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Let 2 € R”, f € CY(RY*") and g € CY(RY), where N,n € N. We study the
minimisation problem of finding u € Wol’oo(Q;RN) that satisfies

1,00 N =
ey’ V€W (@RY), g0y = 1,

150w, = { [ £00)]

Loo(82)
under natural assumptions on f,g. This includes the oco-eigenvalue problem as
a special case. Herein we prove the existence of a minimiser uoo with extra
properties, derived as the limit of minimisers of approximating constrained L?
problems as p — oco. A central contribution and novelty of this work is that u is
shown to solve a divergence PDE with measure coefficients, whose leading term is
a divergence counterpart equation of the non-divergence oco-Laplacian. Our results

are new even in the scalar case of the co-eigenvalue problem.
© 2022 Published by Elsevier Ltd.

1. Introduction and main results

Let n, N € N be integers and let also {2 € R” be a bounded open set with Lipschitz boundary. In this
paper we study the following variational problem: find a minimising map us : 2 — RY in the space

Wy ™ (£2; RN that solves

£ Duee) | oy = WD) oy v € W™ (RY), g)ll ooy = 1} (L1)

We are also interested in studying the structure of such constrained minimisers, and also in deriving
appropriate PDEs that they satisfy as necessary conditions. The functions f : R¥V*? — Rand g : RY — R
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will be assumed to satisfy certain natural hypotheses. We note that our general notation in (1.1) and
subsequently will be either self-explanatory, or a convex combination of otherwise standard symbolisations
(as e.g. in [16,21,23,306]).

The LP counterpart of (1.1), and especially the L? case, is textbook material in the Calculus of Variations
(see e.g. [19]). Especially, the case of f = |-| and g = | -|, the corresponding Euclidean norms on RV*"
and RY respectively, is known as the p-eigenvalue problem, or the eigenvalue problem for the p-Laplacian.
The L case we study herein, particularly in the vectorial case of N > 2, is completely new and, despite
its importance, has not been considered before. When N = 1 with f the Euclidean norm on R™ and ¢ the
absolute value on R, (1.1) reduces to the (scalar) oo-eigenvalue problem, whose study goes back to the seminal
work of Juutinen—Lindqvist—-Manfredi in [28]. Since then, there has been a considerable interest on this
problem and also on relevant ones (see for instance Juutinen-Lindqvist [27] and Bhattacharya—Marazzi [7]),
as well as on related problems with constraints (see e.g. Aronsson-Barron [2] and Barron-Jensen [4]).
However, all these works are restricted to either the 1-dimensional case of n = 1, or to the scalar case
of N = 1. Crucially, these approaches rely essentially on the (scalar) Aronsson-Euler operator and on the
theory of Viscosity Solutions for nonlinear PDE, both of which are not available when N > 2 (for a general
introduction to the field we refer to the lecture notes [14,29]). Indeed, virtually all works on scalar-valued
Calculus of Variations in L rely in some way on viscosity solutions and on the comparison principle. For
various interesting works, some of which are relevant to applications and some to the oco-eigenvalue problem,
we refer to [3,5,8,9,11,12,22,26,35,37,39,40].

Vectorial and higher order variational problems involving constraints have only very recently started being
explored (see [31,33] and also [13]). In either case, the vectorial nature of the problem requires novel methods
which are not based neither on viscosity solutions, nor on the Aronsson—FEuler equation. Let us also note
that the mere existence of a minimiser us to (1.1) is a relatively simple matter by applying the Direct
Method of the Calculus of Variations and weak™ lower-semicontinuity arguments for supremal functionals
(under the appropriate quasi-convexity assumptions for f, see e.g. [6]). However, if one wishes to derive
additional information on these (generally non-unique) minimisers, for example derive a necessary PDE
system they satisfy, then this is a far less trivial matter. Among other complications arising, the L norm is
non-differentiable, non-strictly convex and lacks the property of being o-additive with respect to the domain
argument.

The customary starting point for L> variational problems, which we also employ herein as well, is to
obtain minimisers as limits of respective LP approximating variational problems as p — oo. Although this is
perhaps not an intrinsic L°° approach, it typically bears significant fruit as these special minimisers which
are obtained as limits of LP minimisers always carry a finer structure. The central novelty of this work though
regards the necessary PDE conditions that such minimisers to (1.1) satisfy. Our approach in studying (1.1) is
inspired by a recent development in higher order L* problems by the author and Moser in [34] (related earlier
observations were made in a geometric higher order context in [38]). The main idea is that, if one rescales the
LP Fuler-Lagrange equations in a different way from the customary one used to derive the Aronsson—Euler
equations as p — oo, then it is possible to derive a divergence structure PDE for the L° minimiser. This
should be understood as a divergence form counterpart of the non-divergence Aronsson—FEuler equations.
However, this forcing of divergence structure to the essentially non-divergence L>° equations has a price to be
paid: the equations involve measure coefficients arising as auxiliary variables. This is somewhat reminiscent
of the way that eigenvalues appear as parameters in an eigenvalue problem.

The observation that a divergence PDE with measure coefficients can be derived in L has also been made
earlier in a work by Evans and Yu [20], and before that had also been conjectured by Aronsson himself, the
founder of Calculus of Variations in L, in the unpublished note [1]. However, it was not pursued further,
possibly because in the case studied in [20] as a divergence form counterpart of the oco-Laplacian, these
measures could be highly degenerate and supported only on the boundary. This renders the PDE trivial
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in the interior of the domain. Nevertheless, in the higher order case employed in [34] involving the oco-
Bilaplacian, as well as in the case of constrained problems studied herein, these PDE systems with measure
coefficients provide non-trivial information. In particular, in [34] these measure were absolutely continuous
and in fact given by harmonic functions and, for (1.1), the boundary is a nullset and these measures are
supported on “large” contact sets in the interior.

Now we present our main results. To this end, we will utilise the following hypotheses regarding the
functions f: RY*" — Rand g: RY — R:

(a) feCiRNm),
(b) fis (Morrey) quasiconvex on
(¢) exist Cq,Cy > 0 with C; < Cy such that

0 < CiLf(X) < O0f(X): X < Cof(X),

for all X € RVxn\ {0}, (1.2)
(d) exist C3,...,C6 >0, a>1and § < (a—1)/a such that

—C3 + Cy|X|* < f(X) < C5]X[" + G,

0f(X)| < C5f(X)” + Cs,
for all X € RVxn,

Nxn
R& =™,

and
(a) g€ C'RY),
(b) g is coercive, i.e for any n € RY \ {0} we have
Jim g(tn) = oo,
(¢) exist C7,Cg > 0 with C7 < Cs such that
0 < Crg(n) < dg(n)-n < Csg(n),
for all n € RY \ {0}.

In the above, 0f and dg denote the corresponding derivatives of f and g respectively, whilst “:” and “.”

(1.3)

symbolise the Euclidean inner products on RY*" and R” respectively. By “(Morrey) quasiconvexity” we
mean the usual concept of quasiconvexity for integral functionals as e.g. presented in [16], not the “L
quasiconvexity notions” of Barron—Jensen—-Wang [6]. Under these hypotheses, Theorem 1 that follows is our
first main result.

Theorem 1. Suppose that (1.2) and (1.3) hold. Then, the following are true:
(A) The problem (1.1) has a solution us € Wy ™ (£2; RN).
(B) There exist Radon measures

My € M(2;RN*™) v € M(2)

and a number A, > 0 such that

div(My) + Aoc09(too Voo = 0, in £2, (1.4)
Uso = 0, on 912, ‘
weakly in (C}(2;RN))*, with
Ass = |[f(Duce)|| oo () > O (1.5)
Further, we have the uniform bounds
Ol/a . @
Aso > [max - 4 - C /e , 0 ,
( {dlam(9)||39||Loo({oggg1}) ° 16)

S
8
IA

c: <<g<-n>>-1<1>>a el

Ro
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where R is the radius of the largest open ball in §2, and (g( n))fl is the inverse of s — g(sn) on [0,00) for
any fived n € RN with |n| = 1 (well-defined by (1.3)).

