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The fluctuating climatic conditions of the Saharo-Arabian deserts are increasingly linked to
human evolutionary events and societal developments. On orbital timescales, the African
and Indian Summer Monsoons were displaced northward and increased precipitation to the
Arabian Peninsula which led to favorable periods for human occupation in the now arid
interior. At least four periods of climatic optima occurred within the last 130,000 years,
related to Marine Isotope Stages (MIS) 5e (128–121 ka BP), 5c (104–97 ka BP), 5a
(81–74 ka BP) and 1 (10.5–6.2 ka BP), and potentially early MIS 3 (60–50 ka BP).
Stalagmites from Southern Arabia have been key to understanding climatic fluctuations
and human-environmental interactions; their precise and high-resolution chronologies can
be linked to evidence for changes in human distribution and climate/environment induced
societal developments. Here, we review the most recent advances in the Southern Arabian
Late Pleistocene and Early Holocene stalagmite records. We compare and contrast MIS 5e
and Early Holocene climates to understand how these differed, benchmark the extremes of
climatic variability and summarize the impacts on human societal development. We suggest
that, while the extreme of MIS 5e was important for H. sapeins dispersal, subsequent, less
intense, wet phasesmitigate against a simplistic narrative.We highlight that while climate can
be a limiting and important factor, there is also the potential of human adaptability and
resilience. Further studies will be needed to understand spatio-temporal difference in
human-environment interactions in a climatically variable region.
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INTRODUCTION

The fluctuating palaeoclimate conditions of Southern Arabia are frequently related to broad changes
in hominin distribution as well as regional societal developments. Intensifications and expansions of
the monsoon domain increased precipitation across Southern Arabia during periods of increased
solar insolation, following orbitally-paced cycles (Burns et al., 1998; Burns et al., 2001; Fleitmann
et al., 2003b; Fleitmann et al., 2011; Parton et al., 2015b; Jennings et al., 2015; Nicholson et al., 2020).
During the last 130 kyrs, at least four prolonged periods of increased precipitation have been
identified and dated to MIS 5e (128–121 ka BP), MIS 5c (104–97 ka BP), MIS 5a (81–74 ka BP) and
the Early Holocene (10.5–6.2 ka BP), and perhaps early MIS 3 (60–50 ka BP), each lasting for a few
millennia (Burns et al., 2001; Fleitmann et al., 2011; Parton et al., 2013; Nicholson et al., 2020). These
extreme increases in rainfall permitted the formation of large, deep and perennial lakes and other
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waterbodies in the now arid interiors (Rosenberg et al., 2011;
Rosenberg et al., 2012; Petraglia et al., 2012; Rosenberg et al.,
2013; Parton et al., 2013; Parton et al., 2015a). As well as increased
surface water availability and refilling of aquifers, increased
rainfall led to “greening” events of Arabia, in which grassland
environments expanded into the now arid desert interiors and
supported the spread of large mammals and human settlement
(Rose et al., 2011; Petraglia et al., 2012; Groucutt et al., 2015;
Stimpson et al., 2016; Groucutt et al., 2018; Stewart et al., 2020a;
Stewart et al., 020b; Groucutt et al., 2021; Scerri et al., 2021).

Speleothems (stalagmites, stalactites and flowstones) have
been key sources of terrestrial palaeoclimatic information in
Southern Arabia. Unlike other terrestrial archives (e.g.,
lacustrine and alluvial records), their subterranean location
protects them from desert weathering conditions (Burns et al.,
1998; Vaks et al., 2010; El-Shenawy et al., 2018; Burstyn et al.,
2019; Henselowsky et al., 2021). Additionally, speleothem growth

requires a positive precipitation-evaporation balance, and can
thus inform the timing of prolonged soil humidity above the cave.
Stalagmites are particularly useful for palaeoclimate
reconstructions; their laminated growth permits the
development of precise climatic records through U-Th dating
and analyses of calcite oxygen (δ18Oca) and carbon (δ13Cca)
stable-isotopes, which can be linked to archaeological (and
historical) records. Since 1998, a series of publications have
provided a unique insight into the palaeoclimate of Southern
Arabia using stalagmites collected from Hoti (23.08° N, 57.35° E),
Mukallah (14.91° N, 48.59° E), and Qunf (17.16° N, 54.3° E) caves
(Figure 1A). Specific site descriptions of the caves are available
elsewhere (Burns et al., 1998; Neff et al., 2001; Fleitmann et al.,
2003b; Fleitmann et al., 2003a; Fleitmann et al., 2007; Fleitmann
et al., 2011). Here, we summarize these works and provide a
comparison between two of these climatically extreme periods:
MIS 5e and the Early-Mid Holocene.

