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a b s t r a c t

Let Ω ⋐ Rn, f ∈ C1(RN×n) and g ∈ C1(RN ), where N, n ∈ N. We study the
minimisation problem of finding u ∈ W 1,∞

0 (Ω ;RN ) that satisfiesf(Du)


L∞(Ω)
= inf

{f(Dv)


L∞(Ω)
: v ∈ W 1,∞

0 (Ω ;RN ), ∥g(v)∥L∞(Ω) = 1
}

,

under natural assumptions on f, g. This includes the ∞-eigenvalue problem as
a special case. Herein we prove the existence of a minimiser u∞ with extra
properties, derived as the limit of minimisers of approximating constrained Lp

problems as p → ∞. A central contribution and novelty of this work is that u∞ is
shown to solve a divergence PDE with measure coefficients, whose leading term is
a divergence counterpart equation of the non-divergence ∞-Laplacian. Our results
are new even in the scalar case of the ∞-eigenvalue problem.

© 2022 Published by Elsevier Ltd.

1. Introduction and main results

Let n, N ∈ N be integers and let also Ω ⋐ Rn be a bounded open set with Lipschitz boundary. In this
paper we study the following variational problem: find a minimising map u∞ : Ω −→ RN in the space
W 1,∞

0 (Ω ;RN ) that solvesf(Du∞)


L∞(Ω) = inf
{f(Dv)


L∞(Ω) : v ∈ W 1,∞

0 (Ω ;RN ), ∥g(v)∥L∞(Ω) = 1
}

. (1.1)

e are also interested in studying the structure of such constrained minimisers, and also in deriving
ppropriate PDEs that they satisfy as necessary conditions. The functions f : RN×n −→ R and g : RN −→ R

E-mail address: n.katzourakis@reading.ac.uk.
ttps://doi.org/10.1016/j.na.2022.112806
362-546X/© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.na.2022.112806
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2022.112806&domain=pdf
mailto:n.katzourakis@reading.ac.uk
https://doi.org/10.1016/j.na.2022.112806


N. Katzourakis Nonlinear Analysis 219 (2022) 112806

w
s
(

(

T

a

ill be assumed to satisfy certain natural hypotheses. We note that our general notation in (1.1) and
ubsequently will be either self-explanatory, or a convex combination of otherwise standard symbolisations
as e.g. in [16,21,23,36]).

The Lp counterpart of (1.1), and especially the L2 case, is textbook material in the Calculus of Variations
see e.g. [19]). Especially, the case of f = | · | and g = | · |, the corresponding Euclidean norms on RN×n

and RN respectively, is known as the p-eigenvalue problem, or the eigenvalue problem for the p-Laplacian.
he L∞ case we study herein, particularly in the vectorial case of N ≥ 2, is completely new and, despite

its importance, has not been considered before. When N = 1 with f the Euclidean norm on Rn and g the
bsolute value on R, (1.1) reduces to the (scalar) ∞-eigenvalue problem, whose study goes back to the seminal

work of Juutinen–Lindqvist–Manfredi in [28]. Since then, there has been a considerable interest on this
problem and also on relevant ones (see for instance Juutinen–Lindqvist [27] and Bhattacharya–Marazzi [7]),
as well as on related problems with constraints (see e.g. Aronsson–Barron [2] and Barron–Jensen [4]).
However, all these works are restricted to either the 1-dimensional case of n = 1, or to the scalar case
of N = 1. Crucially, these approaches rely essentially on the (scalar) Aronsson–Euler operator and on the
theory of Viscosity Solutions for nonlinear PDE, both of which are not available when N ≥ 2 (for a general
introduction to the field we refer to the lecture notes [14,29]). Indeed, virtually all works on scalar-valued
Calculus of Variations in L∞ rely in some way on viscosity solutions and on the comparison principle. For
various interesting works, some of which are relevant to applications and some to the ∞-eigenvalue problem,
we refer to [3,5,8,9,11,12,22,26,35,37,39,40].

Vectorial and higher order variational problems involving constraints have only very recently started being
explored (see [31,33] and also [13]). In either case, the vectorial nature of the problem requires novel methods
which are not based neither on viscosity solutions, nor on the Aronsson–Euler equation. Let us also note
that the mere existence of a minimiser u∞ to (1.1) is a relatively simple matter by applying the Direct
Method of the Calculus of Variations and weak* lower-semicontinuity arguments for supremal functionals
(under the appropriate quasi-convexity assumptions for f , see e.g. [6]). However, if one wishes to derive
additional information on these (generally non-unique) minimisers, for example derive a necessary PDE
system they satisfy, then this is a far less trivial matter. Among other complications arising, the L∞ norm is
non-differentiable, non-strictly convex and lacks the property of being σ-additive with respect to the domain
argument.

The customary starting point for L∞ variational problems, which we also employ herein as well, is to
obtain minimisers as limits of respective Lp approximating variational problems as p → ∞. Although this is
perhaps not an intrinsic L∞ approach, it typically bears significant fruit as these special minimisers which
are obtained as limits of Lp minimisers always carry a finer structure. The central novelty of this work though
regards the necessary PDE conditions that such minimisers to (1.1) satisfy. Our approach in studying (1.1) is
inspired by a recent development in higher order L∞ problems by the author and Moser in [34] (related earlier
observations were made in a geometric higher order context in [38]). The main idea is that, if one rescales the
Lp Euler–Lagrange equations in a different way from the customary one used to derive the Aronsson–Euler
equations as p → ∞, then it is possible to derive a divergence structure PDE for the L∞ minimiser. This
should be understood as a divergence form counterpart of the non-divergence Aronsson–Euler equations.
However, this forcing of divergence structure to the essentially non-divergence L∞ equations has a price to be
paid: the equations involve measure coefficients arising as auxiliary variables. This is somewhat reminiscent
of the way that eigenvalues appear as parameters in an eigenvalue problem.

The observation that a divergence PDE with measure coefficients can be derived in L∞ has also been made
earlier in a work by Evans and Yu [20], and before that had also been conjectured by Aronsson himself, the
founder of Calculus of Variations in L∞, in the unpublished note [1]. However, it was not pursued further,
possibly because in the case studied in [20] as a divergence form counterpart of the ∞-Laplacian, these
measures could be highly degenerate and supported only on the boundary. This renders the PDE trivial
2
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n the interior of the domain. Nevertheless, in the higher order case employed in [34] involving the ∞-
ilaplacian, as well as in the case of constrained problems studied herein, these PDE systems with measure
oefficients provide non-trivial information. In particular, in [34] these measure were absolutely continuous
nd in fact given by harmonic functions and, for (1.1), the boundary is a nullset and these measures are
upported on “large” contact sets in the interior.

Now we present our main results. To this end, we will utilise the following hypotheses regarding the
unctions f : RN×n −→ R and g : RN −→ R:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) f ∈ C1(RN×n),
(b) f is (Morrey) quasiconvex on RN×n,
(c) exist C1, C2 > 0 with C1 ≤ C2 such that

0 < C1f(X) ≤ ∂f(X) : X ≤ C2f(X),
for all X ∈ RN×n \ {0},

(d) exist C3, . . . , C6 > 0, α > 1 and β ≤ (α − 1)/α such that
− C3 + C4|X|α ≤ f(X) ≤ C5|X|α + C6,

|∂f(X)| ≤ C5f(X)β + C6,
for all X ∈ RN×n,

(1.2)

nd ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) g ∈ C1(RN ),
(b) g is coercive, i.e for any η ∈ RN \ {0} we have

lim
t→∞

g(tη) = ∞,

(c) exist C7, C8 > 0 with C7 ≤ C8 such that
0 < C7g(η) ≤ ∂g(η) · η ≤ C8g(η),

for all η ∈ RN \ {0}.

(1.3)

n the above, ∂f and ∂g denote the corresponding derivatives of f and g respectively, whilst “:” and “·”
ymbolise the Euclidean inner products on RN×n and RN respectively. By “(Morrey) quasiconvexity” we
ean the usual concept of quasiconvexity for integral functionals as e.g. presented in [16], not the “L∞

uasiconvexity notions” of Barron–Jensen–Wang [6]. Under these hypotheses, Theorem 1 that follows is our
rst main result.

heorem 1. Suppose that (1.2) and (1.3) hold. Then, the following are true:
A) The problem (1.1) has a solution u∞ ∈ W 1,∞

0 (Ω ;RN ).
B) There exist Radon measures

M∞ ∈ M(Ω ;RN×n), ν∞ ∈ M(Ω)

nd a number Λ∞ ≥ 0 such that{
div(M∞) + Λ∞∂g(u∞)ν∞ = 0, in Ω ,

u∞ = 0, on ∂Ω ,
(1.4)

eakly in (C1
0 (Ω ;RN ))∗, with

Λ∞ =
f(Du∞)


L∞(Ω) > 0. (1.5)

urther, we have the uniform bounds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λ∞ ≥

(
max

{
C

1/α
4

diam(Ω)∥∂g∥L∞({0≤g≤1})
− C

1/α
3 , 0

})α

,

Λ∞ ≤ C5

((
g(· η)

)−1(1)
R

)α

+ C6,

(1.6)
Ω

3
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here RΩ is the radius of the largest open ball in Ω , and
(
g(· η)

)−1 is the inverse of s ↦→ g(sη) on [0, ∞) for
ny fixed η ∈ RN with |η| = 1 (well-defined by (1.3)).
C) The quadruple

(
u∞,Λ∞, M∞, ν∞

)
satisfies the next approximation properties: there exists a sequence

pj)∞
1 ⊆ (n/α, ∞) with pj → ∞ as j → ∞ and for any such p, a quadruple(

up,Λp, Mp, νp

)
∈ W 1,αp

0 (Ω ;RN ) × (0, ∞) × M(Ω ;RN×n) × M(Ω)

uch that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
up −→ u∞ in Cγ(Ω ;RN ), for all γ ∈ (0, 1),
Dup −−⇀ Du∞ in Lq(Ω ;RN×n), for all q ∈ (1, ∞),
Λp −→ Λ∞ in [0, ∞),
Mp

∗−−⇀ M∞ in M(Ω ;RN×n),
νp

∗−−⇀ ν∞ in M(Ω),

(1.7)

s p → ∞ along (pj)∞
1 . Further, up solves the minimisation problemf(Dup)


Lp(Ω) = inf
{f(Dv)


Lp(Ω) : v ∈ W 1,αp

0 (Ω ;RN ), ∥g(v)∥Lp(Ω) = 1
}

(1.8)

nd (up,Λp) solves weakly the divergence PDE system{
div
(

f(Dup)p−1∂f(Dup)
)

+ (Λp)p g(up)p−1∂g(up) = 0, in Ω ,

up = 0, on ∂Ω .
(1.9)

inally, the measures Mp, νp are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mp := 1

Ln(Ω)

(
f(Dup)

Λp

)p−1
∂f(Dup) Ln⌞Ω ,

νp := 1
Ln(Ω)g(up)p−1Ln⌞Ω .

