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Abstract. Soil microbial communities perform vital ecosystem functions, such as the
decomposition of organic matter to provide plant nutrition. However, despite the functional
importance of soil microorganisms, attribution of ecosystem function to particular constituents
of the microbial community has been impeded by a lack of information linking microbial func-
tion to community composition and structure. Here, we propose a function-first framework to
predict how microbial communities influence ecosystem functions. We first view the microbial
community associated with a specific function as a whole and describe the dependence of micro-
bial functions on environmental factors (e.g., the intrinsic temperature dependence of bacterial
growth rates). This step defines the aggregate functional response curve of the community. Sec-
ond, the contribution of the whole community to ecosystem function can be predicted, by com-
bining the functional response curve with current environmental conditions. Functional
response curves can then be linked with taxonomic data in order to identify sets of “biomarker”
taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indi-
cator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from
community composition. In this paper, we provide three examples to illustrate the proposed
framework, whereby the dependence of bacterial growth on environmental factors, including
temperature, pH, and salinity, is defined as the functional response curve used to interlink soil
bacterial community structure and function. Applying this framework will make it possible to
predict ecosystem functions directly from microbial community composition.

Key words: biogeochemistry; community ecology; predictive ecology; soil carbon; soil microorganisms;
structure and function.

INTRODUCTION

Understanding of how organisms regulate ecosystem
functions is relatively mature in the study of macrobiota
(Brown et al. 2004). For example, variation in plant litter
quality is tree species specific, clearly connecting tree
community composition to global patterns of litter

decomposition (Verheijen et al. 2015). This is in sharp
contrast to the rudimentary state of knowledge relating
soil microbiota to ecosystem function (Prosser 2013,
Bier et al. 2015). Recent progress in microbial ecology
has been fueled by the rapid development of molecular
approaches. Indeed, microbial DNA, RNA, and protein
profiles can be correlated to ecosystem processes, a
development often viewed as a path toward a mechanis-
tic understanding of ecosystem function (Raes and Bork
2008, Bier et al. 2015). However, while these powerful
“omic” approaches are moving closer to elucidating the
in situ functioning of microbial communities, they have
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three major shortcomings for inferring ecosystem func-
tion. First, observed abundances of microbial genes,
transcripts, proteins, and enzymes can only provide the
potential for function and translating functional poten-
tials into realized in situ microbial process rates
remains a considerable challenge (Rocca et al. 2015).
Second, omics-based predictions of ecosystem func-
tions on the basis of microbial community composition
rely on knowledge of individual microbial taxa and
their function. This taxonomic information is often
gained from isolates grown in pure culture. Problemati-
cally, the vast majority of the community members are
difficult or impossible to cultivate and progress is slow
(Raes and Bork 2008, Bier et al. 2015). Third, micro-
bial taxa do not function in isolation. Rather, they
operate in multitrophic consortia that form complex
food webs. Crucially, most of these within- and
between-consortia interactions still need to be
described. Thus, even if we had a complete parts list of
phylogenetic and functional genes from a given envi-
ronment, combined with full functional information
from pure culture isolates, it is doubtful whether this
would provide sufficient information to predict overall
community-level ecosystem functions. Thus, a truly
predictive omics-based framework is likely to remain
elusive into the foreseeable future, unless new strategies
are implemented.
In order to overcome the shortcoming associated with

the established omics-based approach, where informa-
tion on individual pieces is put together to construct the
function puzzle (e.g., Fierer et al. 2014, Martiny et al.
2015, Treseder and Lennon 2015, Douglas et al. 2018),
we propose a function-first framework by first determin-
ing aggregate community-level functional response
curves and then relating these to taxonomic information
(Fig. 1). The proposed approach therefore establishes a
foundation for function in the structure–function rela-
tionship that is based on measured in situ process rates
of the microbial community considered in aggregate.
This approach affords several advantages: process rates
measured on the whole microbial community are at the
scale most relevant to biogeochemical modeling; the
rates are determined on communities in their natural
environmental contexts, meaning all relevant interac-
tions among different taxa are implicitly included, even
if they are not all described; and traits of the community
can be directly compared to measured rates. Thus, we
use techniques previously applied in functional ecology
where, e.g., plant traits have been used to predict
responses to changing resource availability (Lavorel and
Garnier 2002). Our proposed framework also makes use
of advances in theoretical ecology (Grime 1977, South-
wood 1977, McGill et al. 2006, Suding et al. 2008, Webb
et al. 2010), which are beginning to be integrated into
microbial ecology. For example, Allison (2012) devel-
oped a trait-based model to predict litter decomposition
rates based on the enzymatic trait distribution of a
microbial community.