FIGURE 1 | (A) simulated mean annual precipitation maps of the Arabian Peninsula for modern (Fick and Hijmans, 2017), Early Holocene (Fick and Hijmans, 2017;
Fordham et al., 2017; Brown et al., 2018) and MIS 5e (Otto-Bliesner, 2006; World Clim, 2015) periods. Speleothem cave sites (white circles) show distribution of fossil
stalagmites (modern) and their respective growth periods (Early Holocene and MIS 5e). (B) box-whisker plots of stalagmite δ18Oca values from Hoti (red) and Mukallah
(blue) caves vs. the Soreq Cave δ18Oca curve (Bar-Matthews et al., 2003; Grant et al., 2012; Grant et al., 2016), ODP 967 PC2 wet/dry index and sapropel layers
(Grant et al., 2017), low-latitude (30°N; Berger and Loutre, 1991) and global ice-volume (δ18Obenthic; Lisiecki and Raymo, 2005). Black circles denote statistically extreme
values. Sample counts and stalagmite specimens are given above and below boxes, respectively. See Supplementary Material for results of ANOVA and Wilcoxon
rank sum test. The yellow bar denotes the range of modern stalagmite δ18Oca values from Hoti Cave (Fleitmann et al., 2003a; Fleitmann et al., 2011). 230Th ages and age
uncertainties (2σ) for Mukallah (blue) and Hoti (red) cave speleothems are given above their respective boxplots (Fleitmann et al., 2011; Nicholson et al., 2020). Relevant
Marine Isotope Stages are provided using the taxonomy of Railsback et al. (2015).
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TIMINGOF INCREASEDRAINFALLDURING
THE LAST 130 KYRS

At least four South Arabian Humid Periods (SAHPs) occurred
during the Late Pleistocene and Early Holocene. At Mukallah
Cave, stalagmite deposition was recorded during MIS 5e
(∼128–121 ka BP; SAHP 4), 5c (∼104–97 ka BP; SAHP 3), and
the Early Holocene (∼10–6 ka BP; SAHP 1). At Hoti cave,
stalagmite deposition occurred during MIS 5e, 5a (∼85–74 ka
BP; SAHP 2) and the Holocene (10–5.2 ka BP and 2.6 ka BP to
present) (Fleitmann et al., 2007). Stalagmite growth is also
recorded at Qunf Cave (Q5), Defore Cave (S3, S4, S6, S9) and
Dimarshim (D1). An almost continuous climatic record
(∼10.6–0.3 ka BP) is provided by Q5, whereas S3 and S4 are
only active before and after SAHP 1 and D1 grows from ∼4.2 to
0 ka BP. Determination of stalagmite fluid inclusion water δ18O
and δD values from Mukallah and Hoti caves have shown that
increased precipitation during MIS 5e and the Early-Mid
Holocene were delivered by the African Summer Monsoon
(ASM) and the Indian Summer Monsoon (ISM) (Fleitmann
et al., 2003b; Nicholson et al., 2020). This is in good
coherence with other records of ASM and ISM intensity,
particularly sapropel layers S5 (128.3–121.5 ka), S4
(107.8–101.8 ka), S3 (85.8–80.8 ka) and S1 (10.5–6.1 ka) from
Mediterranean Sea core ODP 967 (Rohling et al., 2015; Grant
et al., 2017).

