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Weak BMO and Toeplitz operators
on Bergman spaces

Jari Taskinen and Jani A. Virtanen

Abstract. Inspired by our previous work on the boundedness of Toeplitz
operators, we introduce weak BMO and VMO type conditions, denoted by
BWMO and VWMO, respectively, for functions on the open unit disc of the
complex plane. We show that the average function of a function f ∈ BWMO
is boundedly oscillating, and the analogous result holds for f ∈ VWMO. The
result is applied for generalizations of known results on the essential spectra
and norms of Toeplitz operators. Finally, we provide examples of functions
satisfying the VWMO condition which are not in the classical VMO or even
in BMO.
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1. Introduction and main results
Consider the Banach space Lp ∶= (Lp(D, dA), ‖ ⋅ ‖p), where 1 < p < ∞

and dA is the normalized area measure on the unit discD of the complex plane
ℂ, and the Bergman space Ap, which is the closed subspace of Lp consisting of
analytic functions. The Bergman projection P is the orthogonal projection of L2
onto A2, and it has the integral representation

Pg(z) = ∫
D

K�(z)g(�)dA(�) , where K�(z) =
1

(1 − z�̄)2
, z, � ∈ D,
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is the Bergman kernel. It is also known to be a bounded projection of Lp onto
Ap for every 1 < p < ∞. For an integrable function f ∶ D → ℂ and, say,
bounded analytic functions g, the Toeplitz operator Tf with symbol f is de�ned
by

Tfg = P(fg) = ∫
D

f(�)g(�)
(1 − z�̄)2

dA(�). (1.1)

A related class of operators consists ofHankel operatorsHf ∶ Ap → Lp de�ned
by

Hfg = (I − P)(fg),
where I is the identity operator and I − P is the complementary projection of
P. Notice that the boundedness of P implies that both Tf ∶ Ap → Ap and
Hf ∶ Ap → Lp are bounded whenever the symbol f is in L∞.

In [8] and [9], we studied a generalized de�nition of Toeplitz operators with
locally integrable symbols f satisfying a weak “averaging” condition (see (3.4)
below), and showed that one can de�ne Tf = lim�→1 Tf� , where f� = ��f
and �� is the characteristic function of the compact set {z ∈ D ∶ |z| ≤ �},
� < 1. The limit converges in the strong operator topology and the generalized
de�nition coincideswith (1.1), whenever the lattermakes sense. It was recently
shown in [10] that the condition is however not necessary for the boundedness
of Tf.

Here, our aim is to apply the same idea to introduce new weak BMO and
VMO type conditions BWMO and VWMO: we replace the standard de�nition
ofBMO (andVMO) by the above describedweak averaging condition. It is quite
clear there are functions which belong to VWMO but are not in VMO or not
even in BMO. We will exhibit concrete examples in Section 4, see Example 4.8.
Our new de�nition leads to the following results. First, we prove that when-
ever f satis�es the BWMO (or VWMO) condition, then the average function
f̂ belongs to the space BO (or in VO) of functions of bounded (or vanishing)
oscillation—see Theorem 3.8. This allows us to extend the standard results on
the essential spectra and Fredholm properties of Toeplitz operators Tf from the
case f ∈ L∞ ∩ VMO (see [1, 5] and the references therein) to integrable, not
necessarily bounded, symbols in VWMO.

The weak conditions are broader in scope, and should have more applica-
tions, which we hope to demonstrate in future work on Toeplitz and related
operators.

2. Preliminaries
In this section, we explain the notions used in the paper and recall a number

of basic results that we need in the subsequent sections.
The space of bounded mean oscillation BMOp provides a class of symbols f,

strictly larger than L∞, for which bounded (or compact) Toeplitz operators can
be characterized in terms of the boundary behavior of the Berezin transform
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f̃. Similarly, its closed subspace of vanishing mean oscillation VMOp plays an
important role in the study of other (spectral) properties of Toeplitz operators.
Let r > 0, 1 ≤ p < ∞ and f be a locally Lp-integrable function on D. We say
that f is of bounded mean oscillation, and write f ∈ BMOp

r , if

sup
z∈D

1
|D(z, r)|

∫
D(z,r)

|f(�) − f̂r(z)|p dA(�) <∞, (2.1)

