeated 1000 times
independently; a histogram of the p-values is shown in Figure 3. It is evident that the
p-values tend to be too small (a Kolmogorov–Smirnov test for uniformity produces a p-
value of 5.48 · 10−6). Hence, ignoring the correlations, our test would reject a reliable
forecasting system too often. Incorporating the correct correlations in the t2 -statistic, how-
ever, produces the correct (i.e. uniform) distribution of the p -values (data not shown),
as for the experiments discussed at the beginning of this section. Figure 4, left column,
shows results from experiments using cumulative distribution forecasts, moment fore-
casts, and categorical forecasts for the precipitation model with a lead time of 4 months.
The forecasts have been stratified into two categories. The experiments are identical to
the corresponding experiments discussed at the beginning of this section, except that now
the t2-statistic was computed assuming no correlations in the time series {ψ(n), n ∈ N}.
Top and middle panels of Figure 4, left column, show results for cumulative distribution
forecasts and moment forecasts, respectively, while the bottom panel refers again to cate-
gorical probability forecasts. The conclusions are the same as before; although there is less
evidence that the p-values are not uniform (a Kolmogorov–Smirnov test for uniformity
produces larger p -values, see Figure), it would still seem reckless to ignore the correlations.
The next experiment demonstrates the value of stratification. In essence, it shows that an
unreliable forecasting system might pass an unstratified reliability test, while deviations
from reliability become apparent only under stratification. We focus on mean-variance
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Figure 3. Categorical forecasts for the precipitation model with lead time 4 were tested for reliability
(the forecasts are reliable by construction). The t2-statistic was computed assuming no correlations. His-
togram of pvals for 1000 repetitions of this experiment are shown. It is evident that the p-values tend to
be too small (a KS-test gives a p-value of 5.48 · 10−6). Hence, ignoring the correlations, our test would
reject a reliable forecasting system too often.

forecasts for the AR process. Let {(f1(k), f2(k)), k ∈ N} be reliable conditional means and
variance forecasts for this problem. We introduce another mean-variance forecasting sys-
tem {(g1(k), g2(k)), k ∈ N}, constructed in such a way that themean g1(k) exhibits too little
variability, while the variance g2(k) correctly accounts for the error in themean g1(k). More
specifically, we set

g1(k) := αf1(k), g2(k) := E((Y(k)− g1(k))2) = 1 + (α2 − 2α)a4

1 − a2
, (16)

with α = 0.4. The definition of g2(k) ensures that it reflects the overall (unconditional)
expected error of g1(k). The explicit representation of g2(k) in Equation (16) follows from
a simple calculation. Note that g2(k) like f2(k) is in fact independent of k but larger than the
latter. We stress that (g1(k), g2(k)) is not reliable since E(Y(k) | g1(k)) = E(Y(k) | f1(k)) =
f1(k) �= g1(k).

Histograms for the p-values from 1000 independent repetitions of the experiment are
shown in Figure 4, right column. The top panel refers to tests for reliability without strat-
ifying the forecasts. Evidently, the test is unable to detect lack of reliability as there is no
evidence for the p-values deviating from a uniform distribution; in other words, the test
develops no significant power. Adding stratification though reveals that the forecast is not
reliable, as is shown in the middle panel of Figure 4, right column. Now the test develops
very significant power. The bottom panel repeats the (stratified) experiment but for the
reliable forecasting system, confirming again that the test has the correct size.

As a final application, we consider temperature measurements from a weather station
near Bremen, Germany, taken daily between 1 January 2010 and 31 December 2011 at
12 noon (resulting in 730 values). The measurements were converted to anomalies by
subtracting a climate normal of the form

c(k) = c1 + c2 cos(ωk)+ c3 sin(ωk) where ω = 2π
365.2425

.

The coefficients c1, c2, c3 were found by a least squares fit onto temperature data from the
same station but from previous years. The anomalies {a(k), k ∈ N}were converted to three
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Figure 4. Left column: The experiment is similar to Figure 3, except that here the forecasts have been
stratified into two categories. Top and middle panels show results for cumulative distribution forecasts
and moment forecasts, respectively, while the bottom panel refers again to categorical probability fore-
casts. Although there is less evidence that the p-values are not uniform ignoring the correlations still
seems to result in too small p-values. Right column: A mean-variance forecasting system for the autore-
gressive process was tested for reliability. The forecasting system was constructed so that the mean
exhibits too little variability, while the variance correctly accounts for the error in the mean. Histograms
for the p-values from1000 independent repetitions of the experiment are shown.Without stratifying the
forecasts, the test is unable to detect lack of reliability (p-values exhibit uniform distribution, top panel).
Adding stratification though reveals that the forecast is not reliable (middle panel). The bottom panel
repeats the (stratified) experiment but for the reliable forecasting system.

categories: a(k) < −1.867, −1.867 ≤ a(k) < 1.654 and 1.654 ≤ a(k). Each category has a
climatological probability of about 1/3.