(1.10)

We note that the meaning of the satisfaction of (1.4) weakly in (C1
0 (Ω ;RN ))∗ is as follows: for any test

ap ϕ ∈ C1
0 (Ω ;RN ), we have ∫

Ω

Dϕ : dM∞ = Λ∞

∫
Ω

∂g(u∞) · ϕ dν∞. (1.11)

In general, the matrix-valued measure M∞ in Theorem 1 implicitly depends on Du∞, but it is not clear
ow exactly, especially in the case that the derivative ∂f is nonlinear. Notwithstanding, if we strengthen our
ssumptions to include that f is quadratic, together with a more stringent condition on g, we obtain the
tronger result of Theorem 2 that follows. Theorem 2 allows to characterise M∞ as a linear function of a
special) Borel measurable representative Du⋆

∞ of the gradient of the minimiser. Additionally, we obtain much
ore detailed information on the structure of the measure coefficients arising. Our additional hypothesis

equired is the following.⎧⎨⎩ Exists A ∈ RN×n ⊗ RN×n such that, for all X ∈ RN×n

f(X) = A : X ⊗ X,
and the assumption (1.3)(c) is satisfied with C7 = C8.

(1.12)

nder (1.12), we may establish our second principal result, which is given right below.

heorem 2. Suppose that (1.2), (1.3) and (1.12) are satisfied. Then, in addition to the conclusions of

heorem 1, the following are true:

4
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A) There exists a Radon measure µ∞ ∈ M(Ω) and a Borel measurable mapping Du⋆
∞ : Ω −→ RN×n, which

is a version of Du∞ ∈ L∞(Ω ;RN×n), such that

M∞ = ∂f(Du⋆
∞) µ∞. (1.13)

ence, u∞ solves the divergence PDE system{
div
(
∂f(Du⋆

∞) µ∞
)

+ Λ∞∂g(u∞)ν∞ = 0, in Ω ,
u∞ = 0, on ∂Ω ,

(1.14)

weakly in (C1
0 (Ω ;RN ))∗.

(B) The map Du⋆
∞ can be represented as

Du⋆
∞(x) =

{
lim

k→∞
Dvjk

(x), if the limit exists,
0, otherwise,

(1.15)

where (vj)∞
1 ⊆ C1

0 (Ω ;RN ) is any sequence satisfying that⎧⎨⎩
lim

j→∞
∥vj − u∞∥(W

1,1
0 ∩L∞)(Ω) = 0,

lim sup
j→∞

∥f(Dvj)∥L∞(Ω) ≤ Λ∞

one such is constructed in the proof). Further, µ∞ can be approximated by

µp := 1
Ln(Ω)

(
f(Dup)

Λp

)p−1
Ln⌞Ω , (1.16)

as pj → ∞, in the sense that µp
∗−−⇀ µ∞ in M(Ω).

C) The measures µ∞, ν∞ concentrate whereon f(Du⋆
∞) and g(u∞) are respectively maximised over Ω .

dditionally, {
ν∞(Ω) = ν∞

({
g(u∞) = 1

})
= 1,

µ∞(Ω) = µ∞
({

f(Du⋆
∞) = Λ∞

})
= C8C−1

1 .
(1.17)

Finally, the boundary ∂Ω is a nullset for both measures Du⋆
∞µ∞ and ν∞:Du⋆

∞ µ∞
(∂Ω) = ν∞(∂Ω) = 0. (1.18)

Let us note that our results are new even in the special scalar case of the ∞-eigenvalue problem, as we
rovide a new divergence PDE describing ∞-eigenvectors, which is an alternative to the fully nonlinear PDE
nvolving the ∞-Laplacian derived in [28].

It is worth noting that our approach herein allows to bypass the need for theories of generalised solutions
or the Aronsson–Euler systems arising in L∞, which are non-divergence, highly degenerate and with
iscontinuous coefficients. Such theories require different new ideas and some heavy machinery which depart
rom standard methods involving Viscosity Solutions (see e.g. [15,30] for work in this direction). Even though
t is not expected that the Aronsson–Euler systems can become redundant in general, in this particular case
e can indeed bypass them.
Now we describe the content and the organisation of this paper. The table of contents gives an idea

egarding the order of presentation. The proofs of Theorems 1 and 2 do not appear explicitly in the main
ext, but instead are a consequence of numerous lemmas and propositions in Sections 2–6, which gradually
stablish all the claims made in the statements of Theorems 1–2, plus some additional auxiliary information
or the p-problems.
5
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t

In Section 2 we discuss our hypotheses showing that, albeit restrictive, they do nonetheless allow for large
classes of functions f, g. In particular, (1.2)(c) is compatible with the possible lack of convexity. Evidently,
(1.12) is considerably more restrictive, but still allows for a large class of functions g.

In Section 3 we prove a large part of the assertions made in Theorem 1, those which include existence
for (1.1) and approximation via corresponding Lp constrained minimisation problems. A new ingredient
here is the necessity to construct a strongly precompact class of admissible Lipschitz maps in the respective
Lp minimisation classes, due to the lack of homogeneity of the functionals. Let us also note that for this
part of the work, we could have relaxed our (Morrey) quasiconvexity assumption to include only “Barron–
Jensen–Wang L∞ quasiconvexity” as in [5,6] to prove existence of minimisers, by utilising Young measures or
quasi-minimisers for the approximating Lp problems (for which the minima need not be attained). However,
this added layer of technical complexity does not offer much insight as we need to assume considerably
stronger assumptions to derive the necessary PDE systems satisfied by constrained minimisers.

In Section 4 we establish the satisfaction of the PDE system (1.4) under the weaker assumptions
(1.2)–(1.3), by utilising tools developed in the previous sections.

In Section 5 we introduce the appropriate mollification operators required to prove Theorem 2. This
regularisation scheme utilises results on the geometry of (strongly) Lipschitz domain proved in Hofmann–
Mitrea–Taylor [24], and is closely related to the regularisation schemes used in Ern–Guermond [18]. The
main idea is to use the existence of smooth vector fields which are transversal to the Hn−1-a.e. defined
normal vector field on ∂Ω to “shrink” the function to a compactly supported one in Ω , before regularising
by convolution.

In Section 6 we complete the proofs of Theorems 1 and 2 by establishing the satisfaction of (1.14), utilising
the results established in earlier sections. Key ingredients here are the use of an energy identity for Lp

constrained minimisers and the use of Hutchinson’s measure function-pairs from [25], which are a convenient
way to bypass the heavy use of Young measures to identify weak* limits of sequences of products of measures
with functions.

Finally, in Section 7 we consider the vectorial counterpart of the ∞-eigenvalue problem on the ball (i.e.
for f, g being the Euclidean norms) and in this case we are able to compute explicit measures for which the
divergence PDE is satisfied.

2. Preliminaries and discussion of hypotheses

We begin by noting that in this paper we are using the notation

C1
0 (Ω ;RN ) := C1(Ω ;RN ) ∩ C0(Ω ;RN )

o symbolise the space of continuous mappings Ω −→ RN which vanish on ∂Ω , are C1 on Ω and whose
derivatives extend continuously as mappings Ω −→ RN×n. Further, everywhere in this paper, for p ∈ [1, ∞)
we are tacitly using the rescaled Lp-norms defined as

∥h∥Lp(Ω) :=
(

1
Ln(Ω)

∫
Ω

|h|p dLn

)1/p

=
(

−
∫
Ω

|h|p dLn

)1/p

,

which, by virtue of Hölder’s inequality, are a family of seminorms which is monotone increasing in p ∈ [1, ∞).
Regarding the notation used in (1.12), we note that A is a fourth order tensor, seen as a matrix over the
matrix space RN×n and “:” therein is the corresponding Euclidean inner product in RN×n ⊗ RN×n:

A : B =
∑ ∑

AαiβjBαiβj .

1≤α,β≤N 1≤i,j≤n

6
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vidently, “⊗” symbolises the tensor product of matrices, namely X ⊗ Y is the fourth order tensor with
omponents XαiYβj , when X, Y ∈ RN×n. We continue by noting that assumption (1.2)(c) readily implies

that
f > 0 on RN×n \ {0}, f(0) = 0 and f is radially increasing on RN×n, (2.1)

in the sense that t ↦→ f(tX) is increasing on (0, ∞), for any fixed X ∈ RN×n \ {0}. Similarly, assumption
1.3)(c) implies that

g > 0 on RN \ {0}, g(0) = 0 and g is radially increasing on RN . (2.2)

Albeit restrictive, there are nonetheless numerous (non-convex) functions which satisfy (1.2)–(1.3). As an
illustration, in the example below we construct a large class of functions which satisfy the inequality (c)
even though they are not radially symmetric. This class of course includes all quadratic functions. We argue
on RN×n only, but the construction trivially applies to RN as well. Further, we remark that (1.2)(c) is
ompatible with (1.2)(b).

xample 3. Let S be a compact C1 hypersurface on RN×n satisfying

S ⊆ B3/2(0) \ B1/2 (2.3)

and that any half-ray span+[E] := {tE : t ≥ 0} along a unit direction E ∈ RN×n intersects S at exactly one
point:

H0(span+[E] ∩ S) = 1.

We further suppose that the (outwards orientated) unit normal vector field nS : S −→ RN satisfies
nS(X) : X > 0, namely the angle between the normal vector at X and the direction X itself is acute.
Let α > 1 and define f to be the unique α-homogeneous function on RN×n satisfying

S = {f = 1}.

Explicitly, f can be represented as

f(X) := inf
{

t > 0 : [0, X) ∩ t1/αS = ∅
}

,

where [0, X) is the straight line segment {tX : 0 ≤ t < 1} and t1/αS is the dilation of S by t1/α. Then, by
our assumptions on S exists ε0 ∈ (0, 1) such that

1 − ε0

2 ≤ (1 − ε0)|X| ≤ nS(X) : X ≤ |X| ≤ 3
2 ,

or all X ∈ S. Since ∂f(X) = nS(X) and also f(X) = 1 for X ∈ S, the above inequalities yield

1 − ε0

2 f(X) ≤ ∂f(X) : X ≤ 3
2f(X),

or all X ∈ S. Finally, since
RN×n =

⋃
t≥0

t1/αS,

y noting that f is α-homogeneous (which implies that ∂f is (α − 1)-homogeneous), the obtained inequality
n fact holds on the entire space RN×n.
7
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Now we derive some consequences of the satisfaction of assumptions (1.2) and (1.12). First note that if
C7 = C8 ≡ C in (1.3), then we have Cg(η) = ∂g(η) · η as equality. Even though this is restrictive, there
re still several functions satisfying this condition. For instance, for any (possibly non-symmetric) matrix
∈ RN ⊗ RN and γ > 0, the function given by

g(η) := (A : η ⊗ η)2γ

atisfies the identity with C = 4γ, as

∂g(η) · η =
{

2γ(A : η ⊗ η)2γ−1A :
(
(.) ⊗ η + η ⊗ (.)