where |B| = ∫B dA for any measurable set B ⊂ D, and D(z, r) = {w ∈ D ∶
�(z, w) < r} is the disc with center z and radius r in the Bergman metric � ∶
D × D→ ℝ+. Moreover, f̂r is the average function de�ned by

f̂r(z) =
1

|D(z, r)|
∫

D(z,r)

f dA (2.2)

for z ∈ D. If, in addition,

lim
|z|→1

1
|D(z, r)|

∫
D(z,r)

|f(�) − f̂r(z)|p dA(�) = 0,

we say that f is in VMOp
r . These de�nitions are independent of r, and we write

simply BMOp and VMOp for the two spaces when r = 1.
To decompose BMOp and VMOp into smaller spaces, we de�ne the oscilla-

tion !(f) of a continuous function f by

!(f)(z) = sup
w∈D(z,1)

|f(z) − f(w)| (2.3)

for z ∈ D. (We �x here the radius of the hyperbolic disc in order to keep the
notation simple.) The space of bounded oscillationBO consists of all continuous
functions f for which !(f) ∈ L∞. We say f ∈ BO is of vanishing oscillation
and write f ∈ VO if !(f)(z) → 0 as |z| → 1. The spaces BAp and VAp of
functionsf of bounded or vanishing average are de�ned by requiring that |̂f|p1 ∈

L∞ or |̂f|p1 (z) → 0 as |z| → 1, respectively. These spaces provide the useful
decompositions

BMOp = BO+BAp and VMOp = VO+VAp (2.4)

for p ≥ 1, which can be obtained by setting f = f̂1 + (f − f̂1). For the proofs
and further details, see [12].

Wewill also need theBerezin transform f̃ off, which plays an important role
in characterizations of various properties of Toeplitz operators. Given f ∈ L1,
the Berezin transform is de�ned by setting (see [13], Sect. 6.3.)

f̃(z) =
⟨fKz, Kz⟩L2
⟨Kz, Kz⟩L2

= ∫
D

f|kz|2 dA = ∫
D

(f◦�z)(�)dA(�), (2.5)
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where kz = Kz‖Kz‖−12 and �z(w) =
z−w
1−wz̄

is the Möbius transform interchang-
ing 0 and z. It is a direct consequence of the de�nition that the Berezin trans-
form of any function f ∈ L∞ is bounded and continuous.

Recall that a bounded linear operator T on a Banach spaceX is called a Fred-
holm operator, if its kernel kerT and cokernel are both �nite dimensional. If
T is Fredholm on X, its index is de�ned as the number indT = dimkerT −
dim(X∕T(X)). The essential spectrum specess(T) = specess(T ∶ X → X) of T is
de�ned by

specess(T) = {� ∈ ℂ ∶ T − � is not Fredholm},
which is clearly contained in the spectrum spec(T) = spec(T ∶ X → X) of T.
Similarly, the essential norm is the expression ‖T‖ess = inf

K
‖T + K‖, where on

the right we have the operator norm of T+K and the in�mum is taken over all
compact operators K ∶ X → X. Clearly, ‖T‖ess ≤ ‖T‖.

We still need onemore notion to formulate the next theorem. TheStone-Čech
compacti�cation �D of D is de�ned by its universal property that any continu-
ous map f from D to a compact Hausdor� space K can be uniquely extended
to a continuous map f ∶ �D→ K. Here, we do not distinguish between f and
its extension to �D. Note that �D can be realized as the maximal ideal space of
bounded continuous functions de�ned onD. Everymaximal ideal corresponds
to a point in �D via evaluation. See e.g. [6] for the use of �D in the topic under
consideration.

The following result is known and our aim is to extend it for a larger symbol
class, see Section 4.

Theorem 2.1. Let 1 < p <∞ and f ∈ L∞ ∩ VMO1.
(i)We have

specess(Tf ∶ A
p → Ap) =

⋃

y∈�D⧵D
f̃(y) = f̃(�D ⧵ D), (2.6)

where f̃ denotes the extension of the Berezin transform of f to the Stone-Čech
compacti�cation �D of D.

(ii) If Tf is Fredholm on Ap, then the index of Tf equals the negative winding
of f̃|{|z|=r}, where r is su�ciently close to 1.