(C) The quadruple (UDO,AOO,MOO,Z/OO) satisfies the next approximation properties: there exists a sequence
() C (n/a, 00) with p; — 00 as j — oo and for any such p, a quadruple

(tpy Apy Mp, 1) € Wy (2;RY) x (0,00) x M(2; RV*") x M(2)

such that .
Up — Uoo in CY(2;RYN), for all v € (0,1),
Du, — Dus,  in LI(Q2;RN*™), for all g € (1, 00),
Ap — Ao in [0, 00), (1.7)
M, = My in M(£2; RN>m),
Vp = Voo in M(R2),
as p — oo along (p;)5°. Further, u, solves the minimisation problem
£l oy = WD) gy * 0 € Wa (@ RY), lg(0) oy = 1} (1.8)
and (up, Ap) solves weakly the divergence PDE system
div(f(Duy)P 10/ (Duy) ) + (4,)7 glu,)P " 0g(uy) = 0, in 2, L9)
up, =0, ondfl
Finally, the measures M, v, are given by
1 Du,) \' !
M, ::ﬁn([}) <f(AUp)) 3f(Dup) LMo,
) P (1.10)

g(up)P L .

Vp = @
We note that the meaning of the satisfaction of (1.4) weakly in (Cg(2;RY))* is as follows: for any test
map ¢ € CL(2;RY), we have

/7qu5 tdMy = A /769(1%0) c P duse. (1.11)
7] 7]

In general, the matrix-valued measure M, in Theorem 1 implicitly depends on Duo, but it is not clear
how exactly, especially in the case that the derivative df is nonlinear. Notwithstanding, if we strengthen our
assumptions to include that f is quadratic, together with a more stringent condition on g, we obtain the
stronger result of Theorem 2 that follows. Theorem 2 allows to characterise Mo, as a linear function of a
(special) Borel measurable representative Du?, of the gradient of the minimiser. Additionally, we obtain much
more detailed information on the structure of the measure coefficients arising. Our additional hypothesis
required is the following.

Exists A € RVX" @ RVX™ guch that, for all X € RVx"?
FX)=A:X®X, (1.12)
and the assumption (1.3)(c) is satisfied with C7 = Cs.

Under (1.12), we may establish our second principal result, which is given right below.

Theorem 2. Suppose that (1.2), (1.3) and (1.12) are satisfied. Then, in addition to the conclusions of
Theorem 1, the following are true:
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(A) There exists a Radon measure po € M(82) and a Borel measurable mapping Du?, : 2 — RN*" which
is a version of Dus, € L™ (£2;RN*™) such that

Mao = Df(DU’) fioe. (1.13)

Hence, us solves the divergence PDE system

{ div (D (D) o) + AocD(toe )V

|
=

i £2,

on 00 (1.14)

Uoco

|
o

weakly in (CH(2;RN))*.
(B) The map Du, can be represented as

lim Dw;, (x), if the limit exists,
(z) { k—o00 (@) i (1.15)

0, otherwise,
where (v;)5° C C§(2;RYN) is any sequence satisfying that

=0,

3151010 ij - uOO||(W3’lﬁLOO)(Q) =

limsup || f(Dv;)|[ 2o (0) < Ao

J—00

(one such is constructed in the proof). Further, p can be approxzimated by

[y = E”tﬁ) (f(]/)lzp)) oLy, (1.16)

as p; — 00, in the sense that 1, = poo in M(12).
(C) The measures jioo, Voo concentrate whereon f(DuX)) and g(us) are respectively mazimised over §2.

Additionally, -
{ T yoo<{g(uoo> ) 1}) o (1.17)
oo () = pioe ({F(DUR) = Ac}) = CuCi
Finally, the boundary 012 is a nullset for both measures Du’_ 1o and voo:
|[Du, poo|(092) = v (892) = 0. (1.18)

Let us note that our results are new even in the special scalar case of the co-eigenvalue problem, as we
provide a new divergence PDE describing co-eigenvectors, which is an alternative to the fully nonlinear PDE
involving the oo-Laplacian derived in [28].

It is worth noting that our approach herein allows to bypass the need for theories of generalised solutions
for the Aronsson-Euler systems arising in L, which are non-divergence, highly degenerate and with
discontinuous coefficients. Such theories require different new ideas and some heavy machinery which depart
from standard methods involving Viscosity Solutions (see e.g. [15,30] for work in this direction). Even though
it is not expected that the Aronsson—Euler systems can become redundant in general, in this particular case
we can indeed bypass them.

Now we describe the content and the organisation of this paper. The table of contents gives an idea
regarding the order of presentation. The proofs of Theorems 1 and 2 do not appear explicitly in the main
text, but instead are a consequence of numerous lemmas and propositions in Sections 2—6, which gradually
establish all the claims made in the statements of Theorems 1-2, plus some additional auxiliary information
for the p-problems.
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In Section 2 we discuss our hypotheses showing that, albeit restrictive, they do nonetheless allow for large
classes of functions f,g. In particular, (1.2)(c) is compatible with the possible lack of convexity. Evidently,
(1.12) is considerably more restrictive, but still allows for a large class of functions g.

In Section 3 we prove a large part of the assertions made in Theorem 1, those which include existence
for (1.1) and approximation via corresponding LP constrained minimisation problems. A new ingredient
here is the necessity to construct a strongly precompact class of admissible Lipschitz maps in the respective
LP minimisation classes, due to the lack of homogeneity of the functionals. Let us also note that for this
part of the work, we could have relaxed our (Morrey) quasiconvexity assumption to include only “Barron—
Jensen—Wang L quasiconvexity” as in [5,6] to prove existence of minimisers, by utilising Young measures or
quasi-minimisers for the approximating LP problems (for which the minima need not be attained). However,
this added layer of technical complexity does not offer much insight as we need to assume considerably
stronger assumptions to derive the necessary PDE systems satisfied by constrained minimisers.

In Section 4 we establish the satisfaction of the PDE system (1.4) under the weaker assumptions
(1.2)—(1.3), by utilising tools developed in the previous sections.

In Section 5 we introduce the appropriate mollification operators required to prove Theorem 2. This
regularisation scheme utilises results on the geometry of (strongly) Lipschitz domain proved in Hofmann—
Mitrea—Taylor [24], and is closely related to the regularisation schemes used in Ern-Guermond [18]. The
main idea is to use the existence of smooth vector fields which are transversal to the H" !-a.e. defined
normal vector field on 92 to “shrink” the function to a compactly supported one in {2, before regularising
by convolution.

In Section 6 we complete the proofs of Theorems 1 and 2 by establishing the satisfaction of (1.14), utilising
the results established in earlier sections. Key ingredients here are the use of an energy identity for LP
constrained minimisers and the use of Hutchinson’s measure function-pairs from [25], which are a convenient
way to bypass the heavy use of Young measures to identify weak™ limits of sequences of products of measures
with functions.

Finally, in Section 7 we consider the vectorial counterpart of the co-eigenvalue problem on the ball (i.e.
for f, g being the Euclidean norms) and in this case we are able to compute explicit measures for which the
divergence PDE is satisfied.

2. Preliminaries and discussion of hypotheses

We begin by noting that in this paper we are using the notation
CH(;RY) == CH2;RY) N Co(2;RY)

to symbolise the space of continuous mappings 2 — R which vanish on 942, are C' on 2 and whose
derivatives extend continuously as mappings 2 — RY*". Further, everywhere in this paper, for p € [1, o)
we are tacitly using the rescaled LP-norms defined as

1 1/p 1/p

which, by virtue of Holder’s inequality, are a family of seminorms which is monotone increasing in p € [1, 00).
Regarding the notation used in (1.12), we note that A is a fourth order tensor, seen as a matrix over the
matrix space RY*™ and “:” therein is the corresponding Euclidean inner product in RV*" @ RN*":

A:B = Z Z Aai,@jBai,Bj~

1<, BSN 1<i,5<n
6
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Evidently, “®” symbolises the tensor product of matrices, namely X ® Y is the fourth order tensor with
components X,;Y3;, when X, Y € RN¥X" We continue by noting that assumption (1.2)(c) readily implies
that

f>0o0nRY*"\ {0}, f(0)=0 and f is radially increasing on RV*", (2.1)

in the sense that t — f(¢tX) is increasing on (0, 00), for any fixed X € R¥*"\ {0}. Similarly, assumption
(1.3)(c) implies that

g>0o0nRY\ {0}, ¢(0)=0 and g is radially increasing on RY. (2.2)

Albeit restrictive, there are nonetheless numerous (non-convex) functions which satisfy (1.2)—(1.3). As an
illustration, in the example below we construct a large class of functions which satisfy the inequality (c)
even though they are not radially symmetric. This class of course includes all quadratic functions. We argue
on RV*™ only, but the construction trivially applies to RY as well. Further, we remark that (1.2)(c) is
compatible with (1.2)(b).

Example 3. Let S be a compact C' hypersurface on RY*™ satisfying
S C B3/2(0) \ By2 (2.3)

and that any half-ray span®[E] := {tE : t > 0} along a unit direction £ € RV*" intersects S at exactly one
point:
H'(spanT[E] N S) = 1.