Stalagmite distribution, size and shape can reveal changes in
precipitation amounts in arid environments. An estimated
annual precipitation >300 mm yr−1 for SAHPs was established
using the distribution of active stalagmite growth in the Negev
desert (Vaks et al., 2006; Vaks et al., 2010; Vaks et al., 2013),
suggesting palaeo-precipitation doubled current amounts at
Mukallah and Hoti Caves (Fleitmann et al., 2011; Nicholson
et al., 2020; Figure 1A). MIS 5e stalagmites (Y99 and H13) are
large (width >30 cm; and height >1 m), suggesting annual rainfall
was considerably higher than 300 mm yr−1. This is supported by
deposition of a large MIS 5e flowstone at Hoti Cave, which
indicates flowing water on the cave floor, deposition fluvio-
lacustrine sediments in Northern Arabia (Rosenberg et al.,
2013; Parton et al., 2018) and Southern Arabia (Rosenberg
et al., 2011; Rosenberg et al., 2012; Matter et al., 2015; Parton
et al., 2015a), the deposition of sapropel S5 caused by ∼8 times
higher Nile outflow (Amies et al., 2019) and modeled rainfall
amounts of 300–600 mm yr−1 during MIS 5e (Otto-Bliesner,
2006; Jennings et al., 2015; Figure 1B). Stalagmites from later
growth periods, such as Y97-4 and Y97-5, are comparatively
smaller (Fleitmann et al., 2011), suggesting that annual rainfall
was less than during SAHP 4. This is consistent with modeled
Early Holocene rainfall of 200–300 mm yr−1 over Mukallah Cave
(Fordham et al., 2017; Brown et al., 2018).

Differing rainfall amounts between SAHPs are confirmed by
stalagmite δ18Oca values, which are influenced by the intensity of
ASM (Mukallah) and ISM (Hoti) rainfall (Fleitmann et al., 2011;
Nicholson et al., 2020). SAHP 4 (MIS 5e) has the most negative
δ18Oca values (increased rainfall), whereas SAHP 1 (Holocene)
has the most positive δ18Oca values (drier conditions) (Nicholson
et al., 2020). The competing effects of high-latitude glacial-

boundary conditions and low-latitude insolation are both
considered to control the expansion, contraction and intensity
of the monsoon domain (Burns et al., 2003; Cheng et al., 2009a;
Beck et al., 2018) and are key differentiating factors of SAHPs
(Nicholson et al., 2020). While precipitation intensities of SAHP
4, 3 and 2 follow the declining intensity of glacial-boundary
minima, SAHP 1 contradicts this trend, as positive δ18Oca

occurred during an interglacial maximum. Instead, SAHP
δ18Oca values consistently follow the pattern of declining low-
latitude summer Northern Hemisphere Insolation (NHI)
maxima, which are regulated on orbital eccentricity (100 kyr)
and precession (21 kyr) cycles (Figure 1B). Low-latitude
insolation is a key control on the interhemispheric pressure
gradient, whereby greater solar heating of the Tibetan Plateau
and northern Indian Ocean results in enhanced low pressure and
intensification of northern hemisphere cyclones (Burns et al.,

FIGURE 2 | (A) High-resolution δ18Oca stalagmite values for the
Holocene (H5, H12, H14 and Q5). Blue lines for H5 and H12 represent means
before and after the change-point at ∼6.2 ka BP. The change-point was
identified using the changepoint package for R (Killick et al., 2016). 230Th
ages (cricles) and uncertainty (2σ) bars are given above their respective curves.
(B) High-resolution δ18Oca stalagmite values for MIS 5e (Y99). 230Th ages and
uncertainties (2σ) from Nicholson et al. (2020) (circles) used to create the
StalAge (Scholz and Hoffmann, 2011) age-depth model (Nicholson et al.,
2021a).
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2003; Fleitmann et al., 2007; Parton et al., 2015b; Beck et al.,
2018). Thus, comparatively low insolation values during SAHP 1
are matched by a weaker response of monsoon intensity
compared to preceding SAHPs. Importantly, SAHPs had
differing climatic conditions and likely brought unique
environmental responses and challenges for human populations.

RAINFALL TRENDS DURING MIS 5E AND
THE HOLOCENE

MIS 5e
Precise 230Th ages of stalagmites combined with δ18Oca values
have provided records of MIS 5e and Holocene climatic
variability. The Y99 (Mukallah) δ18Oca and δ13Cca records
cover SAHP 4 in Yemen, with onset and termination of
stalagmite growth at 127.8 and 121.1 ka BP (Nicholson et al.,
2020; Nicholson et al., 2021a). There are four distinct features of
the Y99 δ18Oca curve: 1) onset of enhanced rainfall is
characterized by negative δ18Oca values, suggesting this was
abrupt, perhaps within <500 years as suggested by other ASM
records (e.g., Bar-Matthews et al., 2003). 2) There is a clear
relationship to the July 30oN isolation curve, demonstrating
rainfall intensity was modulated by low-latitude insolation
(Figures 1B, 2B). 3) While there is considerable variability,
δ18Oca values are consistently more negative (wetter
conditions) than succeeding wet phases. 4) There is an abrupt
increase in δ18Oca and δ13Cca (drier conditions) at the
termination of the wet period as the tropical rain-belt
retreated southwards and annual rainfall fell below the
threshold for large stalagmite formation (Nicholson et al.,
2020). Additionally, sub-annually resolved H13 (Hoti) δ18Oca