Formula (2.6) was obtained for the classical Bergman space A2(D) in [11].
For arbitrary 1 < p <∞, (2.6) was proved in [5] using elementarymethods and
in [1, 2] using techniques with band-dominated operators. The index formula
stated in (ii) was proved in [6] for the Hilbert space A2 and can be treated anal-
ogously for other values of p. We remark that, as shown in [6], formula (2.6)
and claim (ii) also hold for Toeplitz operators Tf ∶ A2 → A2 with symbols in a
larger algebra A consisting of bounded functions f such that Hf ∶ A2 → L2 is
compact (see Section 5 and Theorems 19, 24 of the citation). Our generalization
is formulated in Corollary 4.2, and it involves also unbounded symbols among
other things.
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3. Weak BMO-type conditions on the unit disc
In this section we introduce the weak BMO-type condition which is interest-

ing in itself and may be applied to other considerations as well.

De�nition 3.1. For all z = rei� ∈ D with r ∈ [0, 1) and � ∈ [0, 2�) we denote

B(z) = {�ei� | r ≤ � ≤ 1 − 1
2(1 − r) , � ≤ � ≤ � + �(1 − r)}. (3.1)

We denote, for � = r̃ei�̃ ∈ B(z),

B(z, �) = {�ei� | r ≤ � ≤ r̃ , � ≤ � ≤ �̃} (3.2)

and

f̂(z, �) ∶= 1
|B(z)|

∫
B(z,�)

f dA, (3.3)

where f ∈ L1loc.

Remark 3.2. (i) In (3.1) it may of course happen that � + �(1 − r) > 2�. This
does not harm the de�nition of the set B(z), but in (3.2) and (3.3) and in the
sequel in all similar places we must agree that the relation � = r̃ei�̃ ∈ B(z) is
understood to imply �̃ ∈ [�, � + �(1 − r)], even if � + �(1 − r) > 2�.

Using this convention, we de�ne for �j = �jei�j ∈ B(z), j = 1, 2, the notion
�1 ≾ �2, if �1 ≤ �2 and �1 ≤ �2 .

(ii) In [8] and [9] we speci�ed a sequence (zn)∞n=1 ⊂ D such that the cor-
responding sets Bn ∶= B(zn) form an essentially disjoint union of the disc D.
Here, sets are called essentially disjoint, if they are disjoint save possibly their
boundaries. We will use this decomposition later.

In the following we will study symbols f for which there exists a constant
C > 0 such that

|f̂(z, �)| ≤ C (3.4)

for all z ∈ D and all � ∈ B(z). By Theorem 2.3 in [8], if (3.4) holds for the
symbol f, the Toeplitz operator Tf ∶ Ap → Ap, de�ned as the limit

lim
�→1−

T��f (3.5)

converging in the strong operator topology, is bounded. Recall that �� denotes
the characteristic function of the set D� = {w ∈ D ∶ |w| ≤ �} with � < 1.
Also, according to [8], Theorem 2.5, if f ∈ L1loc is such that in addition to (3.4)
there holds

lim
|z|→1

1
|B(z)|

sup
�∈B(z)

||||| ∫
B(z,�)

f dA
||||| = 0, (3.6)

then Tf ∶ Ap → Ap is compact.
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Given a precompact subset K ⊂ D with |K| > 0, we denote the average of f
in K by (cf. (2.2))

f̂K =
1

|K|
∫
K

f dA. (3.7)

For all f ∈ L1loc we also de�ne the average function f̂ ∶ D→ ℂ by

f̂(z) = f̂B(z) , z ∈ D. (3.8)

Then, we have f̂ ∈ C(D) (the space of continuous functions on the open disc).

Remark 3.3. Note that the more standard de�nition of the average function
using a hyperbolic disc instead of B(z)was already introduced in Section 2, and
we keep the di�erence in the notation, f̂ vs. f̂r, to indicate this. We will need
the present de�nition of f̂ for technical reasons. Moreover, it is easy to see
that in the de�nitions of the spaces BO and VO one can replace the sets D(z, 1)
by the sets B(z) without changing the concept. This follows from the simple
geometric observation that there exists a numberN ∈ ℕ such that for all z ∈ D,
the set D(z, 1) is contained in the union of at mostN sets B(w) and conversely,
B(z) is contained in the union of at most N sets D(w, 1). For similar reasons,
in the de�nition of the spaces BAp and VAp the average functions |̂f|p1 could
be replaced by the average functions |̂f|p. We leave the details of the proofs for
these claims to the reader.