We further suppose that the (outwards orientated) unit normal vector field ng : S — R satisfies
ng(X) : X > 0, namely the angle between the normal vector at X and the direction X itself is acute.

Ran

Let @ > 1 and define f to be the unique a-homogeneous function on satisfying

Explicitly, f can be represented as
F(xX)=mt{t >0 ¢ [0,X)Ne/°s =0},

where [0, X) is the straight line segment {tX : 0 <t < 1} and t'/S is the dilation of S by t*/®. Then, by
our assumptions on S exists g € (0,1) such that

w

1—60
2

< (1-20)|X] < ns(X): X < |X| < 2,

[\]

for all X € S. Since 9f(X) = ng(X) and also f(X) =1 for X € S, the above inequalities yield

1—50
2

FX) < 05(X): X < S(X),

for all X € S. Finally, since
RNXTL — U tl/aS,
t>0

by noting that f is a-homogeneous (which implies that df is (o — 1)-homogeneous), the obtained inequality

in fact holds on the entire space RV*™,
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Now we derive some consequences of the satisfaction of assumptions (1.2) and (1.12). First note that if
C7 = Cg = C in (1.3), then we have Cg(n) = 9g(n) - n as equality. Even though this is restrictive, there
are still several functions satisfying this condition. For instance, for any (possibly non-symmetric) matrix
A RN @ RY and v > 0, the function given by

g(n) = (A:nen)?*

satisfies the identity with C' = 4+, as
dg(m) - n = {2v(A:nen)P A (Y @n+ne ()} -1 =dygm),

for all n € RV,

Lemma 4. Suppose that [ satisfies (1.2) and (1.12). Then:

(1) By setting
A+ ATa2e64)
SA = + 5 ,

where AT (1.2)<34) s the adjoint of the linear map A : RN*" — RNX" we have the representations

f(X):SA;X@X:NQXf,

for all X € RNX". In particular, the symmetric part SA of the tensor A is positive definite (i.e.
non-negative) and hence the square root v/SA : RNX" — RNXn js yell defined.
(2) We have the identity
AX)=A: ((eX+Xa()),
for all X € RNx™,
(3) f is non-negative and convex on RN*" with {f = 0} = {0}.
(4) Let o denote the spectrum of a linear operator. Then, we have the bounds

(mino(SA))|X[* < f(X) < |A[X]%,
for all X € RNx™,

Note that the adjoint (transpose) operator AT2664 is the operator which in index form satisfies

T q
(A (1,2)9(374))M5j = Agjai,

for all a,3 € {1,...,N} and all i,j € {1,...,n}. This renders SA € R¥*" @ RVNX" a real self-adjoint

(symmetric) fourth order tensor (seen as a matrix over matrices).

Proof of Lemma 4. (1) The identity f(X) = SA : X ® X is immediate as the rank-one tensor X ® X is
symmetric, hence A = SA on the symmetric subspace of RY*" @ RN*", Further, by (1.12), (1.2) holds for
a =2 and by (2.1) we have

SA:X®X>0 and SA:X®X >C4X[>—Cs,

for all X € RN¥*", By the spectral theorem it follows that the symmetric tensor SA is positive definite (i.e.
non-negative) and o(SA) C [0, |A[]. Further, the estimate above implies that SA is actually strictly positive

8
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and mino(SA) > 0: indeed, if hypothetically there existed Xy # 0 with SA : X¢ ® Xy = 0, then for any
t>0
0=SA": (on) X (th) > t2C4|X0|2 — (3,

which leads to a contradiction as ¢ — co. Finally, since A is positive and symmetric, v/SA exists and is also
a positive symmetric operator satisfying SA = v/SA+/SA. Therefore,

f(X)=SA: XX
_ (@@Wm)«»(&zx)) XX
= (VBAX) : (VEAX)
~ |vsAx[,

for any X € RV*",

(2) Follows by a direct differentiation.

(3) Follows by part (1) by noting that f is the restriction of the convex quadratic form (X,Y) — SA : X QY
on the diagonal of RV*" x RNV,

(4) Follows directly from part (1), by recalling the variational definition of the minimum eigenvalue of a
symmetric operator. [

3. Existence in L? and compactness as p — oo

In order to solve the approximating LP constrained problems, we first need the following result which
establishes the existence of strongly converging (energy comparison) maps as p — oo in the respective
constrained admissible classes.

Lemma 5. For any v € W)™ (2;RN)\ {0}, there exists (tp)pe(n/a,o0) S (0,00) with t, — to as p — oo,
such that

llg(tpv)llLr(o) = 1

for all p € (n/a,00]. Further, if ||g(v)|| Lo (o) =1, then to = 1.
Proof of Lemma 5. Fix v € Wy ™ (2;RN)\ {0} and set

poo(t) =maxg(tv(z)), ¢=0.
e
Then, by (1.3) and (2.2) we have that p(0) = 0 and also po, € C([0,00)). Now we show that ps is strictly
increasing. Let us begin by showing first it is non-decreasing. For any s > 0 and n € R \ {0}, (1.3) implies

g9(sn)

d
0 < Cr== < dglsn) - m = - (a(sm),

which yields that s — g(sn) is strictly increasing on (0,00). Then, for any z € 2 and t > s > 0 we have
that g(sv(x)) < g(tv(x)) (with strict inequality if v(x) # 0), and therefore

poo(s) = maxg(sv(r)) < maxg(tv(z)) = poo(t).
e e

Hence, poo is non-decreasing. We now show that ¢t — peo(t) is actually strictly increasing on (0, 00). Suppose
for the sake of contradiction that this is not the case. Then, by the continuity of p.., there exists ty,eq > 0

9
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such that poo = poo(to) on the interval (to — &0, to + £0). However, by Danskin’s theorem [17], the derivative
p'(td) from the right exists, and is given by the formula

Pro(ty) = max {dg(tov(z)) - v(2)}

where
Dy = 7€+ puolte) = gtov()) }.
By utilising (1.3), the expression for p._(tJ) yields

plt) = timgx {09 (tov(x)) - tov(z)}

Cy
>
> xrggzg(tov(x))
Cr
= Tpoo(to)
0
> 0.
This is a contradiction to ps, being constant on (tg,tg + €¢), hence establishing that p.o is indeed strictly
increasing. Recall now that by (1.3)(b) we also have g(sn) — oo as s — oo. Thus, for any fixed z € {2 for
which v(z) # 0, we have
. - ) — oo,
i pa0) >l of00(2) =
The mean value theorem then implies that there exists a number to, > 0 such that poo(teo) = 1, namely
[9(tocv)zoo(2) = 1.
Additionally, if ||g(v)||zec () = 1 to begin with, then t,, = 1. Fix now p € (n/a, c0) and set

pp(t) = ]{?g(tv(x))p dz, ¢>0.

Then, by (2.2) we have p,(0) = 0 and also the strict monotonicity of s +— g(se) on (0,00). Then, the
monotone convergence theorem yields that p,(t) — oo as t — oo. Therefore, there exists ¢, > 0 such that
pp(tp) = 1, namely
lg(tpv)llLe(o) = 1.

We now claim that ¢, — to as p — co. Assuming for the sake of contradiction that t,—/+ to as p — oo,
this means there exists a sequence (tp,)7° C (n/a, 00) and a tg € [0,t) U (oo, o0] such that ¢, — to as
Jj — oc. Further, the sequence (t,,){° can be assumed to be monotone (either increasing or decreasing). We
first show that ¢y < co. Indeed, if we had ¢ty = oo, then the sequence (tpj)fo must be monotone increasing.
Hence, by (1.3)(b) we have g(t,,v(x)) / 00 as j — oo, for any x € £2N{v # 0}. The monotone convergence
theorem then yields the contradiction

1= ][ g(tp;v)PidL™ 7 oo
Q

Therefore, we must have tg < co and hence tg € [0,t00) U (oo, 00). If now tp; — to, we have t,.0 — tov
in C(2;RY), as j — oo. By the continuity of g, this implies g(tpj v) — g(tov) in C(R2), as j — oo. Since
Il - lzec2y — |- [[Loo () @s p — oo in the pointwise sense on L°°({2), we infer that
L= llg(tp;0)ll7s ()
= llg(tov)llzs @) + O(llg(ts;v) = 9(tov)| )
= llg(tov)llzrs (o) + O(Its; —tol)
Jj—o0
— llg(tov)llzee ()
= pOO(tO)v
which is a contradiction if ¢, # tg due to the strict monotonicity of poo. O

10
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Now we proceed to show existence of solution to the approximate constrained minimisation problem.
Lemma 6. For any p > n/a, the minimisation problem (1.8) has a solution u, € Wol’ap(Q; RM).