and δ13Cca records shows MIS 5e was characterised by increased
seasonality (wetter summers and drier winters) dominated by a
monsoon-driven precipitation regime (Nicholson et al., 2020).
This was likely echoed by a seasonal vegetation response, as
indicated by the presence of C4 plants (Bretzke et al., 2013;
Nicholson et al., 2020), with potentially significant implications
for animals and human hunter-gatherers.

Early-Mid Holocene
The Early-Mid Holocene is characterized by another period of
increased rainfall in Arabia, known as the Holocene Humid
Period (HHP), or SAHP 1 in Southern Arabia (Burns et al.,
1998; Burns et al., 2001; Fleitmann et al., 2003a, Fleitmann et al.,
2007; Fleitmann and Matter, 2009; Lézine, 2009; Rosenberg et al.,
2011; Engel et al., 2012; Rosenberg et al., 2013). Stalagmite
records from Hoti (H5 and H12), Qunf (Q5) and Defore (S3
and S4) caves provide information of rainfall variability
throughout the Holocene. While at Hoti Cave δ18Oca values
show shifting dominances of winter (derived from the
Mediterranean Sea) vs. summer (derived from the Indian
Ocean) precipitation, Qunf Cave δ18Oca values record ISM
precipitation intensity. Whereas Hoti Cave δ18Oca values
indicate that winter precipitation has been dominant over the
last ∼6 kyrs, the Early Holocene is marked by more negative
δ18Oca values reflecting increased summer precipitation (Neff

et al., 2001; Burns et al., 2003; Fleitmann et al., 2007; Shakun et al.,
2007). This is coeval to more negative δ18Oca values at Qunf Cave
which indicate an intensification of the ISM. At both caves δ18Oca

values show:
1) Intensification of summer precipitation between 10.6 and

9.4 ka BP, which slightly lags low-latitude insolation due to
comparatively high glacial-boundary forcing (Fleitmann et al.,
2007). 2) Considerable multi-decadal variability within both H5
and Q5, displaying clear relationships with GRIP, NGRIP and
DYE-3 ice-core δ18O records (Johnsen et al., 2001; Neff et al.,
2001; Fleitmann et al., 2003a; Fleitmann et al., 2007; Fleitmann
andMatter, 2009). More negative ice-core δ18O (colder northern-
hemisphere conditions) were reflected by more positive (drier
conditions) stalagmite δ18Oca values. 3) A distinct increase of
δ18Oca values (drier conditions) is observed between ∼8.2–8.0 ka
BP and is related to the so-called “8.2-kyr event”; a global climatic
event caused by the collapse of Atlantic Overturning Meridional
Circulation (AMOC) due to draining of Hudson Bay glacial lakes
and freshwater influx into the Atlantic (Barber et al., 1999;
Kobashi et al., 2007). δ18Oca values of H14 and H5 (Hoti
Cave) show this period was characterised by a weakening of
rainfall and led to a hiatus of H14 growth (Cheng et al., 2009b). 4)
Summer precipitation declines at ∼6.2 ka BP. At Qunf Cave, this
decline is gradual and closely follows the 30°N isolation-curve (for
an extended discussion, see Fleitmann et al., 2007). At Hoti Cave,
this precipitation decline is more abrupt (identifiable by change
point analysis; Figure 2A) and related to winter rainfall becoming
the dominant source of precipitation in northern Oman
(Fleitmann et al., 2007). As Hoti Cave provides solid timing
on the shifting dominance of winter vs. summer precipitation, the
H5 record has been used to define the duration of SAHP 1 and is
consistent with the 230Th ages of Holocene stalagmites from
Mukallah Cave (Fleitmann et al., 2011; Nicholson et al., 2020).
Whereas the Y99 record indicates SAHP 4 (during MIS 5e)
persisted for ∼6.5 kyrs, the Hoti Cave composite record
indicates SAHP 1 lasted for a shorter period of ∼4 kyrs.