De�nition 3.4. Let us consider functions f ∈ L1loc and de�ne the following
BMO-type condition

‖f‖BWMO ∶= sup
z∈D

1
|B(z)|

sup
�∈B(z)

||||| ∫
B(z,�)

(
f(�) − f̂(z)

)
dA(�)

||||| <∞. (3.9)

We refer to this de�nition as the BWMO-condition (for “bounded weak mean
oscillation,” not to be confused with the existing term of “weak BMO” in the
literature).

We also introduce the followingVWMO-condition (for vanishingweakmean
oscillation) for a function f ∈ L1loc,

lim
|z|→1

1
|B(z)|

sup
�∈B(z)

||||| ∫
B(z,�)

(
f(�) − f̂(z)

)
dA(�)

||||| = 0. (3.10)

It is easy to see that the expression ‖ ⋅ ‖BWMO is a seminorm for example
in the space of bounded continuous functions in D and that ‖f‖BWMO = 0, if
and only if f is constant. To see the latter statement, if f is a non-constant,
bounded and continuous function inD, we pick up a point z ∈ D such that, for
a neighborhood U of z, the function f is non-constant in U ∩ B(z). Then, it is
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clear that the expression

∫
B(z,�)

(
f − f̂(z)

)
dA

cannot be constant for � ∈ U ∩ B(z), which implies that ‖f‖BWMO ≠ 0.
We will use the following fact.

Lemma 3.5. Assume (3.9) holds for a function f ∈ L1loc(D). Let z ∈ D be arbi-
trary and assume that the points z̃, �, z̃ ≾ �, belong to B(z) (thus, B(z̃, �) ⊂ B(z)).
Then, we have

1
|B(z)|

||||| ∫
B(z̃,�)

(
f(�) − f̂(z)

)
dA(�)

||||| ≤ C‖f‖BWMO (3.11)

for some constant C > 0.

Proof. We start by the following elementary geometric observation: if g ∈
L1loc(D), z = rei� ∈ D and �1, �2 ∈ B(z) are such that z ≾ �1 ≾ �2 then the
integral over the set B(�1, �2) can be presented as

∫
B(�1,�2)

g dA =
4∑

j=1
j∫
B(z,wj)

g dA, (3.12)

where j ∈ {−1, 1} andwj, j = 1,… , 4 are some points inB(z)with z ≾ wj ≾ �2.
Indeed, if �j = �jei�j , j = 1, 2 we choose

w1 = �2, w2 = �1ei�2 , w3 = �2ei�1 , w4 = �1. (3.13)

Then, we have

B(�1, �2) = B(z, w1) ⧵
(
B(z, w3) ∪

(
B(z, w2) ⧵ B(z, w4)

))

and formula (3.12) follows from this, since the sets B(z, w3) and B(z, w2) ⧵
B(z, w4) are essentially disjoint.

We now apply formula (3.12) to the integral in (3.11) and obtain

∫
B(z̃,�)

(
f(�) − f̂(z)

)
dA(�) =

4∑

j=1
j ∫
B(z,wj)

(
f(�) − f̂(z)

)
dA(�) (3.14)

for some pointswj ∈ B(z). The bound (3.11) follows from this and the triangle
inequality, since (3.9) implies

1
|B(z)|

||||| ∫
B(z,wj)

(
f(�) − f̂(z)

)
dA(�)

||||| ≤ ‖f‖BWMO (3.15)

for all j. �
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Remark 3.6. If, in addition, (3.10) holds for f ∈ L1loc, then

lim
|z|→1

1
|B(z)|

sup
z̃,�∈B(z)
z̃≾�

||||| ∫
B(z̃,�)

(
f(�) − f̂(z)

)
dA(�)

||||| = 0. (3.16)

This is so since the assumption (3.10) implies that in (3.14), (3.15) an arbitrar-
ily small multiplier " > 0 can be added to the right hand side, if |z| is close
enough to 1. Following the proof, also the right hand side of (3.15) then can be
multiplied with ", which proves the claim.