Proof of Lemma 6. Let p € (n/a,o0) be fixed. We begin by noting that, by virtue of Lemma 5, the
admissible class is non-empty: for any fixed vy € WO1 (2;RY) with vy # 0, there exists t, > 0 such
that ||g(tpvo)llr(2) = 1, yielding that t,vg is in the admissible class of (1.8). Next, since by (1.2)(b) f is
(Morrey) quasiconvex in RVX™ so is fP, as a result of Jensen’s inequality: indeed, for any fixed X € RV*"
and ¢ € W™ (£2; RY), we have

P(X) < (fg f(X+D¢)d£”> < P+ Dojacn

Further, by (1.2)(d) f? satisfies the estimate
—Cs(p) + Culp) X[ < fP(X) < C5(p)|X]™ + Co(p),

for some p-dependent constants Cs(p),...,Cs(p) > 0. By standard results on quasiconvex integral func-
tionals (see e.g. [16]), it follows that | f(D(-))|rr(e) is weakly lower semi-continuous and coercive in the
space Wi *P(2;RY). Further, by the Morrey embedding Wi *P(2;RN) C 735 (2;RYN), it follows that
the admissible class is weakly closed as the functional ||g(-)||r(s) is weakly continuous on Wy P (2;RN).
Hence, there exists a minimiser u, which solves (1.8), as claimed. O

Now we consider the Euler-Lagrange equations that the approximate minimiser u,, satisfies. Unsurpris-
ingly, they involve a Lagrange multiplier, which arises by the integral constraint ||g(-)||zr(2) = 1.

Lemma 7. For anyp > n/a, let u, be the minimiser of (1.8) given by Lemma 6. Then, there exists A, € R
such that the pair (up, \p) € Wol’ap((); RY) x R satisfies weakly the PDE system

diV(f(Dup)p_laf(Dup)) + Ap g(uy)P~10g(uy) = 0,  in £,
u, =0, ondf.

Proof of Lemma 7. Follows by standard results on Lagrange multipliers in Banach spaces (see e.g.
Zeidler [41, Th. 43.D, p. 290]). O

Now we obtain additional information on the family of eigenvalues (Ap)p>n/a-

Lemma 8. For any p > n/a, we set

Ly = Hf(DuP)HLP(Q)'

Then, there exists A, > 0 such that

c, 1/p O, 1/p
0 — L, <A, < |[|= L,.
< (08) p = P = 07 p

Proof of Lemma 8. We begin by noting that L, > 0, namely the infimum over the admissible class in

and also

(1.8) is strictly positive, as a consequence of the constraint and our assumptions (1.2)—(1.3) (via (2.1)—(2.2)):

11
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the only map u € Wy *”(2;RY) for which || f(Du)|[rr(0) = 0 is ug = 0, but ug is not in the admissible
class because [|g(uo)||zr(2) = 0. Next, by testing against u, in the weak formulation of the Euler-Lagrange
equations (Lemma 7), we have

/ f(Duy,)P~10f(Duy) : Du, dL™ = )\p/ g(up)P10g(up) - u, dL™.
2 2
By (1.2)(c) and (1.3)(c) we have

{ le(Dup) < af(DUp) : Dup < sz(Dup)’
C7g(up) < 89(“1))'“17 < ng(up),

L™-a.e. on 2. Hence, since f,g > 0, integration gives

Cl][ fP(Du,)dL™ < ][fp_l(Dup)af(Dup) : DupdL™ < Cz][ fP(Duy)dL™,
2 2 2
Cr f g7u) 4" < 97 w)oglay) - updl” < G f (),

By recalling that
][fp(Dup) dL™ = (Lp)? > 0 and ][gp(up)dﬁn =1,
2 2

it follows that )\, > 0. By virtue of the above, by defining 4,, := (),)/? > 0, we have the estimates
Cl(Lp)p S A1)6’87 02(Lp)p 2 ApC'T)
which lead to the desired inequality. [

We now show the existence of solution to the problem (1.1) and the compactness of the class of p-pairs
of eigenvectors—eigenvalues (up, Ap)p>n/a-

Proposition 9.  There exists (oo, Aos) € Wy ™ (2;RN) x (0,00) such that, along a sequence (p;)3° we

have _
Up — Uoo in CY(£;RN), for all v € (0,1),
Du, — Dus,  in LI(2;RN*™), for all g € (1, 00),
Ap — Ao in (0, 00).

Further, us, solves the minimisation problem (1.1) and also A is given by (1.5). Finally, A satisfies the
uniform bounds (1.6).

Proof of Proposition 9. Fix p > n/a, ¢ < p and a map vy € WOI’OO(LQ;RN) with vg # 0. Then, by
Lemma 5 there exists (tp)pe(n/a,00] € (0,00) with ¢, — t as p — oo, such that ||g(t,v0)||Lr(2) = 1 for all
p € (n/a, 0. By Holder’s inequality and minimality, this allows to estimate

1fDup)llaay < 1f(Dup)llzee) < [1F(DEpv0))llLr(ey < [1fEpDvo)lLoe(0)-

Hence,

sup || f(Dup)|lLa(ey < sup||f(tpDvo)l|Le(a) < oo,
q>p q>p

and the finiteness of the last term is a consequence of the compactness of (t,),~n/q. Further, by (1.2) we
have the lower bound f4(X) > Cy(q)|X|*? — C3(q) for some g-dependent constants C5(q), C4(g) > 0 and all
X € RV*" When combined with the previous estimate, this lower bound implies

sup ||Duy||as(o) < Clq) < o0,
q>p
12
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for some g-dependent C(g) > 0. Further, application of Poincaré’s inequality improves the above estimate
to

sup [|upllwi.ea(oy) < Clg) < oo,
q=p

for a new constant C'(q) > 0. Hence, standard compactness and diagonal arguments in Sobolev spaces imply
the existence of a map
use € () WoP(;RY)
n/a<p<oo
and (for any sequence) a subsequence such that the claimed modes of convergence hold true as p — oo along
this subsequence. Fix now any v € W, (£2; RY) satisfying lg(v)||Loe () = 1. Note that, necessarily, v # 0
by virtue of (2.2). By Lemma 5, there exists (t,)pe(n/a,00) € (0,00) with ¢, — 1 as p — oo, such that
llg(tpv)llLp(o) = 1 for all p > n/a. By Lemma 6, the definition of L, in Lemma 8, Holder inequality and
minimality, we estimate
If(Dup)llacey < Ly < [[f(t,D0)|Lr()

for any such v. By the weak lower semi-continuity of the functional || f(D(:))[/za(e) on W, *4(£2), by letting
p — oo along a subsequence, we obtain for the given fixed v € VVO1 °(2; RN) that

[f (Duco)l[ra(2) < I;mjgopr < limsup L, < [[f(Dv)| ()
J

pj—ro0
In conclusion, by letting also ¢ — oo, we deduce the energy inequality

[ f (Do)l ree(2) < lgmjgopr < limsup L, < [[f(Dv)|Ls(n),
J

pj—00
for any v € W > (2;RY) with llg()l| Lo (o) = 1.

Next, we note that Dus, € L®(£2;RN*") (and is not merely in the intersection of LP(2;RN*") for
p € (n/a,o0)). This follows by (1.2), which yields

1f (Do)l Loc (@) 2 CalDuco||Too (o) = C-

As a result, by Morrey’s estimate we have that us € VVO1 °°(2;RY). Further, u, is in the admissible class
of (1.1), since by the uniform convergence u, — o, 0N 12 as p — oo along a subsequence, the continuity
of g, we have

1 = [lg(up)llLr(0)

= ||9(Uoo)||Lp(n) + (Hg(up)”LP(Q) - Hg(uOO)HLP(Q))

= llg(uco) () + O(llg(up) — g(use)llLr(2))

= [lg(uso)llLr(2y + O(llg(up) — g(tso)llLoo(2))

— [lg(too)l| Lo ()
as p — oo subsequentially. In conclusion, by the arbitrariness of the map v in our energy inequality, it follows
that ., indeed solves the minimisation problem (1.1).

Let now Ay be defined by
Ao = ”f(DUOO)”LOO(Q)-

Note that the above definition of A as the infimum in (1.1) readily implies that it must be strictly positive.
Indeed, by (2.1)—(2.2), for any map ug in the admissible class of (1.1) for which we have || f(Dug)|| oo (0) = 0,
it follows that uo = 0, which is a contradiction since we must also have ||g(uo)||z(2) = 0 < 1. Further, the

choice v := u in our energy inequality implies that L, — A, as p — oo along a subsequence. Additionally,
by Lemma 8 we have that |L, — A,] — 0 as p — o0, hence 4, — A, as p — .