)}
· η = 4γ g(η),

or all η ∈ RN .

emma 4. Suppose that f satisfies (1.2) and (1.12). Then:

(1) By setting

SA := A + A⊤(1,2)↔(3,4)

2 ,

where A⊤(1,2)↔(3,4) is the adjoint of the linear map A : RN×n −→ RN×n, we have the representations

f(X) = SA : X ⊗ X =
⏐⏐√SAX

⏐⏐2,

for all X ∈ RN×n. In particular, the symmetric part SA of the tensor A is positive definite (i.e.
non-negative) and hence the square root

√
SA : RN×n −→ RN×n is well defined.

(2) We have the identity
∂f(X) = A :

(
(·) ⊗ X + X ⊗ (·)

)
,

for all X ∈ RN×n.
(3) f is non-negative and convex on RN×n with {f = 0} = {0}.
(4) Let σ denote the spectrum of a linear operator. Then, we have the bounds(

min σ(SA)
)
|X|2 ≤ f(X) ≤ |A||X|2,

for all X ∈ RN×n.

Note that the adjoint (transpose) operator A⊤(1,2)↔(3,4) is the operator which in index form satisfies(
A⊤(1,2)↔(3,4)

)
αiβj

= Aβjαi,

for all α, β ∈ {1, . . . , N} and all i, j ∈ {1, . . . , n}. This renders SA ∈ RN×n ⊗ RN×n a real self-adjoint
(symmetric) fourth order tensor (seen as a matrix over matrices).

Proof of Lemma 4. (1) The identity f(X) = SA : X ⊗ X is immediate as the rank-one tensor X ⊗ X is
symmetric, hence A = SA on the symmetric subspace of RN×n ⊗ RN×n. Further, by (1.12), (1.2) holds for
α = 2 and by (2.1) we have

SA : X ⊗ X ≥ 0 and SA : X ⊗ X ≥ C4|X|2 − C3,

for all X ∈ RN×n. By the spectral theorem it follows that the symmetric tensor SA is positive definite (i.e.

non-negative) and σ(SA) ⊆ [0, |A|]. Further, the estimate above implies that SA is actually strictly positive

8
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nd min σ(SA) > 0: indeed, if hypothetically there existed X0 ̸= 0 with SA : X0 ⊗ X0 = 0, then for any
> 0

0 = SA : (tX0) ⊗ (tX0) ≥ t2C4|X0|2 − C3,

hich leads to a contradiction as t → ∞. Finally, since A is positive and symmetric,
√
SA exists and is also

a positive symmetric operator satisfying SA =
√
SA

√
SA. Therefore,

f(X) = SA : X ⊗ X

=
(√

SA
√
SA

⊤(1,2)↔(3,4)
)

: X ⊗ X

=
(√

SAX
)

:
(√

SAX
)

=
⏐⏐√SAX

⏐⏐2,

or any X ∈ RN×n.
2) Follows by a direct differentiation.
3) Follows by part (1) by noting that f is the restriction of the convex quadratic form (X, Y ) ↦→ SA : X ⊗Y

n the diagonal of RN×n × RN×n.
4) Follows directly from part (1), by recalling the variational definition of the minimum eigenvalue of a
ymmetric operator. □

. Existence in Lp and compactness as p → ∞

In order to solve the approximating Lp constrained problems, we first need the following result which
stablishes the existence of strongly converging (energy comparison) maps as p → ∞ in the respective
onstrained admissible classes.

emma 5. For any v ∈ W 1,∞
0 (Ω ;RN ) \ {0}, there exists (tp)p∈(n/α,∞] ⊆ (0, ∞) with tp −→ t∞ as p → ∞,

uch that
∥g(tpv)∥Lp(Ω) = 1

or all p ∈ (n/α, ∞]. Further, if ∥g(v)∥L∞(Ω) = 1, then t∞ = 1.

roof of Lemma 5. Fix v ∈ W 1,∞
0 (Ω ;RN ) \ {0} and set

ρ∞(t) := max
x∈Ω

g(t v(x)), t ≥ 0.

hen, by (1.3) and (2.2) we have that ρ(0) = 0 and also ρ∞ ∈ C([0, ∞)). Now we show that ρ∞ is strictly
ncreasing. Let us begin by showing first it is non-decreasing. For any s > 0 and η ∈ RN \ {0}, (1.3) implies

0 < C7
g(sη)

s
≤ ∂g(sη) · η = d

ds

(
g(sη)

)
,

hich yields that s ↦→ g(sη) is strictly increasing on (0, ∞). Then, for any x ∈ Ω and t > s ≥ 0 we have
hat g(s v(x)) ≤ g(t v(x)) (with strict inequality if v(x) ̸= 0), and therefore

ρ∞(s) = max
x∈Ω

g(s v(x)) ≤ max
x∈Ω

g(t v(x)) = ρ∞(t).

Hence, ρ∞ is non-decreasing. We now show that t ↦→ ρ∞(t) is actually strictly increasing on (0, ∞). Suppose
for the sake of contradiction that this is not the case. Then, by the continuity of ρ , there exists t , ε > 0
∞ 0 0

9
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uch that ρ∞ ≡ ρ∞(t0) on the interval (t0 − ε0, t0 + ε0). However, by Danskin’s theorem [17], the derivative
′(t+

0 ) from the right exists, and is given by the formula

ρ′
∞(t+

0 ) = max
x∈Ωt0

{
∂g
(
t0v(x)

)
· v(x)

}
here

Ωt0 =
{

x̄ ∈ Ω : ρ∞(t0) = g
(
t0v(x̄)

)}
.

y utilising (1.3), the expression for ρ′
∞(t+

0 ) yields

ρ′
∞(t+

0 ) = 1
t0

max
x∈Ωt0

{
∂g
(
t0v(x)

)
· t0v(x)

}
≥ C7

t0
max

x∈Ωt0
g
(
t0v(x)

)
= C7

t0
ρ∞(t0)

> 0.

his is a contradiction to ρ∞ being constant on (t0, t0 + ε0), hence establishing that ρ∞ is indeed strictly
ncreasing. Recall now that by (1.3)(b) we also have g(sη) → ∞ as s → ∞. Thus, for any fixed x̄ ∈ Ω for
hich v(x̄) ̸= 0, we have

lim
t→∞

ρ∞(t) ≥ lim
t→∞

g
(
t v(x̄)

)
= ∞.

he mean value theorem then implies that there exists a number t∞ > 0 such that ρ∞(t∞) = 1, namely

∥g(t∞v)∥L∞(Ω) = 1.

dditionally, if ∥g(v)∥L∞(Ω) = 1 to begin with, then t∞ = 1. Fix now p ∈ (n/α, ∞) and set

ρp(t) := −
∫
Ω

g
(
t v(x)

)p dx, t ≥ 0.

Then, by (2.2) we have ρp(0) = 0 and also the strict monotonicity of s ↦→ g(se) on (0, ∞). Then, the
monotone convergence theorem yields that ρp(t) → ∞ as t → ∞. Therefore, there exists tp > 0 such that
ρp(tp) = 1, namely

∥g(tpv)∥Lp(Ω) = 1.

e now claim that tp −→ t∞ as p → ∞. Assuming for the sake of contradiction that tp−̸→ t∞ as p → ∞,
his means there exists a sequence (tpj

)∞
1 ⊆ (n/α, ∞) and a t0 ∈ [0, t∞) ∪ (t∞, ∞] such that tpj

−→ t0 as
→ ∞. Further, the sequence (tpj

)∞
1 can be assumed to be monotone (either increasing or decreasing). We

rst show that t0 < ∞. Indeed, if we had t0 = ∞, then the sequence (tpj
)∞
1 must be monotone increasing.

ence, by (1.3)(b) we have g(tpj
v(x)) ↗ ∞ as j → ∞, for any x ∈ Ω ∩ {v ̸= 0}. The monotone convergence

heorem then yields the contradiction

1 = −
∫
Ω

g(tpj
v)pj dLn ↗ ∞.

herefore, we must have t0 < ∞ and hence t0 ∈ [0, t∞) ∪ (t∞, ∞). If now tpj
−→ t0, we have tpj

v −→ t0v

n C(Ω ;RN ), as j → ∞. By the continuity of g, this implies g(tpj
v) −→ g(t0v) in C(Ω), as j → ∞. Since

∥ · ∥Lp(Ω) −→ ∥ · ∥L∞(Ω) as p → ∞ in the pointwise sense on L∞(Ω), we infer that
1 = ∥g(tpj

v)∥L
pj (Ω)

= ∥g(t0v)∥L
pj (Ω) + O

(g(tpj
v) − g(t0v)


L∞(Ω)

)
= ∥g(t0v)∥L

pj (Ω) + O
(
|tpj

− t0|
)

j→∞−→ ∥g(t0v)∥L∞(Ω)

= ρ∞(t0),

which is a contradiction if t∞ ̸= t0 due to the strict monotonicity of ρ∞. □

10
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Now we proceed to show existence of solution to the approximate constrained minimisation problem.

Lemma 6. For any p > n/α, the minimisation problem (1.8) has a solution up ∈ W 1,αp
0 (Ω ;RN ).

Proof of Lemma 6. Let p ∈ (n/α, ∞) be fixed. We begin by noting that, by virtue of Lemma 5, the
admissible class is non-empty: for any fixed v0 ∈ W 1,∞

0 (Ω ;RN ) with v0 ̸≡ 0, there exists tp > 0 such
hat ∥g(tpv0)∥Lp(Ω) = 1, yielding that tpv0 is in the admissible class of (1.8). Next, since by (1.2)(b) f is
Morrey) quasiconvex in RN×n, so is fp, as a result of Jensen’s inequality: indeed, for any fixed X ∈ RN×n

nd ϕ ∈ W 1,∞
0 (Ω ;RN ), we have

fp(X) ≤

(
−
∫
Ω

f(X + Dϕ) dLn

)p

≤ −
∫
Ω

fp(X + Dϕ) dLn.