DEFINING AGGREGATE COMMUNITY-LEVEL FUNCTIONAL

RESPONSE CURVES AND ESTIMATING ECOSYSTEM

FUNCTIONS

A microbial community is composed of a diverse
assembly of different taxa, each characterized by its own
set of traits (Violle et al. 2007, Suding et al. 2008, Webb
et al. 2010). Traits are defined as the phenotypic character-
istics of an organism, which determine how an organism
interacts with other organisms and the environment. For
example, each bacterial taxon has a specific pH range,
temperature dependence, tolerance to salinity, etc. The
distribution of all individual response traits within a com-
munity therefore holds information that can be used to
determine its dependence on environmental factors
(Norberg et al. 2001). While phenotypic plasticity may
destabilize the genotype–phenotype relationship, resulting
in acclimation of multicellular eukaryotic organisms, such
as plants, to altered environmental conditions (Hochachka
and Somero 2002), phenotypic plasticity within bacterial
strains is much smaller than phenotypic variation between
strains (Beier et al. 2015). Thus, the effect of phenotypic
plasticity will be practically negligible for the populous
and diverse bacterial communities in environmental sam-
ples (Barraclough 2015), where the signal from shifts in
microbial community composition will dominate over the
phenotypic plasticity of individual taxa.
Some traits, such as the life-strategy or growth form of

an organism, require detailed assessments of individuals
or at least populations (Violle et al. 2007), making the
use of such traits very challenging. However, there are
many traits for which an aggregate characterization can
be achieved at a higher organizational level (Norberg
et al. 2001, Suding et al. 2008). Examples include the
dependence on environmental factors of gross primary
production (proxied as the uptake of inorganic C into
biomass), microbial soil C formation (proxied as micro-
bial growth), or microbial decomposition of organic
matter (proxied as microbial respiration or litter mass
loss); these relationships can be captured at the whole-
community level by measurements of CO2 fixation,
microbial growth and respiration, or mass loss, respec-
tively (sensu Norberg et al. 2001, McGill et al. 2006,
Suding et al. 2008, Wallenstein and Hall 2012). Cru-
cially, in these cases, the link between the community
aggregated distribution of “traits” and ecosystem func-
tion is clear (Suding et al. 2008). As such, just as the
response of a plant population to environmental change
has been described by defining its response traits (e.g.,
Keddy 1992), the functional response of whole microbial
communities to environmental change can be predicted
from its aggregate functional response curve (Norberg
et al. 2001, Suding et al. 2008), as long as the controlling
factors for the response curve are known.
Whole-community-level functional response curves

can be determined by using environmental samples con-
taining natural communities. Important functional
response curves include relationships with pH, salinity,
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soil moisture, and temperature. By building on recent
methodological advances in microbial ecology, it is now
possible to establish estimates of the dependences of
microbial functions on environmental parameters
through quantifying dose–response relationships of
microbial growth and respiration (e.g., Rath et al. 2016).
These dose–response relationships describe relative
changes in rates (y) linked to an independent factor (x),
analogous to rate modifiers describing the effect of, e.g.,
temperature on microbial rates used in current biogeo-
chemical models (Sierra et al. 2015). These relationships
describe the community-level functional response curve
(e.g., the dependence of growth rate on temperature;
Fig. 2), and characterize how communities are shaped
by their environment and respond to environmental
change (Figs. 2, 3), as described by Wallenstein and Hall
(2012). Once the community’s performance has been
defined as a function of an environmental factor (e.g.,
the response curve for temperature has been established;
Fig. 2a), this can be combined with environmental data
to estimate the ecosystem function (e.g., soil organic
matter decomposition determined by microbial respira-
tion or soil carbon sequestration determined by micro-
bial growth; Fig. 2b). Validation of community
aggregated functional response curves determined in
short-term laboratory assays by comparing with in situ
measurements will be important, as will investigations
into how covarying environmental factors interact.
For some factor combinations, interactions are
expected (e.g., moisture and salinity), while for others

they are not. For example, a recent study designed to test
for interactions between factors found that the depen-
dence of microbial growth and respiration on tempera-
ture and moisture were independent (Cruz-Paredes et al.
2021).