13
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To complete the proof, it remains to establish the claimed uniform bounds on A.,. By Poincaré’s
inequality, since g(0) = 0, we have

1 = [lg(uco)[1oo(@) < diam(£2)[[D(g(ucc))l Lo (02)
< diam(Q)Hag”Loo(uoo(ﬁ))||DuooHL°°(Q)-

Since ¢ > 0 and ||g(uoo)||zoo(2) = 1, this yields that 0 < g(us) < 1 everywhere on (2. Hence, we have
u(2) C {0 < g < 1}, which in turn implies

1 S diam(Q)H@gHLoo({OSgSl})||Duoo||Loo(_Q).
Since by (1.2) we have |X| < C;l/a(f(X) + 03)1/a for any X € RV*" we obtain

1F (Do) | o2 + C5”
Cl/a '

1 < diam(£2)||9gl oo (fo<g<1})

The above inequality readily leads to the claimed lower bound for A in (1.6).

For the upper bound, consider the Lipschitz function dist(-,0§2) of distance from the boundary 92,
extended by zero on R” \ £2. Since dist(-,d2) € W™ (£2), for any fixed n € RN with |n| = 1 we may
invoke Lemma 5 to find ts > 0 such that £, = teodist(-,062)n is in the admissible class for (1.1), namely
||g(foo)||Loo(Q) = 1. Since |D(dist(-,042))] <1 L™-a.e. on {2, by minimality and (1.2), we estimate

Ase = || f(Duco)|| oo ()
< | f(Déoo)ll L ()
< || (toon @ D(dist (-, 02))) || oo 0
< C (oo||77®D (dist(-,092)) HLOO(Q)> + Cs

Now we need an estimate for to,. To this end, let
Ro =sup{r>0|3zeN: B.(z) C N2}

Then, there exists an Z € £2 such that Br,,(z) C {2, and this is the largest such ball. Hence, dist(z,92) =
Rg. Since by construction, ., satisfies ||g(§oc)||Loo(2) = 1, it follows that

1 = sup g(tocdist(-,f)())n) > g(toodist(i,aﬁ)n) = g(tocR0m).
2

By (2.2), we have that the function [0,00) 2 s — g(sn) € [0,00) is strictly increasing and onto because
g(0) = 0 and g(sn) — oo as s — co. Hence, its inverse function (g(-1))~* : [0,00) — [0, 00) is well defined.
Therefore, since g(tooRon) < 1, we have

twRo = (9(-m) " (9(Ren)) < (9(-n)~'(1).
Combining the previous estimates, we infer that

Awsagg
0

(g(-n))_l(l))a s

14



N. Katzourakis Nonlinear Analysis 219 (2022) 112806

The above estimate completes the claimed uniform upper bound on A in (1.6), and therefore Proposition 9
ensues. [

4. The divergence PDE system in L°°, part I

Using the tools already developed, in this section we establish the satisfaction of the divergence PDE
system (1.4) by the pair (ts0, Aso), under only assumptions (1.2)—(1.3). Later in Section 6 we will establish
satisfaction of (1.14) under the additional stronger assumption (1.12). We begin with the limiting measures.

Lemma 10. For any p > n/a + 2, consider the non-negative measures p,,v, € M(£2) and also the
matriz-valued measure M, € M(2;RN*™), given by (1.10) and (1.16). Then, for all large enough p we have
the bounds

1
_ 08>1—p 8
M) < (=2 Cs(Ae +1)° +C5),
@ < () (ol + 1)+ )
and, by setting w(p) == ||g(up) fg(uoo)HLoo(Q), we have
1 S
<) <1

1+w(p) —
v ({9(00) < llg(utse) 002y = 20(0) }) < (1= w(@)” ™",

)

for p,q > n/a + 2 large enough. Consequently, there exists a further subsequence and limiting measures
oo Voo € M(2) and My, € M(2;RN*") such that p1, = pioo and vy, = Vs in M(R2), and also M, =~ M,
in M(2;RN*") as p — oo, along this subsequence. Additionally, v satisfies

oo () = Voo ({9u) = llglucc)llie(e }) = 1, vc(02) = 0.

Proof of Lemma 10. By (1.16) and Lemma 8 we estimate

() = ][Q (f(lj:ﬁ)”‘ldﬁn
< 5 (£, rouy dﬁ’“)p;
()
(&)

Further, for p > n/a + 2, by (1.10) and assumption (1.2)(d), we estimate

1@ = f (£22Y o ouy e

1
< Ag‘l][g f(Dup)”’l(Csf(Dup)ﬁ +C6) acn

! - - n
= /151][(2(C5f(Dup)P 1+’6+Cgf(Dup)p 1) acn.

15
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In view of Lemma 8 and Proposition 9, for large p the previous estimate yields
p=1+8
C

— P
@ < 5 (f ourac) T4
P
Lg—l—&-,@ Lg—l

p—1 p—1
Ap Ap

L,\" !
</1Z> (CsLE + Cs)

Cs\ 7P
(Cf) p<05(/100+1)ﬂ+06),

as claimed. Similarly, by (1.10) and the fact that ||g(u,)| Lr(0) = 1, we may estimate

(f rouract)”

Cs
Ap~1

= Cs + Cg

IN

P

vp(2) = ][Qg(up)p*1 dL™ < (][Q g(up)? d£”> = 1.

Next, by setting w(p) = ||g(up) — g(too)|| Lo () and noting that w(p) — 0 as p — oo (along a subsequence)
due to the uniform convergence g(u,) — g(us) on 2, we estimate

1 = ][Qg(up)p 4o
- ][9 9(up)"~"g(uy) AL"
< ]ég(Up)pfl(g(uoo) + g (uyp) —g(uoo)HLoo(Q)) acn

< ][ glu,)P~t (14 w(p))dLr,
Q
where in the last step we also used that g(us) < 1 on 2, as a consequence of the continuity and the
non-negativity of g(u.o) and the constraint ||g(ueo)||zoo(2) = 1. Hence, the above inequality shows that
1 < 1p,(2)(1 4 w(p)).
Finally, let us fix ¢ > n/a + 2 and define the open set
Ay = {gluse) < guoo) () = 20(0) |-

We note that the desired remaining estimate for v, can be deduced by the more general result [32,
Proposition 7], but for the sake of completeness we provide a self-contained simpler proof. For p and e
as above, we estimate

V:U(Aq): Entg)/ g(up)pildﬁn
1

Aq
p—1
< gag@y J, (900 lat) g0l i) e
1 p—1 n
< gy o) +e@) " acn

Hence, by noting that A, = { g(ux) < 1 — 2w(q)}, which a result of our earlier observations, the above
estimate implies

vp(Ay) < Diﬂ) /Aq ((1-20(e)) +w(q)>p_1d£”
LA b
< T 1-e)
< (1 —w(q))p_l.

This establishes all the claimed estimates.

16
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To conclude the proof, it remains to establish the claims regarding the limiting case. By standard
sequential weak® compactness results in the spaces of Radon measures, together with the boundedness of
(Dup)psnja in L2(02;RN*™) (by virtue of Proposition 9), we obtain the existence of limit measures fioo,
My and ve such that p, = fioo, M, = My and v, = v in the corresponding spaces over {2, along
a subsequence as p — oco. We now also show the additional properties of the measure v,. By the weak™®
lower-semicontinuity of measures on open sets, we have

Voo(A4y) < liminfv,(4,) = 0,

p—o0

for any ¢ fixed. Hence, by letting ¢ — oo, the upper continuity of the measure v, implies
Voo ({9(use) < 1}) = qli)rglo Voo ({9(uss) <1—2w(q)}) = 0.

This implies that veo ({g(us) = 1}) = veo(2). Further, since the function A = 1 belongs to C(£2), the
subsequential weak* convergence v, = Vo, implies

— : . — . 1
Voo (§2) = ﬁhdyoo = plg{)lo ﬁhdl/p = plgrolol/p(ﬂ) > plgrolom =1

Finally, since us, = 0 on 92 and by (2.2) we get g(0) = 0, it follows that g(us) =0 on 942. Thus, we infer
that 002 C {g(us) < 1}, which yields that v (9£2) =0. O

Now we may establish the satisfaction of the PDE system (1.4) for the quadruple (teo, Aooy Moo, Voo)
under only assumptions (1.2) and (1.3).

Lemma 11. Let My € M(2;RVN*") and vee € M(2) be the Radon measures obtained in Lemma 10.
Then, the pair (U, Aso) satisfies the divergence PDE system (1.4), weakly in (CE($2;R™))* (namely (1.11)
holds true for any ¢ € CZ(2;RY)).