Further, by (1.2)(d) fp satisfies the estimate

−C3(p) + C4(p)|X|αp ≤ fp(X) ≤ C5(p)|X|αp + C6(p),

or some p-dependent constants C3(p), . . . , C6(p) > 0. By standard results on quasiconvex integral func-
ionals (see e.g. [16]), it follows that ∥f(D(·))∥Lp(Ω) is weakly lower semi-continuous and coercive in the
pace W 1,αp

0 (Ω ;RN ). Further, by the Morrey embedding W 1,αp
0 (Ω ;RN ) ⊆ C1− n

αp (Ω ;RN ), it follows that
the admissible class is weakly closed as the functional ∥g(·)∥Lp(Ω) is weakly continuous on W 1,αp

0 (Ω ;RN ).
ence, there exists a minimiser up which solves (1.8), as claimed. □

Now we consider the Euler–Lagrange equations that the approximate minimiser up satisfies. Unsurpris-
ngly, they involve a Lagrange multiplier, which arises by the integral constraint ∥g(·)∥Lp(Ω) = 1.

emma 7. For any p > n/α, let up be the minimiser of (1.8) given by Lemma 6. Then, there exists λp ∈ R
such that the pair (up, λp) ∈ W 1,αp

0 (Ω ;RN ) × R satisfies weakly the PDE system{
div
(

f(Dup)p−1∂f(Dup)
)

+ λp g(up)p−1∂g(up) = 0, in Ω ,

up = 0, on ∂Ω .

roof of Lemma 7. Follows by standard results on Lagrange multipliers in Banach spaces (see e.g.
eidler [41, Th. 43.D, p. 290]). □

Now we obtain additional information on the family of eigenvalues (λp)p>n/α.

emma 8. For any p > n/α, we set

Lp :=
f(Dup)


Lp(Ω).

hen, there exists Λp > 0 such that
λp = (Λp)p

nd also

0 <

(
C1

C8

)1/p

Lp ≤ Λp ≤
(

C2

C7

)1/p

Lp.

Proof of Lemma 8. We begin by noting that Lp > 0, namely the infimum over the admissible class in

(1.8) is strictly positive, as a consequence of the constraint and our assumptions (1.2)–(1.3) (via (2.1)–(2.2)):

11
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he only map u ∈ W 1,αp
0 (Ω ;RN ) for which ∥f(Du)∥Lp(Ω) = 0 is u0 ≡ 0, but u0 is not in the admissible

lass because ∥g(u0)∥Lp(Ω) = 0. Next, by testing against up in the weak formulation of the Euler–Lagrange
quations (Lemma 7), we have∫

Ω

f(Dup)p−1∂f(Dup) : Dup dLn = λp

∫
Ω

g(up)p−1∂g(up) · up dLn.

y (1.2)(c) and (1.3)(c) we have{
C1f(Dup) ≤ ∂f(Dup) : Dup ≤ C2f(Dup),

C7g(up) ≤ ∂g(up) · up ≤ C8g(up),
n-a.e. on Ω . Hence, since f, g ≥ 0, integration gives⎧⎪⎪⎨⎪⎪⎩

C1 −
∫
Ω

fp(Dup) dLn ≤ −
∫
Ω

fp−1(Dup)∂f(Dup) : Dup dLn ≤ C2 −
∫
Ω

fp(Dup) dLn,

C7 −
∫
Ω

gp(up) dLn ≤ −
∫
Ω

gp−1(up)∂g(up) · up dLn ≤ C8 −
∫
Ω

gp(up) dLn.

By recalling that
−
∫
Ω

fp(Dup) dLn = (Lp)p > 0 and −
∫
Ω

gp(up) dLn = 1,

it follows that λp > 0. By virtue of the above, by defining Λp := (λp)1/p > 0, we have the estimates

C1(Lp)p ≤ λpC8, C2(Lp)p ≥ λpC7,

which lead to the desired inequality. □

We now show the existence of solution to the problem (1.1) and the compactness of the class of p-pairs
of eigenvectors–eigenvalues (up,Λp)p>n/α.

Proposition 9. There exists (u∞,Λ∞) ∈ W 1,∞
0 (Ω ;RN ) × (0, ∞) such that, along a sequence (pj)∞

1 we
have ⎧⎨⎩ up −→ u∞ in Cγ(Ω ;RN ), for all γ ∈ (0, 1),

Dup −−⇀ Du∞ in Lq(Ω ;RN×n), for all q ∈ (1, ∞),
Λp −→ Λ∞ in (0, ∞).

Further, u∞ solves the minimisation problem (1.1) and also Λ∞ is given by (1.5). Finally, Λ∞ satisfies the
uniform bounds (1.6).

Proof of Proposition 9. Fix p > n/α, q ≤ p and a map v0 ∈ W 1,∞
0 (Ω ;RN ) with v0 ̸≡ 0. Then, by

Lemma 5 there exists (tp)p∈(n/α,∞] ⊆ (0, ∞) with tp −→ t∞ as p → ∞, such that ∥g(tpv0)∥Lp(Ω) = 1 for all
p ∈ (n/α, ∞]. By Hölder’s inequality and minimality, this allows to estimate

∥f(Dup)∥Lq(Ω) ≤ ∥f(Dup)∥Lp(Ω) ≤ ∥f(D(tpv0))∥Lp(Ω) ≤ ∥f(tpDv0)∥L∞(Ω).

ence,
sup
q≥p

∥f(Dup)∥Lq(Ω) ≤ sup
q≥p

∥f(tpDv0)∥L∞(Ω) < ∞,

nd the finiteness of the last term is a consequence of the compactness of (tp)p>n/α. Further, by (1.2) we
ave the lower bound fq(X) ≥ C4(q)|X|αq − C3(q) for some q-dependent constants C3(q), C4(q) > 0 and all

∈ RN×n. When combined with the previous estimate, this lower bound implies

sup ∥Dup∥Lαq(Ω) ≤ C(q) < ∞,

q≥p

12
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or some q-dependent C(q) > 0. Further, application of Poincaré’s inequality improves the above estimate
o

sup
q≥p

∥up∥W 1,αq(Ω) ≤ C(q) < ∞,

or a new constant C(q) > 0. Hence, standard compactness and diagonal arguments in Sobolev spaces imply
he existence of a map

u∞ ∈
⋂

n/α<p<∞

W 1,αp
0 (Ω ;RN )

nd (for any sequence) a subsequence such that the claimed modes of convergence hold true as p → ∞ along
his subsequence. Fix now any v ∈ W 1,∞

0 (Ω ;RN ) satisfying ∥g(v)∥L∞(Ω) = 1. Note that, necessarily, v ̸≡ 0
y virtue of (2.2). By Lemma 5, there exists (tp)p∈(n/α,∞) ⊆ (0, ∞) with tp −→ 1 as p → ∞, such that
g(tpv)∥Lp(Ω) = 1 for all p > n/α. By Lemma 6, the definition of Lp in Lemma 8, Hölder inequality and
inimality, we estimate

∥f(Dup)∥Lq(Ω) ≤ Lp ≤ ∥f(tpDv)∥Lp(Ω)

or any such v. By the weak lower semi-continuity of the functional ∥f(D(·))∥Lq(Ω) on W 1,αq
0 (Ω), by letting

→ ∞ along a subsequence, we obtain for the given fixed v ∈ W 1,∞
0 (Ω ;RN ) that

∥f(Du∞)∥Lq(Ω) ≤ lim inf
pj→∞

Lp ≤ lim sup
pj→∞

Lp ≤ ∥f(Dv)∥L∞(Ω).

n conclusion, by letting also q → ∞, we deduce the energy inequality⎧⎨⎩ ∥f(Du∞)∥L∞(Ω) ≤ lim inf
pj→∞

Lp ≤ lim sup
pj→∞

Lp ≤ ∥f(Dv)∥L∞(Ω),

for any v ∈ W 1,∞
0 (Ω ;RN ) with ∥g(v)∥L∞(Ω) = 1.

ext, we note that Du∞ ∈ L∞(Ω ;RN×n) (and is not merely in the intersection of Lαp(Ω ;RN×n) for
∈ (n/α, ∞)). This follows by (1.2), which yields

∥f(Du∞)∥L∞(Ω) ≥ C4∥Du∞∥α
L∞(Ω) − C3.

s a result, by Morrey’s estimate we have that u∞ ∈ W 1,∞
0 (Ω ;RN ). Further, u∞ is in the admissible class

f (1.1), since by the uniform convergence up −→ u∞ on Ω as p → ∞ along a subsequence, the continuity
f g, we have

1 = ∥g(up)∥Lp(Ω)

= ∥g(u∞)∥Lp(Ω) +
(
∥g(up)∥Lp(Ω) − ∥g(u∞)∥Lp(Ω)

)
= ∥g(u∞)∥Lp(Ω) + O

(
∥g(up) − g(u∞)∥Lp(Ω)

)
= ∥g(u∞)∥Lp(Ω) + O

(
∥g(up) − g(u∞)∥L∞(Ω)

)
−→ ∥g(u∞)∥L∞(Ω),

s p → ∞ subsequentially. In conclusion, by the arbitrariness of the map v in our energy inequality, it follows
hat u∞ indeed solves the minimisation problem (1.1).

Let now Λ∞ be defined by
Λ∞ := ∥f(Du∞)∥L∞(Ω).

ote that the above definition of Λ∞ as the infimum in (1.1) readily implies that it must be strictly positive.
ndeed, by (2.1)–(2.2), for any map u0 in the admissible class of (1.1) for which we have ∥f(Du0)∥L∞(Ω) = 0,
t follows that u0 ≡ 0, which is a contradiction since we must also have ∥g(u0)∥L∞(Ω) = 0 < 1. Further, the
hoice v := u∞ in our energy inequality implies that Lp −→ Λ∞ as p → ∞ along a subsequence. Additionally,
y Lemma 8 we have that |L − Λ | −→ 0 as p → ∞, hence Λ −→ Λ as p → ∞.
p p p ∞

13
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To complete the proof, it remains to establish the claimed uniform bounds on Λ∞. By Poincaré’s
inequality, since g(0) = 0, we have

1 = ∥g(u∞)∥L∞(Ω) ≤ diam(Ω)∥D(g(u∞))∥L∞(Ω)

≤ diam(Ω)∥∂g∥L∞(u∞(Ω))∥Du∞∥L∞(Ω).

ince g ≥ 0 and ∥g(u∞)∥L∞(Ω) = 1, this yields that 0 ≤ g(u∞) ≤ 1 everywhere on Ω . Hence, we have
u(Ω) ⊆ {0 ≤ g ≤ 1}, which in turn implies

1 ≤ diam(Ω)∥∂g∥L∞({0≤g≤1})∥Du∞∥L∞(Ω).

ince by (1.2) we have |X| ≤ C
−1/α
4

(
f(X) + C3

)1/α for any X ∈ RN×n, we obtain

1 ≤ diam(Ω)∥∂g∥L∞({0≤g≤1})
∥f(Du∞)∥1/α

L∞(Ω) + C
1/α
3

C
1/α
4

.