IDENTIFICATION OF INDICATORTAXA

In a final step to predict ecosystem function from
community composition, information from community-
level functional response curves can be linked to taxo-
nomic information from the same environmental sam-
ples. Thus, we aim to not only identify keystone or
indicator taxa (e.g., Banerjee et al. 2008), but to also link
these taxa with differences in ecosystem function. DNA-
sequencing based assessments of taxonomic composition
of communities may be most appropriate for this pur-
pose, as the turnover of microbial communities and
DNA are closely tracked (Oliverio et al. 2017, Papp
et al. 2018). Although horizontal gene transfer may
weaken the composition–function relationship, a change
in the DNA profile will capture changes in the microbial
community, providing an opportunity to link microbial
community composition to the community aggregated
functional response curve (e.g., Rath et al. 2019). This
link between microbial community structure and func-
tion may be achieved by comparative analysis of infor-
mation from environmental gradients (e.g., temperature,
soil moisture, pH, salinity) combined with observations
from manipulative experiments. These comparative
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FIG. 1. The new conceptual framework visualized. The community aggregated functional response curve describes the depen-
dence of microbial functions on environmental conditions. (1a) Environmental change will influence microbial community composi-
tion and thus the aggregate functional response curve. (1b) In parallel, the environmental conditions also constrain the community
responses curve (i.e., defines the x-axis value on the environment–response curve). The output of this combination of the environ-
ment and the current microbial community is the ecosystem function. (2) By linking microbial community composition to differ-
ences in community aggregated functional response curves, we can identify “biomarker” taxa that characterize the community’s
ability to provide functions. (3) Indicator sets of biomarker taxa combined with environmental data can then be used to predict
ecosystem functions directly from microbial community composition.
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studies may identify the “common denominator” taxa
(sets of sequences) that capture community-level func-
tional response curves. In a first correlative step, putative
“biomarkers” or “indicator taxa” can be ranked accord-
ing to their degree of correlation with the community
aggregated functional response curves, using a suitable
index such as the temperature minimum or pH optimum
extracted from each functional response curve. After
reducing overall microbial taxa data to a smaller set of
classifiers (e.g., logistic regression or other statistical
approaches such as ordination to reduce many dimen-
sions down to a manageable few), combinations of
biomarkers should have sufficient power to predict
aggregate community functional response curves that,
combined with environmental data, can be used to esti-
mate ecosystem functions in independent data sets (e.g.,
The Earth Microbiome Project; Thompson et al. 2017).
These biomarkers will not causally link particular mem-
bers of the microbial community with resulting micro-
bial functions, but rather serve as a diagnostic tool to
enable predictions of ecosystem functions from commu-
nity composition information, analogous to the use of
biomarkers in clinical diagnosis (e.g., Segata et al. 2011).
Identified biomarkers may, however, be targeted as can-
didate taxa driving functions, providing testable
hypotheses for causal links between specific microbial
community members and functions. For example, the
identified biomarker taxa may be characterized in cul-
ture, with the expectation that, e.g., their temperature
traits should align with specific environmental condi-
tions. It will also be possible to investigate whether com-
binations of biomarker taxa are associated with the
same or different functional responses, whereby func-
tional redundancy would result in a weaker relationship
between the microbial composition and community-
level functions. For some functions that involve a
specific physiological pathway or are carried out by a
phylogenetically constrained group, such as nitrification,
we expect there to be stronger links between community
composition and function, while for more physiologi-
cally “broad” functions, the link may be weaker (Schimel
and Schaeffer 2012).

LITERATURE CASES: TEMPERATURE, SOIL PH, AND

SALINITY

Here, we illustrate our proposed approach by applying
it to previously published examples. By determining
community aggregated functional response curves and
estimating microbial functions for key environmental
factors such as temperature, soil pH, and salinity,
ecosystem functions may be better predicted by taxo-
nomic information about the microbial community.

Temperature

Microbial communities exhibit functional responses
to temperature aligned with their thermal environment