Proof of Lemma 11. Fix ¢ € C{(2;RY) and p > n/a + 2. By (1.10) and (1.16), we may rewrite the
divergence PDE system (1.9) as

div(9f(Dup)pp) + Ap dg(up)v, = 0, in 2,
up, = 0, ondf2.
By the measure identity
M, = 0f(Dup)pup,
The weak formulation of the PDE means that for any ¢ € C3(£2;RY), we have

/ D¢ :dM, = Ap/ 0g(up) - ¢ dvp.
2 Q

By Proposition 9, we have that 4, — Ay and also u, — uo uniformly on 2 as p — oo along
a subsequence. By (1.3), we also have that dg(u,) — 0¢(us) uniformly on 2 as p — oo, along the
same subsequence. The conclusion follows directly by the application of Lemma 10 and the strong—weak*
continuity of the duality pairing C'(2) x M(2) — R. O

5. Regularisations up to the boundary

In this section we introduce the appropriate mollifications that will be utilised in the next section to
show the satisfaction of Eq. (1.14). This regularisation scheme utilises results on the geometry of (strongly)

17
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Lipschitz domain from Hofmann—Mitrea—Taylor [24], and is closely related to the regularisation schemes
used in Ern—-Guermond [18].

To begin with, let n € L>(02,H""!;R") be the outer unit normal vector field on 9f2. Then, (see
Hofmann—Mitrea—Taylor [24, Sec. 2, 4] for the proofs of the claims in the paragraph) there exists a vector
field £ € C*(R™;R"™) that is globally transversal to n on 92, namely exists dy > 0 such that

&-n > 6, H"'-ae ondf.

Further, £ can be chosen to have length |§] = 1 in an open collar {dist(-,02) < ro} around 942 for some
ro > 0 and to vanish on {dist(-,042) > 2rg}. If 942 is a compact C'*° manifold, then one can choose £ :==n
and the transversality condition is satisfied for §o = 1. Further, there exists £,eq > 0 such that, for all
e € (0,&0) we have

dist(z + el¢(x), 902) > 2¢, for all x € 1.

Using the above observations from [24], we may now define our mollifiers. Fix e € (0,ep) and some
0 € C(B1(0)) satisfying o > 0 and [|o|[ 11 (gn) = 1. For any v € L (2;RY), extended by zero on R™ \ £2,
we define Kév : R” — RY by setting

(K*v)(x) == /n v(x +elg(x) — sy) o(y) dy.

What this regularisation does is to “compress” v to a map which is compactly supported inside {2 before
mollifying. However, for technical convenience it is not exactly equal to the standard mollifier of the
“compressed” function v(~ + el¢ ()), which instead equals the convolution

1 /.

o Celg(-

L) el )

(this would require to put “6(z — ey)” instead of “£{(z)” in the formula defining K¢). The advantage of this
slight variance, as we will see right next, is a simpler formula for the derivatives.

The next result lists the main properties of this mollification scheme.

Proposition 12.  The family of reqularisation operators (K)o<c<e, satisfy the next properties:

(1) For any v € L>®(2;RY), we have KSv € CX(12;RN) and also KSv — v as e — 0 a.e. on 2 and in
Li(2;RN), for any q € [1,00).

(2) For any v € L*>®(2;RYN) and any convex function ® : RN — R satisfying 0 € argmin{ @ : RN} (namely
such that ® > ®(0) on RY), we have

?(Kv(z)) < esssup  P(v),
02NBe (z+et€(z))

for any x € . In particular, d(K*v) < ||@(v)| ooy on 2.
(3) For any v € Wy >°(2;RYN), we have

{ D(K®v)
|D(K°v) — K*(Dv)|

K*(Dv)[I +eD¢]
el||DE|| oo (rny DV Loo (2,

IN

on 2. Also, as ¢ — 0 we have K*v — v in Wol’q(Q;RN) for all ¢ € [1,00) and in CY(2;RN) for all
v € (0,1). Further, KSv == v in W™ (2;RN).

(4) For any v € Wy (2;RN) and any convex function & : RN*" — R satisfying 0 € argmin{ & : RN*"},
there exists C' > 0 such that

?(D(K°v)(z)) < esssup  P(Dv) + eC*,
QNBe (z+elé(x))

18
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for any x € £2, where the constant C* depends only on 12, £, D, D& and ||Dv|| e (). In particular,
P(D(Kv)) < [[#(Dv)l|zoo(q) + C7,

everywhere on {2.

Proof of Proposition 12. (1) A change of variables yields the identity
1 14 —
(K0)(x) / 1 Q(:Hf’i@)z) o(2) dz
Be (z+elé(x)) € €

which, combined with the fact that dist (x—l—sff(x), 39) > 2¢ when z € 942, imply that KSv = 0 on an open
neighbourhood of R™\ 2 because v = 0 on R™\ 2 and also B, (2 + ef£(z)) C R™ \ 2 when x € 92 (and also
for « in open neighbourhood of 92). Further, since supp(g) € B;(0), the integral above is in fact equal to the
same integral taken over R", hence we easily deduce by recursive differentiation that Ksv € C°°(R"; RY).
(2) Since L™ is a probability measure on R™, by Jensen’s inequality, we estimate

?(Kv(z)) = & (/n v(z + elé(z) — ey) o(y) dy)

< /n @(v(:z: +eté(x) — ey))@(y) dy
< esssup @(v(x +elé(x) — 59))
y€B1(0)
= esssup P(v),
Be (z+elé(x))

for any x € 2. By using that v =0 on R™ \ {2 and our assumption on @, we further have

& (Kv(x)) §maX{ esssup  B(0),  esssup qs(m}

2NBe (z4e£(z)) Be (z+e€€(2))\ 2
< max{ esssup  P(v), 45(0)}
2NBe (z+eté(z))

< esssup  D(v),
QNBe (z+elé(x))

for any z € 2.
(3) We readily compute

D(K®v)(z) = /n Du(z + elé(x) — ey) [I + elDE(z)] Toly) dy

which yields the claimed identity. The desired inequality is a simple consequence of the above identity
together with the estimate of Part (2). The asserted modes of convergence follow by standard arguments on
mollifiers (see e.g. [19]).

(4) Since @ : RN*" —; R is convex, it is in W,2°(RV*"). Fix R > 0 such that

loc
R > |IDE]| Loo mny DV Loo (02)-
Then, by Parts (2)-(3) we estimate
B(D(K*v)(z)) = @(KE(DU)(x) + 5€K€(DU)D§(:E)T)
?(K*(Dv)(2)) + [IDP| e 20 [[€K*(DU)DE | oo )

®(K*(Dv)(z)) + el|[DP|| o0 m(0)) 1DV oo (2) IDE| Lo (7

esssup  @(Dv) + C*e,
2MBe (z+elé(x))

VAN VARSI VAN
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for any = € {2, where we have set
C* = LD || oo B (0)) DSl Loo (mn) [Dv]| oo (2).-

The proof of the proposition is now complete. [

6. The divergence PDE system in L°°, part II

In this section we establish the satisfaction of (1.14) for the minimising quadruple (teo, Aoos fioos Voo ),
under the hypotheses (1.2), (1.3) and also (1.12). We begin with some notation.

Remark 13. Under (1.12), since f is assumed quadratic, (1.2) is in fact satisfied for C; = Cy (see the
observations following Example 3). Hence, by introducing the positive constant

Cg Cr
k= ——|= =],
Ch Co
the conclusion of Lemma 8 strengthens to the equality

L, = ﬂl/p/lp.

Next, we derive some differential identities and energy inequalities, which will be utilised to obtain the
necessary estimates.

Lemma 14. For any p € (n/a+ 2,00), consider the quadruple (uy, Ay, iy, vp) as in Section 4. Then, for
any v € Wol’oo(Q; R™N), we have the differential identity

| 100=Du)du, = [ 50v)dn, ~ [ 10w dn, + 4, [ ogtu,)- (0, =),

Note that in view of (1.10) and (1.16), we have that v,(002) = p,(02) = 0 for p € (n/a + 2, 00). Thus,
all the integrals above are non-trivial only over (2.

Proof of Lemma 14. Since v — u, € Wy *?(£2;RY), by using (1.12) we have

/7f(Dv — Duy)dy, = /7A : (Dv — Duy) ® (Dv — Duy,) dp,
7 7

which, by virtue of Lemma 4(2), can be expanded as
/7f(Dv — Duy)dp, = /7A :Dv®@Duvdp, + /7A : Duy, @ Duy, dpy
2 7] Q
+/7A: (Dup® (~Dv) + (~Dv) ®Dup) ey
Q
= /7f(DU) dpp — Lf(Dup) dpyp
Q Q
+ LA : (Dup ® (Du, —Dv) + (Dup, —Dv) ® Dup> dup
2
= /ﬁf(Dv) dpp — /ﬁf(Dup) dpp + /ﬁ@f(Dup) : D(up —v) dpp.