The above inequality readily leads to the claimed lower bound for Λ∞ in (1.6).
For the upper bound, consider the Lipschitz function dist(·, ∂Ω) of distance from the boundary ∂Ω ,

xtended by zero on Rn \ Ω . Since dist(·, ∂Ω) ∈ W 1,∞
0 (Ω), for any fixed η ∈ RN with |η| = 1 we may

nvoke Lemma 5 to find t∞ > 0 such that ξ∞ := t∞dist(·, ∂Ω)η is in the admissible class for (1.1), namely
g(ξ∞)∥L∞(Ω) = 1. Since |D(dist(·, ∂Ω))| ≤ 1 Ln-a.e. on Ω , by minimality and (1.2), we estimate

Λ∞ = ∥f(Du∞)∥L∞(Ω)

≤ ∥f(Dξ∞)∥L∞(Ω)

≤
f
(
t∞η ⊗ D(dist(·, ∂Ω))

)
L∞(Ω)

≤ C5

(
t∞
η ⊗ D(dist(·, ∂Ω))


L∞(Ω)

)α

+ C6

≤ C5(t∞)α + C6.

ow we need an estimate for t∞. To this end, let

RΩ := sup{r > 0 | ∃ x ∈ Ω : Br(x) ⊆ Ω}.

hen, there exists an x̄ ∈ Ω such that BRΩ
(x̄) ⊆ Ω , and this is the largest such ball. Hence, dist(x̄, ∂Ω) =

Ω . Since by construction, ξ∞ satisfies ∥g(ξ∞)∥L∞(Ω) = 1, it follows that

1 = sup
Ω

g
(
t∞dist(·, ∂Ω)η

)
≥ g

(
t∞dist(x̄, ∂Ω)η

)
= g(t∞RΩη).

y (2.2), we have that the function [0, ∞) ∋ s ↦→ g(sη) ∈ [0, ∞) is strictly increasing and onto because
(0) = 0 and g(sη) → ∞ as s → ∞. Hence, its inverse function (g(· η))−1 : [0, ∞) −→ [0, ∞) is well defined.
herefore, since g(t∞RΩη) ≤ 1, we have

t∞RΩ = (g(· η))−1(g(RΩη)
)

≤ (g(· η))−1(1).

ombining the previous estimates, we infer that

Λ∞ ≤ C5

(
1

RΩ

(
g( · η)

)−1(1)
)α

+ C6.
14
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he above estimate completes the claimed uniform upper bound on Λ∞ in (1.6), and therefore Proposition 9
nsues. □

. The divergence PDE system in L∞, part I

Using the tools already developed, in this section we establish the satisfaction of the divergence PDE
ystem (1.4) by the pair (u∞,Λ∞), under only assumptions (1.2)–(1.3). Later in Section 6 we will establish
atisfaction of (1.14) under the additional stronger assumption (1.12). We begin with the limiting measures.

emma 10. For any p > n/α + 2, consider the non-negative measures µp, νp ∈ M(Ω) and also the
matrix-valued measure Mp ∈ M(Ω ;RN×n), given by (1.10) and (1.16). Then, for all large enough p we have
he bounds ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µp(Ω) ≤
(

C8

C1

)1− 1
p

,

∥Mp∥(Ω) ≤
(

C8

C1

)1− 1
p(

C5
(
Λ∞ + 1

)β + C6

)
,

and, by setting ω(p) :=
g(up) − g(u∞)


L∞(Ω), we have⎧⎪⎨⎪⎩

1
1 + ω(p) ≤ νp(Ω) ≤ 1,

νp

({
g(u∞) < ∥g(u∞)∥L∞(Ω) − 2ω(q)

})
≤
(
1 − ω(q)

)p−1
,

or p, q ≥ n/α + 2 large enough. Consequently, there exists a further subsequence and limiting measures
∞, ν∞ ∈ M(Ω) and M∞ ∈ M(Ω ;RN×n) such that µp

∗−−⇀ µ∞ and νp
∗−−⇀ ν∞ in M(Ω), and also Mp

∗−−⇀ M∞

n M(Ω ;RN×n), as p → ∞, along this subsequence. Additionally, ν∞ satisfies

ν∞(Ω) = ν∞

({
g(u∞) = ∥g(u∞)∥L∞(Ω)

})
= 1, ν∞(∂Ω) = 0.

Proof of Lemma 10. By (1.16) and Lemma 8 we estimate

µp(Ω) = −
∫
Ω

(
f(Dup)

Λp

)p−1
dLn

≤ 1
Λp−1

p

(
−
∫
Ω

f(Dup)p dLn

)p−1
p

=
(

Lp

Λp

)p−1

≤
(

C8

C1

)1− 1
p

.

Further, for p > n/α + 2, by (1.10) and assumption (1.2)(d), we estimate

∥Mp∥(Ω) = −
∫
Ω

(
f(Dup)

Λp

)p−1⏐⏐∂f(Dup)
⏐⏐ dLn

≤ 1
Λp−1

p

−
∫
Ω

f(Dup)p−1
(

C5f(Dup)β + C6

)
dLn

= 1
p−1 −
∫ (

C5f(Dup)p−1+β + C6f(Dup)p−1
)

dLn.

Λp Ω

15
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n view of Lemma 8 and Proposition 9, for large p the previous estimate yields

∥Mp∥(Ω) ≤ C5

Λp−1
p

(
−
∫
Ω

f(Dup)p dLn

)p−1+β
p

+ C6

Λp−1
p

(
−
∫
Ω

f(Dup)p dLn

)p−1
p

= C5
Lp−1+β

p

Λp−1
p

+ C6
Lp−1

p

Λp−1
p

=
(

Lp

Λp

)p−1(
C5Lβ

p + C6
)

≤
(

C8

C1

)1− 1
p(

C5(Λ∞ + 1)β + C6

)
,

as claimed. Similarly, by (1.10) and the fact that ∥g(up)∥Lp(Ω) = 1, we may estimate

νp(Ω) = −
∫
Ω

g(up)p−1 dLn ≤
(

−
∫
Ω

g(up)p dLn

)p−1
p

= 1.

ext, by setting ω(p) := ∥g(up) − g(u∞)∥L∞(Ω) and noting that ω(p) → 0 as p → ∞ (along a subsequence)
ue to the uniform convergence g(up) −→ g(u∞) on Ω , we estimate

1 = −
∫
Ω

g(up)p dLn

= −
∫
Ω

g(up)p−1g(up) dLn

≤ −
∫
Ω

g(up)p−1
(

g(u∞) + ∥g(up) − g(u∞)∥L∞(Ω)

)
dLn

≤ −
∫
Ω

g(up)p−1(1 + ω(p)
)

dLn,

here in the last step we also used that g(u∞) ≤ 1 on Ω , as a consequence of the continuity and the
on-negativity of g(u∞) and the constraint ∥g(u∞)∥L∞(Ω) = 1. Hence, the above inequality shows that

1 ≤ νp(Ω)
(
1 + ω(p)

)
.

inally, let us fix q ≥ n/α + 2 and define the open set

Aq :=
{

g(u∞) < ∥g(u∞)∥L∞(Ω) − 2ω(q)
}

.

e note that the desired remaining estimate for νp can be deduced by the more general result [32,
roposition 7], but for the sake of completeness we provide a self-contained simpler proof. For p and ε

s above, we estimate

νp(Aq) = 1
Ln(Ω)

∫
Aq

g(up)p−1 dLn

≤ 1
Ln(Ω)

∫
Aq

(
g(u∞) + ∥g(up) − g(u∞)∥L∞(Ω)

)p−1
dLn

≤ 1
Ln(Ω)

∫
Aq

(
g(u∞) + ω(q)

)p−1 dLn.

ence, by noting that Aq =
{

g(u∞) < 1 − 2ω(q)
}

, which a result of our earlier observations, the above
stimate implies

νp(Aq) ≤ 1
Ln(Ω)

∫
Aq

((
1 − 2ω(q)

)
+ ω(q)

)p−1
dLn

≤ Ln(Aq)
Ln(Ω)

(
1 − ω(q)

)p−1

≤
(
1 − ω(q)

)p−1
.

This establishes all the claimed estimates.

16
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To conclude the proof, it remains to establish the claims regarding the limiting case. By standard
sequential weak* compactness results in the spaces of Radon measures, together with the boundedness of
(Dup)p>n/α in L2α(Ω ;RN×n) (by virtue of Proposition 9), we obtain the existence of limit measures µ∞,
M∞ and ν∞ such that µp

∗−−⇀ µ∞, Mp
∗−−⇀ M∞ and νp

∗−−⇀ ν∞ in the corresponding spaces over Ω , along
subsequence as p → ∞. We now also show the additional properties of the measure ν∞. By the weak*

ower-semicontinuity of measures on open sets, we have

ν∞(Aq) ≤ lim inf
p→∞

νp(Aq) = 0,

or any q fixed. Hence, by letting q → ∞, the upper continuity of the measure ν∞ implies

ν∞
({

g(u∞) < 1
})

= lim
q→∞

ν∞
({

g(u∞) < 1 − 2ω(q)
})

= 0.

his implies that ν∞
(
{g(u∞) = 1}

)
= ν∞(Ω). Further, since the function h ≡ 1 belongs to C(Ω), the

ubsequential weak* convergence νp
∗−−⇀ ν∞ implies

ν∞(Ω) =
∫
Ω

h dν∞ = lim
p→∞

∫
Ω

h dνp = lim
p→∞

νp(Ω) ≥ lim
p→∞

1
1 + ω(p) = 1.

inally, since u∞ ≡ 0 on ∂Ω and by (2.2) we get g(0) = 0, it follows that g(u∞) ≡ 0 on ∂Ω . Thus, we infer
hat ∂Ω ⊆

{
g(u∞) < 1

}
, which yields that ν∞(∂Ω) = 0. □

Now we may establish the satisfaction of the PDE system (1.4) for the quadruple (u∞,Λ∞, M∞, ν∞)
nder only assumptions (1.2) and (1.3).

emma 11. Let M∞ ∈ M(Ω ;RN×n) and ν∞ ∈ M(Ω) be the Radon measures obtained in Lemma 10.
hen, the pair (u∞,Λ∞) satisfies the divergence PDE system (1.4), weakly in (C1

0 (Ω ;RN ))∗ (namely (1.11)
holds true for any ϕ ∈ C1

0 (Ω ;RN )).

roof of Lemma 11. Fix ϕ ∈ C1
0 (Ω ;RN ) and p > n/α + 2. By (1.10) and (1.16), we may rewrite the

ivergence PDE system (1.9) as{
div
(
∂f(Dup)µp

)
+ Λp ∂g(up)νp = 0, in Ω ,

up = 0, on ∂Ω .

y the measure identity
Mp = ∂f(Dup)µp,

he weak formulation of the PDE means that for any ϕ ∈ C1
0 (Ω ;RN ), we have∫

Ω

Dϕ : dMp = Λp

∫
Ω

∂g(up) · ϕ dνp.

y Proposition 9, we have that Λp −→ Λ∞ and also up −→ u∞ uniformly on Ω as p → ∞ along
subsequence. By (1.3), we also have that ∂g(up) −→ ∂g(u∞) uniformly on Ω as p → ∞, along the

ame subsequence. The conclusion follows directly by the application of Lemma 10 and the strong–weak*
ontinuity of the duality pairing C(Ω) × M(Ω) −→ R. □

5. Regularisations up to the boundary

In this section we introduce the appropriate mollifications that will be utilised in the next section to
show the satisfaction of Eq. (1.14). This regularisation scheme utilises results on the geometry of (strongly)
17
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ipschitz domain from Hofmann–Mitrea–Taylor [24], and is closely related to the regularisation schemes
sed in Ern–Guermond [18].