(Li et al. 2021). For example, a recent meta-analysis
revealed a positive relationship between the native ther-
mal environment of microorganisms and the tempera-
ture optimum for microbial activity (Alster et al. 2018),
demonstrating that microbial responses to warming may
be predicted by determining community aggregated
functional response curves in environmental samples.
Rousk et al. (2012) assessed the effects of 5°C experi-
mental warming on soil bacteria in a temperate hard-
wood forest, hypothesizing that warming would induce a
change in the performance of soil bacterial communities,
resulting in a change in the microbial dependence on
temperature. Relationships between temperature and the
growth of bacterial communities were measured and rep-
resent an example of the community functional response
curve. Upon warming, the response curve of bacterial
communities shifted to become more warm adapted,
illustrating that the microbial dependence on tempera-
ture had adapted to the new thermal regime. It has been
shown that temperature change below the thermal opti-
mum does not induce a shift in functional response
curves under stable laboratory conditions for months
(Fig. 3; B�arcenas-Moreno et al. 2009) or in the field
within seasons (Birgander et al. 2018). Hence, in this
case, the shift in functional response curve was likely
induced when the 5°C warming treatment in the field
increased soil temperature above the original optimum
(i.e., at peak temperatures in the summer). In a second
step, with the knowledge that these response curves
would reflect the dependence of bacterial growth on
temperature at all temperatures below the optimum, it
was possible to determine the functional relevance of
these community shifts (field warming treatment vs. con-
trol). To do so, the measured functional response curves
were combined with soil temperatures measured in situ,
to compute the estimated bacterial carbon production as
an ecosystem function. This enabled a comparison of
the functional consequences of warming, where commu-
nity changes (shift in community-level functional
response curve) could be differentiated from the direct
effect of temperature (higher rates for all processes at
warmer temperatures). Different microbial taxa are
known to vary markedly in their temperature sensitivity
(Wang et al. 2021). Thus, although shifts in community-
level functional response curves could occur due to phe-
notypic acclimation or genotypic adaptation of taxa
within the microbial community, the shift was most
likely caused by a change in microbial community com-
position (“species sorting”), where taxa already better
adapted to the warmer temperature regime outcompeted
other less-well-adapted taxa (Allison and Martiny 2008,
Donhauser et al. 2020). For example, several taxa from
the families Koribacteraceae, Acidobacteriaceae, and
Solibacteres were found to be responsive to changing
temperature across a broad range of soil types (Oliverio
et al. 2017), illustrating the potential to link these
responsive indicator taxa to associated shifts in micro-
bial functions under environmental change.
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FIG. 2. (a) The community aggregated functional response curve of a bacterial community. In this example, it is the bacterial
growth dependence on temperature. Bacterial growth is measured instantaneously at a range of different temperatures, then the
rates are plotted against those same temperatures to define the fundamental “temperature niche” of the studied community, charac-
terizing the community aggregated functional response curve. The determined relationship provides precise predictive information
about how temperature influences the bacterial growth rates of the studied community. (b) An estimate of microbial function from
the community-level functional response curve combined with environmental data (e.g., dashed arrow shows the bacterial growth
rate predicted by the environmental temperature). In this example, the dependence of bacterial growth on temperature (i.e., the
functional response curve, as defined in panel (a) is combined with in situ temperatures to estimate a microbial function (bacterial
growth, i.e., the bacterial production of carbon in soil). Panel (a) is adapted from Cruz-Paredes et al. (2021) and some results from
panel (b) are adapted from Rousk et al. (2012).
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Soil pH

B�arcenas-Moreno et al. (2016) tested the functional
implications of an alignment between microbial commu-
nity characteristics and its environment. This was
achieved by sterilizing soil samples from along a pH gra-
dient (pH 4–8), and subsequent reciprocal inoculation in
a full-factorial design. The dependence of bacterial
growth on pH (community-level functional response
curve) was quantified through response functions (respi-
ration and bacterial growth). Soil samples inoculated
with a community sourced from soils of a different pH
developed bacterial pH response curves “misaligned”

with the new environment. The resulting microbial func-
tions, bacterial growth rates and respiration, were still
determined by the pH of the soil sample, but the
misalignment of the bacterial community with the new
environment led to an associated impairment of func-
tion. In this case, the misalignment resulted in a 25%
reduction in the decomposer function (i.e., respiration)
compared to the functioning of the bacterial community,
which was aligned with its environment. This example
further demonstrates that microbial response curves can
be resistant to change, likely constrained by the rate of
community turnover (Wallenstein and Hall 2012). Just
as for temperature, it will, however, be possible to

FIG. 3. How can changing environmental conditions affect community-level functional response curves? By (a) exposing sub-
samples of the same soil to constant temperature conditions during one month (5–50°C) and (b) then determining aggregate func-
tional response curves (bacterial growth dependence on temperature), (c) we can determine how the temperature response curve
(fundamental temperature niche) of bacterial communities responds to temperature change. This reveals (d) how ecosystem func-
tioning is impacted by a changed aggregate community response curve. Ultimately, (e) we can identify “biomarker” taxa that cap-
ture shifts in the functional response curves. Here we investigated the microbial function “bacterial carbon production,” and how it
was influenced by changing environmental conditions, via the interaction between the community response curve “bacterial growth
temperature dependence” and the environmental temperature. If we expose a temperate soil to 50°C during one month, its commu-
nity will change its temperature dependence (i.e., its aggregate community response curve) and become more warm tolerant, as
shown in 1. If the temperature then is decreased to 20°C (see 2), the microbial function (bacterial carbon production) is severely
reduced compared to that of the original community (the difference is shown in 3). Although this example shows coarse changes in
temperature, it follows that shifts in community-level response curves would follow the same trajectory when exposed to smaller
incremental temperature changes. Panel d is adapted from B�arcenas-Moreno et al. (2009).
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identify the environmental conditions and time required
for a shift in functional response curves occur and to
link these functional responses to associated differences
in taxa.