By arguing as in the proof of Lemma 11 and testing against ¢ := u, — v in the weak formulation, we readily
deduce the claimed identity. O

20



N. Katzourakis Nonlinear Analysis 219 (2022) 112806

Lemma 15. In the setting of Lemma 14, for any p € (n/a + 2,00) we have
[ 50w du, = xa,
2]

/7|Dup\2dup < i(/lp + Cg;‘i_l/p).
7] Cy

A

Proof of Lemma 15. From (1.16), Lemma 8 and Remark 13 (noting also that £7(9f2) = 0), we have

f(Duy,)P~1 1
/ f(Duy) dp, = ][ f(D App)l dL" = Ap_ng = k.
P

Further, by (1.2) and (1.12) (noting also that & = 2 in (1.2) under (1.12)), we have

Kdp = /ﬁf(Dup) dpp 2 04/§‘Dup|2 dup — Cspp(92).

The claimed inequality is now a consequence of the above together with the bound p,(£2) < k'~1/? which
follows from Lemma 10 and Remark 13. O

The following result is an immediate consequence of assumption (1.12), Lemmas 4, 14, 15 and Proposi-
tion 9.

Corollary 16. In the setting of Lemma 15, for any p € (n/a + 2,00) and any map v € WH(02; RY), we
have the estimate

2
COL‘DU—DUP| dp, < Lf(Dv)dup — kdp + Collup —vl[Loo (),
7] 7]

where
¢p = mino(SA), Co = sup {Ap||8g(up)||Loo(m}.
n/oa+2<p<oo
Now we expound on the methodology utilised in the remainder of this section, in order to complete the
proof of Theorem 2.

Remark 17 (The Method). The estimate of Corollary 16 is the main energy estimate we will need to pass
to the limit as p — oo along a sequence in the PDE system (1.9) to obtain (1.14). The main difficulty in
trying that is that both Du, and g, converge in a weak (weak™®) sense only, and in fact in different spaces.
Therefore, a priori it is not at all clear that

Dyt = Dttog floo

and the product Dug fioo may not be a well defined measure, as in general Du, is in L (£2; RV *") and only
Lebesgue measurable, hence it may not be defined on lower-dimensional subsets of {2 on which the Borel
measure [io, may concentrate (e.g. on hypersurfaces in {2 or on the boundary 942).

To circumvent these problems, we argue as follows. The idea is to show first that

Duy, piy == Vo flog, 0 M(2;RV*7),

as p — oo, for some Borel measurable Vi, : 2 — RYX" in L2(02, jioo; RV *™). (In particular, the measure
Vo lhoo 18 then well defined.) Then, using weak™ lower-semicontinuity we let p — oo in Corollary 16 to obtain
for any map v € CA(12; RY) (not just in Wy *°(£2; RY)) that
2
CQL‘DU—VW‘ dpee < Lf(DU)duoo — Kloo + Colltioe — V|| 1oo ()
7] 7]
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Next, one would like to set “v = us” to obtain “Dus, = V7. However, this is not directly possible, at
the very least because directly Dunofioo 18 not well defined, and also the limiting process of the previous
step prevents us for setting v = u, due to the lack of regularity. To this end, we utilise the regularisation
operators (K%)o<e<c, introduced in Section 5 to set v = K°us and deduce as € — 0 that a special Borel
measurable representative Duk, does exist, which is a version of the gradient of u, in the equivalence classes
of a.e.-equality for both Duy, € L®(2;RNY*") and for Vo, € L2(12, jioo; RV*™). Hence, the PDE system
(1.14) is satisfied for this representative of Duy, which in particular makes Of(Du’, )ioo a well-defined
measure (recall that df is a just linear mapping under (1.12)).

Now we deploy the method set out in Remark 17.

Lemma 18. There exists a mapping Voo € L*(82, f1oo; RYX™) such that, along a subsequence (p;)5° we have

Dup gty = Vo o, in M(I2; RN*™),

as p — oo. Further, for any non-negative continuous function ® € C(ﬁ X RNX") such that X — &(x, X) is
convex and of quadratic growth at infinity, we have

/ D(,Voo) dptos < liminf/ (-, Duy) dpsy.
7 p=oo Jo

Proof of Lemma 18. By Lemma 15 and Proposition 9, we have that

sup /7|Dup|2d/¢p < oo0.
pE(n/a+2,00) J 2

In view of this estimate, the conclusion follows by the theory of measure-function pairs of Hutchinson in [25,
Sec. 4, Def. 4.1.1, 4.1.2, 4.2.1 and Th. 4.4.2]. O

In virtue of the above considerations, we obtain the following rather immediate consequence.

Lemma 19. In the setting of Lemma 18, for any p € (n/a +2,00) and any fized v € CL(2;RY), we have
the estimate

2
co/7|Dv7VOO‘ dptes < /7f(Dv)duOO — koo + Colltice — v oo ().
7] 7

Proof of Lemma 19. Since by assumption Dv € C(£2; RY*"), we may apply Lemma 18 to &(z, X) =
|[Dv(z) — X |27 which satisfies the required convexity and continuity requirements. Then, we use the estimate
of Corollary 16, together with the facts that (u,, 4,) — (e, doo) in C(2;RY) x R as p — oo along a
sequence, and that f(Dv) € C(§2), which is the predual space of M(2) = (C(2))*. O

The following result is the most remarkable consequence of the energy estimate of Lemma 19.
Lemma 20. (i) For any sequence (v;)3° C C3(2;RN) which satisfies the conditions

lim ||v; —uooHLoo(Q) =0,

j—roo
limsupr(DUj)HL“(Q) Aoc,
J]—00

IN

we have that
lim / Voo — Duy|* dpie, = 0.
j—o Jo
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o0

(ii) If additionally to the above, the sequence (v;)7° satisfies

hm ||DU] — DuOOHLl(_Q) = 0,
Jj—o0
then we obtain the additional conclusion

lim / [Duce — Duy|*dL™ = 0

j—oo Jo

for any q € [1,00). Hence, for any such sequence (v;)5°, we have
Dvj — Vi, in L2(2, pioo; RN*™),
Dv; — Dueo, in LI(Q, L™ RN*™),

as j — 00, along perhaps a subsequence.

We note that, since L7(£2, RYV*™) is a uniformly convex space when ¢ € (1,00), the assumption of Dv; —»
Dus in L' (£2;RV*™) can actually be replaced by the weaker condition |[Dvj||a(0) — [|[Ducs| pa(o) for
some ¢ € (1, 00).

Proof of Lemma 20. (i) It suffices to apply the assumed modes of convergence to the estimate of
Lemma 19, and recall that .. (£2) < k'71P as a result of Lemma 10 and Remark 13.
(ii) By Lemma 4 and (1.5) (shown in Proposition 9), the hypothesis

[F(Dvj)llLoe(2) < [[f (Dtioo)[Loe(2) + 0(1)jm00

implies that (Dv;)7° is bounded in L(£2,RN*")  for all ¢ € [1,00]. Hence, by passing perhaps to a
subsequence, we have that Dv; —— Dus, in LI(2,RN*") for all ¢ € [1,00) and also Dv; == Duy, in
L= (02,RNX™). Since Dv; — Dun in L1 (2; RV ™), by the Vitali convergence theorem and the L> gradient
bound, it follows that in fact the convergence is strong in L(2,RN*") for all ¢ € [1,00). The result
ensues. [J

In the next result we use Lemma 20 identify the limit V, as a version of Du, after perhaps modification
on a Lebesgue nullset (recall also that £™(9£2) = 0).

Corollary 21. There exists a Borel measurable mapping Du’, : 2 — RNX" which is a version of both
Duo, € L®(2;RYN*™) and of Voo € L?(£2, pioo; RN X™), namely

Dy — Duso, L™-a.e. on §2,
Yoo = Voo,  foo-a.€. 0N £2.

Further, Dul, can be represented as
lim D KEJ uoo)(m), if the limit exists,
7—><>o
otherwise.

along an infinitesimal sequence (€5)7° C (0,1), where (K®)o<c<c, are the reqularisation operators of Section 5.