These patterns follow established conditions during SAHP 1,
which in Southern Arabia are also evidenced by vegetation
expansion (Fuchs and Buerkert, 2008), vegetation that requires
adequate precipitation (Parker et al., 2004), and palaeolake and
river formation (Farraj and Harvey, 2004; Preston, 2011; Berger
et al., 2012). Across Arabia, these changes are asynchronous
(Preston and Parker, 2013; Preston et al., 2015), with northern
Arabia experiencing a truncated period of increased rainfall
compared to the south.

DISCUSSION

MIS 5e
What do the varied conditions between SAHPs mean for
discussions of human populations and climatic extremes?
There is a growing body of evidence which relates Pleistocene
human movements between Arabia and Africa to periods of
enhanced precipitation. Archaeological remains at Jebel Faya
were dated to MIS 5e and may evidence the earliest instance
of H. sapiens in the region (Armitage et al., 2011). Outside of
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Arabia, MIS 5 H. sapiens fossils uncovered at Skhul, Qafzeh
(Israel, Millard, 2008) and Fuyan Cave (≥80 ka BP, China; Liu
et al., 2015) represent some of the earliest instances of Late
Pleistocene humans outside of Africa. MIS 5e saw the most
intense enhancement of precipitation, highlighting that this
period may have been particularly favorable for hominin
occupation and dispersal across the Saharo-Arabian deserts
(Larrasoaña et al., 2013; Nicholson et al., 2021b). Such a large
increase of precipitation was likely echoed by a greater vegetation
response than later SAHPs, as evidenced by Mukallah Cave
δ13Cca values (Nicholson et al., 2020) and the Jebel Faya
phytolith record (Bretzke et al., 2013). It is thus likely that the
carrying capacity of the Arabian Peninsula was greater during
SAHP 4 compared to subsequent SAHPs, meaning population
expansions and/or dispersals could have been rapid (Nicholson
et al., 2021b). Additionally, the longer duration of SAHP 4
indicates that “green” environments were longer-lived than in
SAHP 1, offering potentially longer-term occupation of the now
arid interior. In this sense, climatic conditions during MIS 5e
were at one extreme of Southern Arabia climatic variability and
should not be understated as an optimal period for human
dispersal.

However, it must be noted that archaeological finds are also
dated to MIS 5c, 5a and 3 (Petraglia et al., 2011; Rose et al., 2011;
Delagnes et al., 2012; Groucutt et al., 2018). While MIS 5e may
therefore be the most extreme period of increased rainfall, other
periods were still able to support human populations despite
being “less favorable”. Do these climatic differences suggest that
strategies of survival differed between SAHPs (e.g., Bretzke and
Conard, 2017)? Were subsequent dispersals more limited in
terms of numbers of people and other animals? What do
statistically significant differences in δ18Oca values translate to
in terms of annual rainfall differences, as well as spatio-temporal
variance on long (e.g., millennial) and short (e.g., annual)
timescales? Or were the additional benefits of SAHP 4
compared to other SAHPs simply not that important for
human occupation (i.e., humans could make do with less)?
Additionally, the presence of H. sapiens in Arabia within MIS
3 suggests either occupation throughout the MIS 4 glacial or re-
entry despite a “drier” climate (Armitage et al., 2011; Delagnes
et al., 2012). While these are questions for future research, one
message we may take from this is resilience/adaptation despite
climatic differences, and that - while the stalagmite record
provides useful information on the timing of major climate
changes and major H. sapiens biogeographic shifts - providing
a climatic “bench-mark” for Late Pleistocene occupations from
the stalagmite record is too deterministic and overlooks
taphonomical biases and dating uncertainties within the
archaeological record.

One thing that is perhaps clearer is that the termination of
these wet periods saw a substantial change in environmental
conditions. The termination of SAHP 4 likely meant annual
rainfall declined to <300 mm yr−1 and was echoed by a decline
in vegetation resources. In terms of the “lived” experiences of
humans, such a decline would have likely required a shift in
survival strategies (Nicholson et al., 2021b). This may have
included increased home-range foraging size and mobility

patterns, retraction to high-resource retaining areas (such as
the Yemeni Highlands; Delagnes et al., 2012; Delagnes et al.,
2013) or in some cases dispersal out of Arabia (Nicholson et al.,
2021b). Such responses to declining precipitation were also likely
variable and not simplistic. Recent archaeological finds in
Northern Arabia hint at techno-cultural continuity between
Mid-Pleistocene wetter phases (Scerri et al., 2021), perhaps
suggesting human resilience to increasingly unfavorable
climatic conditions.