To begin with, let n ∈ L∞(∂Ω , Hn−1;Rn) be the outer unit normal vector field on ∂Ω . Then, (see
ofmann–Mitrea–Taylor [24, Sec. 2, 4] for the proofs of the claims in the paragraph) there exists a vector
eld ξ ∈ C∞

c (Rn;Rn) that is globally transversal to n on ∂Ω , namely exists δ0 > 0 such that

ξ · n ≥ δ0, Hn−1-a.e. on ∂Ω .

urther, ξ can be chosen to have length |ξ| ≡ 1 in an open collar {dist(·, ∂Ω) < r0} around ∂Ω for some
0 > 0 and to vanish on {dist(·, ∂Ω) > 2r0}. If ∂Ω is a compact C∞ manifold, then one can choose ξ := n

nd the transversality condition is satisfied for δ0 = 1. Further, there exists ℓ, ε0 > 0 such that, for all
∈ (0, ε0) we have

dist
(
x + εℓξ(x), ∂Ω

)
≥ 2ε, for all x ∈ ∂Ω .

Using the above observations from [24], we may now define our mollifiers. Fix ε ∈ (0, ε0) and some
∈ C∞

c (B1(0)) satisfying ϱ ≥ 0 and ∥ϱ∥L1(Rn) = 1. For any v ∈ L∞(Ω ;RN ), extended by zero on Rn \ Ω ,
e define Kεv : Rn −→ RN by setting

(Kεv)(x) :=
∫
Rn

v
(
x + εℓξ(x) − εy

)
ϱ(y) dy.

hat this regularisation does is to “compress” v to a map which is compactly supported inside Ω before
ollifying. However, for technical convenience it is not exactly equal to the standard mollifier of the

compressed” function v
(
· + εℓξ(·)

)
, which instead equals the convolution

1
εn

ϱ
( ·

ε

)
∗ v
(
· + εℓξ(·)

)
(this would require to put “ξ(x − εy)” instead of “ξ(x)” in the formula defining Kε). The advantage of this
light variance, as we will see right next, is a simpler formula for the derivatives.

The next result lists the main properties of this mollification scheme.

roposition 12. The family of regularisation operators (Kε)0<ε<ε0 satisfy the next properties:
1) For any v ∈ L∞(Ω ;RN ), we have Kεv ∈ C∞

c (Ω ;RN ) and also Kεv −→ v as ε → 0 a.e. on Ω and in
q(Ω ;RN ), for any q ∈ [1, ∞).

2) For any v ∈ L∞(Ω ;RN ) and any convex function Φ : RN −→ R satisfying 0 ∈ argmin{Φ : RN } (namely
uch that Φ ≥ Φ(0) on RN ), we have

Φ
(
Kεv(x)

)
≤ ess sup

Ω∩Bε(x+εℓξ(x))
Φ(v),

or any x ∈ Ω . In particular, Φ(Kεv) ≤ ∥Φ(v)∥L∞(Ω) on Ω .
3) For any v ∈ W 1,∞

0 (Ω ;RN ), we have{
D(Kεv) = Kε(Dv)

[
I + εℓDξ

]⊤
,⏐⏐D(Kεv) − Kε(Dv)

⏐⏐ ≤ εℓ∥Dξ∥L∞(Rn)∥Dv∥L∞(Ω),

on Ω . Also, as ε → 0 we have Kεv −→ v in W 1,q
0 (Ω ;RN ) for all q ∈ [1, ∞) and in Cγ(Ω ;RN ) for all

∈ (0, 1). Further, Kεv ∗−−⇀ v in W 1,∞
0 (Ω ;RN ).

4) For any v ∈ W 1,∞
0 (Ω ;RN ) and any convex function Φ : RN×n −→ R satisfying 0 ∈ argmin{Φ : RN×n},

there exists C > 0 such that

Φ
(
D(Kεv)(x)

)
≤ ess sup Φ(Dv) + εC∗,
Ω∩Bε(x+εℓξ(x))

18
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or any x ∈ Ω , where the constant C∗ depends only on Ω , ℓ, Dξ, DΦ and ∥Dv∥L∞(Ω). In particular,

Φ
(
D(Kεv)

)
≤ ∥Φ(Dv)∥L∞(Ω) + εC∗,

verywhere on Ω .

roof of Proposition 12. (1) A change of variables yields the identity

(Kεv)(x) =
∫
Bε(x+εℓξ(x))

1
εn

ϱ

(
x + εℓξ(x) − z

ε

)
v(z) dz

hich, combined with the fact that dist
(
x+εℓξ(x), ∂Ω

)
≥ 2ε when x ∈ ∂Ω , imply that Kεv ≡ 0 on an open

eighbourhood of Rn \Ω because v ≡ 0 on Rn \Ω and also B̄ε(x + εℓξ(x)) ⊆ Rn \ Ω when x ∈ ∂Ω (and also
or x in open neighbourhood of ∂Ω). Further, since supp(ϱ) ⊆ B̄1(0), the integral above is in fact equal to the
ame integral taken over Rn, hence we easily deduce by recursive differentiation that Kεv ∈ C∞(Rn;RN ).

(2) Since ϱLn is a probability measure on Rn, by Jensen’s inequality, we estimate

Φ
(
Kεv(x)

)
= Φ

(∫
Rn

v
(
x + εℓξ(x) − εy

)
ϱ(y) dy

)
≤
∫
Rn

Φ
(

v
(
x + εℓξ(x) − εy

))
ϱ(y) dy

≤ ess sup
y∈B1(0)

Φ
(

v
(
x + εℓξ(x) − εy

))
= ess sup

Bε(x+εℓξ(x))
Φ(v),

for any x ∈ Ω . By using that v ≡ 0 on Rn \ Ω and our assumption on Φ, we further have

Φ
(
Kεv(x)

)
≤ max

{
ess sup

Ω∩Bε(x+εℓξ(x))
Φ(v), ess sup

Bε(x+εℓξ(x))\Ω
Φ(v)

}
≤ max

{
ess sup

Ω∩Bε(x+εℓξ(x))
Φ(v), Φ(0)

}
≤ ess sup

Ω∩Bε(x+εℓξ(x))
Φ(v),

for any x ∈ Ω .
(3) We readily compute

D
(
Kεv

)
(x) =

∫
Rn

Dv
(
x + εℓξ(x) − εy

)[
I + εℓDξ(x)

]⊤
ϱ(y) dy

which yields the claimed identity. The desired inequality is a simple consequence of the above identity
together with the estimate of Part (2). The asserted modes of convergence follow by standard arguments on
mollifiers (see e.g. [19]).
(4) Since Φ : RN×n −→ R is convex, it is in W 1,∞

loc (RN×n). Fix R > 0 such that

R > ∥Dξ∥L∞(Rn)∥Dv∥L∞(Ω).

Then, by Parts (2)–(3) we estimate

Φ
(
D(Kεv)(x)

)
= Φ

(
Kε(Dv)(x) + εℓKε(Dv)Dξ(x)⊤

)
≤ Φ

(
Kε(Dv)(x)

)
+ ∥DΦ∥L∞(BR(0))

εℓKε(Dv)Dξ⊤
L∞(Ω)

≤ Φ
(
Kε(Dv)(x)

)
+ εℓ∥DΦ∥L∞(BR(0))∥Dv∥L∞(Ω)∥Dξ∥L∞(Rn)

≤ ess sup Φ(Dv) + C∗ε,

Ω∩Bε(x+εℓξ(x))

19
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or any x ∈ Ω , where we have set

C∗ := ℓ∥DΦ∥L∞(BR(0))∥Dξ∥L∞(Rn)∥Dv∥L∞(Ω).

he proof of the proposition is now complete. □

. The divergence PDE system in L∞, part II

In this section we establish the satisfaction of (1.14) for the minimising quadruple (u∞,Λ∞, µ∞, ν∞),
nder the hypotheses (1.2), (1.3) and also (1.12). We begin with some notation.

emark 13. Under (1.12), since f is assumed quadratic, (1.2) is in fact satisfied for C1 = C2 (see the
bservations following Example 3). Hence, by introducing the positive constant

κ := C8

C1

(
= C7

C2

)
,

he conclusion of Lemma 8 strengthens to the equality

Lp = κ1/pΛp.

Next, we derive some differential identities and energy inequalities, which will be utilised to obtain the
necessary estimates.

Lemma 14. For any p ∈ (n/α + 2, ∞), consider the quadruple (up,Λp, µp, νp) as in Section 4. Then, for
any v ∈ W 1,∞

0 (Ω ;RN ), we have the differential identity∫
Ω

f(Dv − Dup) dµp =
∫
Ω

f(Dv) dµp −
∫
Ω

f(Dup) dµp + Λp

∫
Ω

∂g(up) · (up − v) dνp.

Note that in view of (1.10) and (1.16), we have that νp(∂Ω) = µp(∂Ω) = 0 for p ∈ (n/α + 2, ∞). Thus,
ll the integrals above are non-trivial only over Ω .

roof of Lemma 14. Since v − up ∈ W 1,αp
0 (Ω ;RN ), by using (1.12) we have∫

Ω

f(Dv − Dup) dµp =
∫
Ω

A : (Dv − Dup) ⊗ (Dv − Dup) dµp,

hich, by virtue of Lemma 4(2), can be expanded as∫
Ω

f(Dv − Dup) dµp =
∫
Ω

A : Dv ⊗ Dv dµp +
∫
Ω

A : Dup ⊗ Dup dµp

+
∫
Ω

A :
(

Dup ⊗ (−Dv) + (−Dv) ⊗ Dup

)
dµp

=
∫
Ω

f(Dv) dµp −
∫
Ω

f(Dup) dµp

+
∫
Ω

A :
(

Dup ⊗ (Dup − Dv) + (Dup − Dv) ⊗ Dup

)
dµp

=
∫
Ω

f(Dv) dµp −
∫
Ω

f(Dup) dµp +
∫
Ω

∂f(Dup) : D(up − v) dµp.