Remark 22. It follows that, if one defines the Borel set

G = {xe 2 : A lim D(K® Juoo)(x)}

j—oo

then G is both a £"-nullset and a poo-nullset: L™"(G) = po(G) = 0.
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Proof of Corollary 21. Let (K®)p<c<-, be the regularisation operators of Section 5. By Proposition 12,
we have Kfus, € C°(2;RY), therefore the choice v := K°uy, in the estimate of Lemma 19 is admissible.
Again by Proposition 12 and (1.5) (proved in Proposition 9), we have that

1. KE - o] -

lim [[K oo = too || oo (@) = 0,

Aso,

IN

lim sup || f (D(K*uoo) ) ||L°°(Q)
e—0
ig% 1K too — uoo”wé’l(ﬂ) =0.

We may now apply Lemma 20 to obtain that, for any infinitesimal sequence (g;)3° there is a subsequence,
symbolised again by (£;)7°, such that for any ¢ € [1, 00),

D(Kajuoo) — Vooa in LQ(ﬁa ,u/oovRan)»
D (K% tog) — Do, in L0, L7 RV>m),
as j — oo. By passing perhaps to a further subsequence, we infer that

D(Ksjuoo) — Voo,  [hoo-a.e. on £2,
D(nguoo) — Do, L™-a.e. on 2,

as j — oo. The conclusion follows by defining the map Du}, as in the statement. The result therefore
ensues. [

We may now establish the satisfaction of the necessary conditions.

Lemma 23. The quadruple (too, Aoo, floos Voo ) Satisfies the system of PDEs (1.14), weakly in the dual space
(CH(T:RY))"

Proof of Lemma 23. By the proof of Lemma 11, for any fixed ¢ € C3(2;RY) we have
/Q Of(Duy) : Dodp, = /1,,/Q 0g(up) - ¢ dvp.

By Proposition 9, we have A, — Ao and also u, — us in C(£2; RM) as p — oo along a sequence. Further,
9g(up) — 9g(use) in C(2;RY) as p — oo. By Lemma 18 and Corollary 21, we have that

Duy, gy == DUl flog,  in M(2;RV*7).
Further, by virtue of Lemma 4, Of is a linear mapping on RY*™ therefore
9f(Duy) pp — Of (Dul,) proo,  in M(ﬁ, RNX”)-

The conclusion follows directly by the application of Lemma 10 and the strong—weak® continuity of the
duality pairing C(2) x M(2) — R. O

We conclude with establishing that the set whereon the measure o, concentrates is the set whereon
f(Du?,) is maximised over (2.

Lemma 24. The next equalities hold true:

%:iﬂﬂmwwm
(9]

K
poo-esssup f(Dul,) = sup f(Dul,) = Ax.
9] K]
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Further, we have

Loo(£2) = K, pios ({f(Dul) < Ao }) = 0.

Finally, the boundary 012 is a nullset with respect to the Radon measure Dul, fioo:
|Dub, oo | (092) = 0.
Proof of Lemma 24. By Lemma 19 for v := K*u,, we have

Q
By Corollary 21, we have that D(K®uo) — Dul, in L?(£2, poo; RV *™) as £; — 0, because Voo = Duj,
liso-a.e. on §2. Further, by Lemma 4, by Proposition 12 and by the dominated convergence theorem, the
above estimate yields as €; — 0 that

1
Ao < ¢ [ DU dpn
K Jao

On the other hand, recall that by Lemma 10 and Remark 13 we have pio(£2) < k. Hence, by Proposition 12,
Lemma 20 and Holder’s inequality, we obtain

Ao + 0(1)j500 = sup F(D(K%uc))
7
> fioo-esssup f(D(K uy))
0

(1) pa-esssnp £(D(<500)

v

1 o
> [ OK ) dne

By letting j — oo, this yields
1 *
Ay > — L f(Dul,) dptoo-
K Ja
The above estimates establish the claimed integral identity. Further, let G C {2 be the Borel set of Remark 22.

Then, by the definition of Du}, as being equal to zero on G and the fact that f > f(0) = 0 as a result of
(2.1), we have

pioo-esssup f(DuZ,) = sup f(Duf,)
2 Ye

- max{sup f(Dus,), f<0>}

e

= max{sup f(Duy,), Supf(Dugo)}
o\G G

= sup f(Du,).
2

Arguing similarly for the Lebesgue measure, we obtain

Aos = [[f(Dul)l|Lee (@) = sup f(Dul,) = sup f(Dul,).
2\G 9]
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Therefore, the desired equalities have been established. Further, since poo(2) < k and f(Du’ ) < Ay on
2, we deduce also that in fact f(Du?,) equals its supremum A, over {2 and also the measure of i, (£2) is
full, namely pioo(£2) = k. Finally, by Lemma 19 for v = Kus, and by using that Vi, = Du’, peo-a.e. on 2
and that supp(K®v) € 2, we conclude

co / ’Dugo|2 dptoo
on

IN

co [ ’Dugo — D(Kejuoo) |2 dptoo
7]

IN

/ﬁf(D(KEjuoo))d,uoo — Koo + Colltioe — K uso || Loo ()

= 0(1)]4)00

A

This implies that "
Dt 0) < Vi@ ([ s fane) .

The result ensues. 0O

7. Computations for an explicit example

In this section we provide some explicit computations in the case of the oco-eigenvalue problem on the
ball. Let n, N > 1 and choose f = 1|- ? and g == ik ? the corresponding Euclidean norms on RYV*" and
RY respectively. We also fix R > 0 and choose 2 := B, the ball of radius R centred at the origin of R™.
Then, for any direction e € RY with |e| = 1, the directed cone function

Coo(z) = (1 — %)e
is a solution to
IDCuc o0 ey = ] D0 oo gagy : v € W= (Brs RY), o]l pocqe) = 1}
Indeed, we have Co, € Wy ™ (Bg; RY) and |Cooll oo (Br) = 1, because 0 < |[Coo| < 1 and also [Coe (0)] = 1.
Further, for any = € Bg \ {0} we have [DCu(z)| = 5, which yields

1

HDCOOHLOO(IBR) R

This value in fact is the infimum over all maps in the admissible class. To see this, fix any v € VVO1 " (Bgr; RY)
with ||v[|zec®,) = 1. By continuity, this means that 0 < |v| < 1 and that exists £ € Bgr such that
|u(z)| = 1. Let (K®)g<ecs, be the family of regularising operators introduced earlier in Section 5. Then,
K.v € C}(Bg;RY) and by standard arguments on viscosity solutions (see e.g. [29, Section 3]) there exists
Z. € B close to & such that |[K°v| attains its maximum at Z. and |K°v(Z.)] — 1 as ¢ — 0. Then, for any
fixed z € OBg we have K°v(z) = 0 and hence

1+ 0(1)eso = |Kv(Ze) — K*0(2)]
-/0 D(Kv)(AZe + (1 = A)2) - (Z — 2) dA

||DU||L°O(BR)|:EE — Z|

IA

By choosing z := RZ= if . # 0 and any z € OB if . = 0, we obtain by letting € — 0 that

[Ze]
1
>
HD”HLOO(BR) -~ R
The above arguments show that the directed cone C is indeed a vectorial co-eigenfunction.
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We now consider the necessary PDEs that C, solves. By invoking Theorems 1-2 and by noting that

Ao = ||DC = 1/R, we see that there exist measures fioo, Voo € M(BR) such that

ol oo 8 )

fdiv(DCoouoo) = %Cool/oo in f2.

Since Voo (Br) = 1 and in this case {Coo = supg,, Coo } = {0}, we deduce that
Voo = (So.
Therefore, since Cnodp = Coo(0)d, the PDE system reduces to

—diV(DCOOuOO) = %eéo in £2.

Further, since DCy, = f%e®sgn, where sgn is the sign function in RY, we may compute an explicit measure
Jioo, Which in fact is absolutely continuous on Bg. By using the fundamental solutions of the Laplacian A
1

—5 forn >3
n(n — 2)a(n)|z|

1
P(z) = —gln |z| forn=2, &(z)=

(where a(n) symbolises the volume of the unit ball in R™), which in both cases give

Do(z) = —W sgn(x)

and that the system reduces to the single PDE
—div(—sgn i) = dp in L2,

we obtain that the PDE is satisfied for the absolutely continuous measure

1
poo = ——— 7L LBy
na(n)] - |

Remark 25. It is worth noting that, as shown in [10], due to the full rotational symmetry and the
homogeneity of the vectorial p-eigenvalue problem, all vectorial p-eigenfunctions are essentially scalar. Even
though this is not automatically true for the co-eigenvalue problem, it does carry over to p = oo at least for
those oo-eigenfunctions which are constructed as LP-limits. Nevertheless, this reduction to essentially scalar
minimisers is not deducible for the problem (1.1) for general f,g.
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