Early-Mid Holocene
The key precipitation changes during the HHP/SAHP 1 of
gradual intensification of summer precipitation (∼10.6–9.4 ka
BP) that only declines following ∼6.2 ka BP, and temporarily
during the 9.2-kyr and 8.2-kyr events (Fleitmann et al., 2008),
influenced humans and communities living in Arabia (for full
summaries, see Parker et al., 2006; Goudie and Parker, 2010;
Groucutt et al., 2020; Petraglia et al., 2020).

When compared to MIS 5e however, precipitation increases
and associated vegetation response were less intense (Fleitmann
et al., 2011; Bretzke et al., 2013; Nicholson et al., 2020). Despite
this, and similar to MIS 5c, 5a and 3 (see above), there remains
archaeological evidence for human occupation. Mustatils appear
in northern Arabia from 9.2 ka BP (Kennedy, 2017; Guagnin
et al., 2020; Thomas et al., 2021), and desert kites are evidenced in
Jordan from 10 ka BP (Al Khasawneh et al., 2019). In southern
Arabia, occupation of Jebel Qara took place ∼10.5–9.5 ka BP
(Cremaschi et al., 2015), pastoralism is evidenced by 8.0 ka BP
(Drechsler, 2007; Drechsler, 2009; Martin et al., 2009), graves are
attested 7.2–6.0 ka BP (Kiesewetter, 2006) and monumental stone
platforms are evidenced 6.4 ka BP (McCorriston et al., 2012;
Magee, 2014).

Reduced rainfall following ∼6.2 ka BP led to a temporary
end of Neolithic herding in the desert interiors, shrinking
population numbers, and migration to areas with greater
ecological diversity, perhaps suggesting a minimum amount
of precipitation is required for human occupation in these
marginal environments (Uerpmann, 1992; Vogt, 1994;
Uerpmann, 2002; Potts et al., 2003; Goudie and Parker,
2010). However, human communities returned to the
interior of Southern Arabia from ∼5.2 ka BP without
amelioration of climate, which even aridified further; varied
occupation continues until the modern day (Magee, 2014;
Petraglia et al., 2020). Therefore, it seems likely that drier
climates create challenges for human populations, but these
can be overcome by technological (e.g., mustatils, pottery,
water management; camels domestication) and strategic
(e.g., mobility, pastoralism) adaptations (Petraglia et al., 2020).

Finally, stability and variance of precipitation (which can be
hard to detect in palaeoclimate records) may have been more
influential to humans than long-term changes in amounts
(Thornton et al., 2014). A temporary transition to herding
practices occurred in some parts of Arabia during the 8.2 ka
event (Drechsler, 2009; Crassard and Drechsler, 2013), whilst
more positive δ18Oca values (drier conditions) are observed at
Hoti cave (Figure 2A). Conversely, Cremaschi et al. (2015)
suggested that—although increasing precipitation ∼10.5–9.5 ka
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BP facilitated occupation—overly “wet” landscapes at Jebel Qara
after 9.5 ka BP led to site abandonment and a preference for
coastal settings, hinting at the varied human responses to
fluctuating climatic conditions.

CONCLUSION

Overall, when compared to other periods, stalagmite climate
records indicate that the African and Indian Summer
Monsoons were most intense during MIS 5e, which was one
extreme of climatic variability in the last 130 kyrs. This was likely
an important period for the dispersal ofH. sapiens from Africa, as
well as occupation in the now desert interiors of Arabia, and the
subsequent decline back to more arid conditions likely impacted
survival strategies in Southern Arabia. A comparably weaker
intensification of precipitation (yet long-term trends are
comparable) occurred during the Early Holocene. The
expansion of human populations into the now arid interior
was similar to MIS 5e but the responses to climatic variability
and subsequent aridification differed. We emphasize that
evidence for human occupation during all periods of
insolation maxima, and the varying climates of these drier
periods, highlights human resilience/adaptation despite
climatic differences and mitigates against a simplistic narrative.
Future research will benefit from the addition of climate/
environmental proxies (trace-element and perhaps aDNA),
increased surveys to advance the spatial-temporal coverage of
the speleothem record and development of continuous climate
records for SAHP 3 and 2. Understanding the shifting survival
strategies in the context of declining rainfall and aridification, as
Arabia transitioned from one extreme to another, will be of key

importance to future debates of H. sapiens biogeography,
behavioral flexibility, and both past and future climate-induced
socio-political change.
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