By arguing as in the proof of Lemma 11 and testing against ϕ := up − v in the weak formulation, we readily
educe the claimed identity. □
20
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emma 15. In the setting of Lemma 14, for any p ∈ (n/α + 2, ∞) we have⎧⎪⎪⎨⎪⎪⎩
∫
Ω

f(Dup) dµp = κΛp,∫
Ω

|Dup|2 dµp ≤ κ

C4

(
Λp + C3κ−1/p

)
.

roof of Lemma 15. From (1.16), Lemma 8 and Remark 13 (noting also that Ln(∂Ω) = 0), we have∫
Ω

f(Dup) dµp = −
∫
Ω

f(Dup)f(Dup)p−1

Λp−1
p

dLn = 1
Λp−1

p

Lp
p = κΛp.

urther, by (1.2) and (1.12) (noting also that α = 2 in (1.2) under (1.12)), we have

κΛp =
∫
Ω

f(Dup) dµp ≥ C4

∫
Ω

|Dup|2 dµp − C3µp(Ω).

he claimed inequality is now a consequence of the above together with the bound µp(Ω) ≤ κ1−1/p, which
follows from Lemma 10 and Remark 13. □

The following result is an immediate consequence of assumption (1.12), Lemmas 4, 14, 15 and Proposi-
tion 9.

Corollary 16. In the setting of Lemma 15, for any p ∈ (n/α + 2, ∞) and any map v ∈ W 1,∞(Ω ;RN ), we
have the estimate

c0

∫
Ω

⏐⏐Dv − Dup

⏐⏐2 dµp ≤
∫
Ω

f(Dv) dµp − κΛp + C0∥up − v∥L∞(Ω),

here
c0 := min σ(SA), C0 := sup

n/α+2<p<∞

{
Λp∥∂g(up)∥L∞(Ω)

}
.

Now we expound on the methodology utilised in the remainder of this section, in order to complete the
proof of Theorem 2.

Remark 17 (The Method). The estimate of Corollary 16 is the main energy estimate we will need to pass
to the limit as p → ∞ along a sequence in the PDE system (1.9) to obtain (1.14). The main difficulty in
trying that is that both Dup and µp converge in a weak (weak*) sense only, and in fact in different spaces.
Therefore, a priori it is not at all clear that

Dupµp
∗−−⇀ Du∞µ∞

nd the product Du∞µ∞ may not be a well defined measure, as in general Du∞ is in L∞(Ω ;RN×n) and only
Lebesgue measurable, hence it may not be defined on lower-dimensional subsets of Ω on which the Borel

easure µ∞ may concentrate (e.g. on hypersurfaces in Ω or on the boundary ∂Ω).
To circumvent these problems, we argue as follows. The idea is to show first that

Dup µp
∗−−⇀ V∞ µ∞, in M

(
Ω ;RN×n

)
,

s p → ∞, for some Borel measurable V∞ : Ω −→ RN×n in L2(Ω , µ∞;RN×n). (In particular, the measure
V∞µ∞ is then well defined.) Then, using weak* lower-semicontinuity we let p → ∞ in Corollary 16 to obtain
for any map v ∈ C1

0 (Ω ;RN ) (not just in W 1,∞
0 (Ω ;RN )) that

c0

∫ ⏐⏐Dv − V∞
⏐⏐2 dµ∞ ≤

∫
f(Dv) dµ∞ − κΛ∞ + C0∥u∞ − v∥L∞(Ω).
Ω Ω

21
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ext, one would like to set “v := u∞” to obtain “Du∞ = V∞”. However, this is not directly possible, at
the very least because directly Du∞µ∞ is not well defined, and also the limiting process of the previous
step prevents us for setting v = u∞ due to the lack of regularity. To this end, we utilise the regularisation
operators (Kε)0<ε<ε0 introduced in Section 5 to set v := Kεu∞ and deduce as ε → 0 that a special Borel
measurable representative Du⋆

∞ does exist, which is a version of the gradient of u∞ in the equivalence classes
of a.e.-equality for both Du∞ ∈ L∞(Ω ;RN×n) and for V∞ ∈ L2(Ω , µ∞;RN×n). Hence, the PDE system
(1.14) is satisfied for this representative of Du∞ which in particular makes ∂f(Du⋆

∞)µ∞ a well-defined
easure (recall that ∂f is a just linear mapping under (1.12)).

Now we deploy the method set out in Remark 17.

Lemma 18. There exists a mapping V∞ ∈ L2(Ω , µ∞;RN×n) such that, along a subsequence (pj)∞
1 we have

Dup µp
∗−−⇀ V∞ µ∞, in M

(
Ω ;RN×n

)
,

as p → ∞. Further, for any non-negative continuous function Φ ∈ C
(
Ω ×RN×n

)
such that X ↦→ Φ(x, X) is

convex and of quadratic growth at infinity, we have∫
Ω

Φ(·, V∞) dµ∞ ≤ lim inf
p→∞

∫
Ω

Φ(·, Dup) dµp.

roof of Lemma 18. By Lemma 15 and Proposition 9, we have that

sup
p∈(n/α+2,∞)

∫
Ω

|Dup|2 dµp < ∞.

n view of this estimate, the conclusion follows by the theory of measure-function pairs of Hutchinson in [25,
ec. 4, Def. 4.1.1, 4.1.2, 4.2.1 and Th. 4.4.2]. □

In virtue of the above considerations, we obtain the following rather immediate consequence.

emma 19. In the setting of Lemma 18, for any p ∈ (n/α + 2, ∞) and any fixed v ∈ C1
0 (Ω ;RN ), we have

he estimate
c0

∫
Ω

⏐⏐Dv − V∞
⏐⏐2 dµ∞ ≤

∫
Ω

f(Dv) dµ∞ − κΛ∞ + C0∥u∞ − v∥L∞(Ω).

roof of Lemma 19. Since by assumption Dv ∈ C(Ω ;RN×n), we may apply Lemma 18 to Φ(x, X) :=
|Dv(x) − X|2, which satisfies the required convexity and continuity requirements. Then, we use the estimate
of Corollary 16, together with the facts that (up,Λp) −→ (u∞,Λ∞) in C(Ω ;RN ) × R as p → ∞ along a
sequence, and that f(Dv) ∈ C(Ω), which is the predual space of M(Ω) = (C(Ω))∗. □

The following result is the most remarkable consequence of the energy estimate of Lemma 19.

emma 20. (i) For any sequence (vj)∞
1 ⊆ C1

0 (Ω ;RN ) which satisfies the conditions⎧⎨⎩
lim

j→∞
∥vj − u∞∥L∞(Ω) = 0,

lim sup
j→∞

∥f(Dvj)∥L∞(Ω) ≤ Λ∞,

e have that
lim

∫ ⏐⏐V∞ − Dvj

⏐⏐2 dµ∞ = 0.

j→∞ Ω

22
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ii) If additionally to the above, the sequence (vj)∞
1 satisfies

lim
j→∞

∥Dvj − Du∞∥L1(Ω) = 0,

hen we obtain the additional conclusion

lim
j→∞

∫
Ω

⏐⏐Du∞ − Dvj

⏐⏐q dLn = 0,

or any q ∈ [1, ∞). Hence, for any such sequence (vj)∞
1 , we have{

Dvj −→ V∞, in L2(Ω , µ∞;RN×n),
Dvj −→ Du∞, in Lq(Ω , Ln;RN×n),

as j → ∞, along perhaps a subsequence.

We note that, since Lq(Ω ,RN×n) is a uniformly convex space when q ∈ (1, ∞), the assumption of Dvj −→
u∞ in L1(Ω ;RN×n) can actually be replaced by the weaker condition ∥Dvj∥Lq(Ω) −→ ∥Du∞∥Lq(Ω) for

ome q ∈ (1, ∞).

roof of Lemma 20. (i) It suffices to apply the assumed modes of convergence to the estimate of
emma 19, and recall that µ∞(Ω) ≤ κ1−1/p, as a result of Lemma 10 and Remark 13.

(ii) By Lemma 4 and (1.5) (shown in Proposition 9), the hypothesis

∥f(Dvj)∥L∞(Ω) ≤ ∥f(Du∞)∥L∞(Ω) + o(1)j→∞

mplies that (Dvj)∞
1 is bounded in Lq(Ω ,RN×n), for all q ∈ [1, ∞]. Hence, by passing perhaps to a

ubsequence, we have that Dvj −−⇀ Du∞ in Lq(Ω ,RN×n) for all q ∈ [1, ∞) and also Dvj
∗−−⇀ Du∞ in

∞(Ω ,RN×n). Since Dvj −→ Du∞ in L1(Ω ;RN×n), by the Vitali convergence theorem and the L∞ gradient
ound, it follows that in fact the convergence is strong in Lq(Ω ,RN×n) for all q ∈ [1, ∞). The result
nsues. □

In the next result we use Lemma 20 identify the limit V∞ as a version of Du∞ after perhaps modification
n a Lebesgue nullset (recall also that Ln(∂Ω) = 0).

orollary 21. There exists a Borel measurable mapping Du⋆
∞ : Ω −→ RN×n, which is a version of both

Du∞ ∈ L∞(Ω ;RN×n) and of V∞ ∈ L2(Ω , µ∞;RN×n), namely

Du⋆
∞ =

{
Du∞, Ln-a.e. on Ω ,
V∞, µ∞-a.e. on Ω .

urther, Du⋆
∞ can be represented as

Du⋆
∞(x) =

{
lim

j→∞
D
(
Kεj u∞

)
(x), if the limit exists,

0, otherwise.

along an infinitesimal sequence (εj)∞
1 ⊆ (0, 1), where (Kε)0<ε<ε0 are the regularisation operators of Section 5.

Remark 22. It follows that, if one defines the Borel set

G :=
{

x ∈ Ω : ̸ ∃ lim
j→∞

D
(
Kεj u∞

)
(x)
}

,

hen G is both a Ln-nullset and a µ -nullset: Ln(G) = µ (G) = 0.
∞ ∞
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roof of Corollary 21. Let (Kε)0<ε<ε0 be the regularisation operators of Section 5. By Proposition 12,
e have Kεu∞ ∈ C∞

c (Ω ;RN ), therefore the choice v := Kεu∞ in the estimate of Lemma 19 is admissible.
Again by Proposition 12 and (1.5) (proved in Proposition 9), we have that⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
ε→0

∥Kεu∞ − u∞∥L∞(Ω) = 0,

lim sup
ε→0

f
(
D(Kεu∞)

)
L∞(Ω) ≤ Λ∞,

lim
ε→0

∥Kεu∞ − u∞∥
W

1,1
0 (Ω) = 0.