Salinity

Rath et al. (2019) used a community-level approach to
assess how salinity altered microbial tolerance to salt, by
measuring how the growth of bacterial communities
from two salinity gradients responded to changes in
salinity. In line with expectations, the authors found that
more saline soils exhibited a higher community-level tol-
erance to salt. Moreover, the authors were able to iden-
tify consistent shifts in bacterial community
composition accompanying the change in salt tolerance.
In this case, a high community tolerance to salt was pos-
itively correlated with taxa belonging to the family
Flavobacteriaceae (Bacteroidetes), including Gillisia,
Gramella, and Salinimicrobium, and Gammaproteobac-
teria, including Salinisphaera and Alkanibacter. These
identified taxa could therefore be targeted as indicators
for salt-affected communities, demonstrating the poten-
tial to use community-level data to predict functional
responses (also see Oliverio et al. [2017] testing a similar
approach for temperature). Changes in indicator taxa
will also capture changes in community-level functional
response curves, circumventing the need to identify the
conditions under which a shift in response curves occurs
(as noted in the previous examples), and enabling predic-
tions of microbial function from taxonomic information
coupled with environmental conditions (Evans and
Wallenstein 2013). To facilitate progress, identified
biomarkers could be cross-checked against databases of
sequence information and environmental data that are
already available, for example as part of The Earth
Microbiome Project (Thompson et al. 2017), or acquired
using Seqenv (Sinclair et al. 2016).

SYNTHESIS

The proposed function-first framework can be used to
predict how ecosystems will respond to environmental
change and the resulting biogeochemical consequences
(Fig. 1). Here we used the dependence of bacterial
growth on environmental factors as an example of a
community-level functional response. We showed that,
by defining community aggregated functional response
curves in natural environments, environment–response
relationships can be used to predict microbial ecosystem
functioning (Fig. 2). Moreover, our examples high-
lighted that community-level functional responses can
also contain information about (1) how a community
will respond to environmental change (Suding et al.
2008, Allison 2012) and (2) how that change will affect
ecosystem functioning. Conversely, we were also able to
determine the functional consequences of a “misalign-
ment” of the community’s response curve with its

environment (Fig. 3). Together, these examples demon-
strate the scope for this framework to also be applied to
estimate other functions (e.g., nitrogen transformations).
Additionally, although soil bacteria are unique in their
high diversity and abundance, we foresee that this frame-
work could be extended to also include other soil
microorganisms and other systems.
Systematically linking microbial community composi-

tion to community-level response curves holds the
potential to identify sets of biomarkers that can be used
to infer ecosystem function (e.g., Rath et al. 2019).
Thus, microbial composition would become informative
in the prediction of ecosystem functions. Currently,
there are databases that characterize functional traits
for strains in isolation (e.g., functional traits for fungi
in FUNGuild; Nguyen et al. 2016), but there are no
databases that collate functional response curve data
for microbial communities in natural environments.
While the chance of finding spurious correlations
between microbial community composition and func-
tion will be high in small data sets, spurious correla-
tions will “fall-out” when more data sets are combined,
underlining the need to compile information in data-
bases. To facilitate progress, this information could be
collected in a public database analogous to the TRY-
database for plants (Kattge et al. 2020). A variety of
observations will accumulate detailed information
about how environmental factors (pH, temperature, soil
moisture, salinity, etc.) modulate community aggregated
functional response curves and community composi-
tion. The framework proposed here could subsequently
draw on the database information to identify biomark-
ers that are able to provide prediction about a commu-
nity’s contribution to ecosystem functions, and its
susceptibility to environmental change. Ultimately,
these biomarkers can be used as a diagnostic tool to
predict ecosystem functions from taxonomic surveys
available from, e.g., the global catalogue of microbial
taxonomic data generated by The Earth Microbiome
Project (Thompson et al. 2017). This function-first
framework may thus provide a complementary
approach to the assembly of individual traits defined
for strains in pure culture or inferred from genomic
information (e.g., PICRUSt [Douglas et al. 2018], Tax4-
Fun [Asshauer et al. 2015]) to derive function from
structure, reinvigorating the capabilities of microbial
sequence data to predict ecosystem functions.
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