Forecasts were obtained from the medium-range ensemble prediction system of the
European Centre forMedium-RangeWeather Forecasts (ECMWF)4. The system produces
daily ensemble forecasts for the global atmosphere and comprises 50 ensemble mem-
bers. We consider the forecasts with a lead time of 120 h, which corresponds to T = 5.
The ensembles are then converted to anomaly ensembles (by subtracting the climate nor-
mal) and eventually to probabilities for the three categories as follows: If we let Nm(k)
be the number of ensemble members falling into category m at time k, then the forecast
probability fm(k) for category m at time k is found by a (slightly regularised) frequency
estimator

fm(k) := Nm(k)+ 1/3
51

, m = 1, 2, 3.

Note that fm(k) ≥ 1/153 in any case.
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Figure 5. Stratified rankhistograms for ECMWFensemble forecasts for a locationnearBremen, lead time
120 h (see][37). Even without a quantitative test, it is evident that these histograms are not ‘flat’, indi-
cating a lack of reliability in this forecast. Categorical probability forecasts derived from these ensembles
though have less resolution and might still be reliable.

For this experiment, we stratify along a variable internal to the forecasting system that
indicates ‘cold’, ‘medium’ and ‘warm’ synoptic situations. All three strata contain about
the same amount of instances. Testing for reliability with this stratification gives a p-value
of 0.584, while testing without stratification gives 0.171. This indicates that there are poten-
tial problems with reliability (from the unstratified test) but maybe too little data to see this
also in the stratified test.

Stratified rank histograms for the entire ensemble forecasting system are shown in
Figure 5. For an introduction to this methodology, see [37]. For a reliable ensemble fore-
casting system, these histograms should exhibit a uniform distribution, although again
temporal correlations need taking into account, see [5]. It is evident however (evenwithout
a quantitative test) that these histograms are not ‘flat’, indicating a lack of reliability in this
forecast. This lack of reliability need not necessarily cause the categorical probability fore-
casts to be unreliable, so there is no inconsistency with the fact that we do not see strong
evidence for lack of reliability in this experiment.
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4. Conclusion and future work

In this work, we revisited the problem of statistical evaluation of forecasting systems. Cen-
tral to the presented framework is the concept of nominal forecast behaviour or reliability,
which is a statement regarding the supposed statistical properties of the forecasts. Such
statements can be interpreted as a hypothesis, and a framework for testing such hypotheses
was presented and linked with reliability.

As was noted previously by several authors, the temporal dependence structure of the
verification–forecast pairs is unknown in general, but it bears strongly on the distribution
of the statistic S (whereby we quantify deviation from reliability), for instance the variance.
As we have demonstrated though, the nominal behaviour of the forecasts (i.e. reliability) in
fact imposes strong constraints on the dependence structure. More specifically, we showed
that with an appropriately chosen identification function�, the statistic S becomes a sum
over terms with strong decorrelation properties. In forecasting problems with unit lead
time, the statistic S even forms a Martingale, a fact that has been used in previous work to
identify the asymptotic distribution of S (and related test statistics) using Martingale Cen-
tral Limit theorems. In the assessment of predictive cumulative distribution functions with
unit lead time, the probability integral transform can be used, in which case the statistic S
is even a sum over independent and identically distributed random variables.

For larger lead times, the statistic S ceases to be a Martingale but still exhibits strong
decorrelation properties. These can be used to show rigorously that the statistic S still
obeys the Law of Large Numbers and the Central Limit theorem, and also to find esti-
mators for the correct variance, in general under the additional assumption that the
verification–forecast pairs form an ergodic process.

Numerical examples were conducted to demonstrate the validity of the theory and to
illustrate its applicability. Synthetic data from a toymodel representing a climate regionwas
used to test whether the theory is working. In that experiment, the forecasts are known
to be reliable, and the tests indeed behave as predicted under the null hypothesis. We
also demonstrate that the non-vanishing correlations have to be taken into account when
estimating the variance of the statistic S (as discussed in Section 3.3). Using the classical
estimator instead (which ignores correlations) will lead to incorrect behaviour of the test,
with too large rejection rates in the discussed example.

Further, we discussed an example demonstrating how stratification of forecasts leads to
more powerful tests. A (by construction) unreliable forecasting systemwas considered that
was nonetheless able to pass a test of reliability without stratification. Lack of reliability was
detected however if simple stratification was added.

Finally, the difficulty of finding explicit identification functions which are standardised
was noted; we were able to find such identification functions only if the risk measure was
invertible and thus effectively determined the forecast distribution completely. It would be
interesting to know if invertibility of the risk measure is indeed necessary in this situation.

Notes

1. This minimal integrability condition ensures that subsequent expectation values are well
defined.

2. Note that for random variables X with values in RD×L, the covariance v will be an element of
R(D×L)×(D×L) with components vd,l,d′ ,l′ = E(Xd,lXd′ ,l′).
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3. Throughout this paper, positive definitemeans symmetricwith positive eigenvalues, in particular
implying invertibility.

4. We are grateful to ECMWF and Zied Ben Bouallègue for kindly providing the data.
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