We may now apply Lemma 20 to obtain that, for any infinitesimal sequence (εj)∞
1 there is a subsequence,

symbolised again by (εj)∞
1 , such that for any q ∈ [1, ∞),{

D
(
Kεj u∞

)
−→ V∞, in L2(Ω , µ∞;RN×n),

D
(
Kεj u∞

)
−→ Du∞, in Lq(Ω , Ln;RN×n),

as j → ∞. By passing perhaps to a further subsequence, we infer that{
D
(
Kεj u∞

)
−→ V∞, µ∞-a.e. on Ω ,

D
(
Kεj u∞

)
−→ Du∞, Ln-a.e. on Ω ,

s j → ∞. The conclusion follows by defining the map Du⋆
∞ as in the statement. The result therefore

nsues. □

We may now establish the satisfaction of the necessary conditions.

emma 23. The quadruple (u∞,Λ∞, µ∞, ν∞) satisfies the system of PDEs (1.14), weakly in the dual space
C1

0 (Ω ;RN ))∗.

Proof of Lemma 23. By the proof of Lemma 11, for any fixed ϕ ∈ C1
0 (Ω ;RN ) we have∫

Ω

∂f(Dup) : Dϕ dµp = Λp

∫
Ω

∂g(up) · ϕ dνp.

By Proposition 9, we have Λp −→ Λ∞ and also up −→ u∞ in C(Ω ;RN ) as p → ∞ along a sequence. Further,
g(up) −→ ∂g(u∞) in C(Ω ;RN ) as p → ∞. By Lemma 18 and Corollary 21, we have that

Dup µp
∗−−⇀ Du⋆

∞ µ∞, in M
(
Ω ;RN×n

)
.

Further, by virtue of Lemma 4, ∂f is a linear mapping on RN×n, therefore

∂f(Dup) µp
∗−−⇀ ∂f(Du⋆

∞) µ∞, in M
(
Ω ;RN×n

)
.

The conclusion follows directly by the application of Lemma 10 and the strong–weak* continuity of the
duality pairing C(Ω) × M(Ω) −→ R. □

We conclude with establishing that the set whereon the measure µ∞ concentrates is the set whereon
(Du⋆

∞) is maximised over Ω .

emma 24. The next equalities hold true:⎧⎪⎨⎪⎩
Λ∞ = 1

κ

∫
Ω

f(Du⋆
∞) dµ∞,

µ∞- ess sup f(Du⋆
∞) = sup f(Du⋆

∞) = Λ∞.

Ω Ω
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urther, we have
µ∞(Ω) = κ, µ∞

({
f(Du⋆

∞) < Λ∞
})

= 0.

inally, the boundary ∂Ω is a nullset with respect to the Radon measure Du⋆
∞ µ∞:Du⋆

∞ µ∞
(∂Ω) = 0.

roof of Lemma 24. By Lemma 19 for v := Kεu∞, we have

0 ≤
∫
Ω

f
(
D(Kεu∞)

)
dµ∞ − κΛ∞ + C0∥u∞ − Kεu∞∥L∞(Ω).

y Corollary 21, we have that D(Kεu∞) −→ Du⋆
∞ in L2(Ω , µ∞;RN×n

)
as εj → 0, because V∞ = Du⋆

∞
µ∞-a.e. on Ω . Further, by Lemma 4, by Proposition 12 and by the dominated convergence theorem, the
above estimate yields as εj → 0 that

Λ∞ ≤ 1
κ

∫
Ω

f(Du⋆
∞) dµ∞.

n the other hand, recall that by Lemma 10 and Remark 13 we have µ∞(Ω) ≤ κ. Hence, by Proposition 12,
emma 20 and Hölder’s inequality, we obtain

Λ∞ + o(1)j→∞ ≥ sup
Ω

f
(
D(Kεj u∞)

)
≥ µ∞- ess sup

Ω

f
(
D(Kεj u∞)

)
≥
(

1
κ

µ∞(Ω)
)

µ∞- ess sup
Ω

f
(
D(Kεj u∞)

)
≥ 1

κ

∫
Ω

f
(
D(Kεj u∞)

)
dµ∞.

By letting j → ∞, this yields

Λ∞ ≥ 1
κ

∫
Ω

f(Du⋆
∞) dµ∞.

he above estimates establish the claimed integral identity. Further, let G ⊆ Ω be the Borel set of Remark 22.
hen, by the definition of Du⋆

∞ as being equal to zero on G and the fact that f ≥ f(0) = 0 as a result of
(2.1), we have

µ∞- ess sup
Ω

f(Du⋆
∞) = sup

Ω\G

f(Du⋆
∞)

= max
{

sup
Ω\G

f(Du⋆
∞), f(0)

}
= max

{
sup
Ω\G

f(Du⋆
∞), sup

G
f(Du⋆

∞)
}

= sup
Ω

f(Du⋆
∞).

rguing similarly for the Lebesgue measure, we obtain

Λ∞ = ∥f(Du⋆
∞)∥L∞(Ω) = sup

Ω\G

f(Du⋆
∞) = sup

Ω

f(Du⋆
∞).
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herefore, the desired equalities have been established. Further, since µ∞(Ω) ≤ κ and f(Du⋆
∞) ≤ Λ∞ on

Ω , we deduce also that in fact f(Du⋆
∞) equals its supremum Λ∞ over Ω and also the measure of µ∞(Ω) is

ull, namely µ∞(Ω) = κ. Finally, by Lemma 19 for v =: Kεu∞ and by using that V∞ = Du⋆
∞ µ∞-a.e. on Ω

nd that supp(Kεv) ⋐ Ω , we conclude

c0

∫
∂Ω

⏐⏐Du⋆
∞
⏐⏐2 dµ∞ ≤ c0

∫
Ω

⏐⏐Du⋆
∞ − D

(
Kεj u∞

)⏐⏐2 dµ∞

≤
∫
Ω

f
(
D
(
Kεj u∞

))
dµ∞ − κΛ∞ + C0∥u∞ − Kεu∞∥L∞(Ω)

≤ o(1)j→∞.

his implies that Du⋆
∞ µ∞

(∂Ω) ≤
√

µ∞(∂Ω)
(∫

∂Ω

⏐⏐Du⋆
∞
⏐⏐2 dµ∞

)1/2
= 0.

he result ensues. □

. Computations for an explicit example

In this section we provide some explicit computations in the case of the ∞-eigenvalue problem on the
ball. Let n, N ≥ 1 and choose f := 1

2 | · |2 and g := 1
2 | · |2 the corresponding Euclidean norms on RN×n and

N respectively. We also fix R > 0 and choose Ω := BR, the ball of radius R centred at the origin of Rn.
hen, for any direction e ∈ RN with |e| = 1, the directed cone function

C∞(x) :=
(

1 − |x|
R

)
e

is a solution to

∥DC∞∥L∞(BR) = inf
{

∥Dv∥L∞(BR) : v ∈ W 1,∞
0 (BR;RN ), ∥v∥L∞(BR) = 1

}
.

Indeed, we have C∞ ∈ W 1,∞
0 (BR;RN ) and ∥C∞∥L∞(BR) = 1, because 0 ≤ |C∞| ≤ 1 and also |C∞(0)| = 1.

urther, for any x ∈ BR \ {0} we have |DC∞(x)| = 1
R , which yieldsDC∞


L∞(BR) = 1

R
.

his value in fact is the infimum over all maps in the admissible class. To see this, fix any v ∈ W 1,∞
0 (BR;RN )

with ∥v∥L∞(BR) = 1. By continuity, this means that 0 ≤ |v| ≤ 1 and that exists x̄ ∈ BR such that
|u(x̄)| = 1. Let (Kε)0<ε<ε0 be the family of regularising operators introduced earlier in Section 5. Then,
Kεv ∈ C1

c (BR;RN ) and by standard arguments on viscosity solutions (see e.g. [29, Section 3]) there exists
x̄ε ∈ BR close to x̄ such that |Kεv| attains its maximum at x̄ε and |Kεv(x̄ε)| −→ 1 as ε → 0. Then, for any
fixed z ∈ ∂BR we have Kεv(z) = 0 and hence

1 + o(1)ε→0 =
⏐⏐Kεv(x̄ε) − Kεv(z)

⏐⏐
=
⏐⏐⏐⏐∫ 1

0
D(Kεv)

(
λx̄ε + (1 − λ)z

)
· (x̄ε − z) dλ

⏐⏐⏐⏐
≤ ∥Dv∥L∞(BR)|x̄ε − z|.

By choosing z := R x̄ε
|x̄ε| if x̄ε ̸= 0 and any z ∈ ∂BR if x̄ε = 0, we obtain by letting ε → 0 thatDv


L∞(BR) ≥ 1

R
.

he above arguments show that the directed cone C is indeed a vectorial ∞-eigenfunction.
∞
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We now consider the necessary PDEs that C∞ solves. By invoking Theorems 1–2 and by noting that
Λ∞ =

DC∞


L∞(BR) = 1/R, we see that there exist measures µ∞, ν∞ ∈ M(B̄R) such that

−div
(
DC∞µ∞

)
= 1

R
C∞ν∞ in Ω .

ince ν∞(B̄R) = 1 and in this case {C∞ = supBR
C∞} = {0}, we deduce that

ν∞ = δ0.

herefore, since C∞δ0 = C∞(0)δ0, the PDE system reduces to

−div
(
DC∞µ∞

)
= 1

R
eδ0 in Ω .

urther, since DC∞ = − 1
R e⊗sgn, where sgn is the sign function in RN , we may compute an explicit measure

µ∞, which in fact is absolutely continuous on B̄R. By using the fundamental solutions of the Laplacian ∆

Φ(x) = − 1
2π

ln |x| for n = 2, Φ(x) = 1
n(n − 2)α(n)|x|n−2 for n ≥ 3

where α(n) symbolises the volume of the unit ball in Rn), which in both cases give

DΦ(x) = − 1
nα(n)|x|n−1 sgn(x)

and that the system reduces to the single PDE

−div(− sgn µ∞) = δ0 in Ω ,

we obtain that the PDE is satisfied for the absolutely continuous measure

µ∞ = 1
nα(n)| · |n−1 Ln⌞BR

.

emark 25. It is worth noting that, as shown in [10], due to the full rotational symmetry and the
omogeneity of the vectorial p-eigenvalue problem, all vectorial p-eigenfunctions are essentially scalar. Even
hough this is not automatically true for the ∞-eigenvalue problem, it does carry over to p = ∞ at least for
hose ∞-eigenfunctions which are constructed as Lp-limits. Nevertheless, this reduction to essentially scalar
inimisers is not deducible for the problem (1.1) for general f, g.
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