Corollary 3.7. There is a constant C > 0 such that, if f ∈ L1loc satis�es (3.9),
then we have, for all z ∈ D and z̃, � ∈ B(z) with z̃ ≾ �,

||||f̂(z) − f̂B(z̃,�)
|||| ≤ C‖f‖BWMO, (3.17)

provided that the points z, z̃, � in addition satisfy

|B(z)|
|B(z̃, �)|

≤ 2. (3.18)

If in addition (3.10) holds for f ∈ L1loc, then we have

lim
|z|→1

sup
z̃,�

||||f̂(z) − f̂B(z̃,�)
|||| = 0, (3.19)

where the supremum is taken over all z̃, � ∈ B(z)with z̃ ≾ � satisfying also (3.18).

Proof. To prove the �rst statement, we �x z ∈ D and using Lemma 3.5 obtain
for the average of f over the set B(z̃, �)

|f̂B(z̃,�) − f̂(z)| = 1
|B(z̃, �)|

|||||∫
B(z̃,�)

(f(�) − f̂(z)dA(�)
|||||

≤ C‖f‖BWMO
|B(z)|

|B(z̃, �)|
≤ C′‖f‖BWMO, (3.20)

where the constant C indeed does not depend on z, z̃, �.
If (3.10) is also satis�ed by f and " > 0 is arbitrary, then we can use Remark

3.6. This allows a bound where " is multiplying the right-hand side of (3.20).
�

We remind that f̂r ∈ BO or f̂r ∈ VO whenever f ∈ BMO1 or f ∈ VMO1,
respectively (see (2.4)). We improve on these in the following theorem, which is
the main result of this section. See Remark 3.3 for some relevant explanations,
and also (2.4).

Theorem 3.8. If f satis�es the BWMO-condition (3.9), then the function f̂ (see
(3.8)) belongs to BO, and if f satis�es theVWMO-condition (3.10), then f̂ ∈ VO.
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Proof. Let us again �x z ∈ D and consider w such that hyperbolic distance
�(z, w) ≤ �; by choosing � > 0 small enough (independently of z, w) it is clear
that the intersection B(z) ∩B(w) can be written as B(z̃, �) and B(w̃, �) for some
points z̃, � ∈ B(z) and w̃, � ∈ B(w) such that both

|B(z)|
|B(z̃, �)|

≤ 2 and
|B(w)|

|B(w̃, �)|
≤ 2. (3.21)

For example, if z = rei� and w ∈ B(z), we choose z̃ = w̃ = w and

� = � =
(
1 − 2−1(1 − r)

)
ei(�+�(1−r)),

see the de�nition of the set B(z) in (3.1). We get

|f̂(z) − f̂(w)| ≤ |f̂(z) − f̂B(z̃,�)| + |f̂B(w̃,�) − f̂(w)| (3.22)

and both of these terms can be bounded by a constant times ‖f‖BWMO, by Corol-
lary 3.7. The second claim follows then from the last part of Corollary 3.7. �

4. Applications to spectra and Fredholm properties
In order to characterize the essential spectra of Toeplitz operators with sym-

bols satisfying the VWMO condition, we recall that the Berezin transform T̃ of
a bounded linear operator T ∶ Ap → Ap is given by

T̃(z) ∶=
⟨TKz, Kz⟩L2
⟨Kz, Kz⟩L2

, z ∈ D,

which is well-de�ned because Kz ∈ Ap for all p ∈ (1,∞) (cf. [13], Ch. 6).
Moreover, T̃ is always a bounded continuous function on D. For f ∈ L1 such
that the Toeplitz operator Tf is bounded in A2 we get T̃f = f̃; see [13], p. 165.
Wewill need a generalization of this for each function f that satis�es (3.4), that
is, there exists a constant C > 0 such that |f̂(z, �)| ≤ C for all z ∈ D and all
� ∈ B(z).

De�nition 4.1. If f ∈ L1loc(D) satis�es (3.4), then we de�ne its Berezin trans-
form by f̃ ∶= T̃f.

Recall that condition (3.4) implies the boundedness of Tf in the space A2,
hence, the de�nition coincideswith the conventional one in the casementioned
above. We note that the Berezin transform is again independent of p. In the
following, we still denote the unique extension of the Berezin transform of f to
�D by f̃. Let C)(D) denote the set of continuous functions on D that have zero
limits at the boundary (equivalently: continuous functions on �D that vanish
on �D ⧵ D).

The following corollary includes generalizations of a number of known re-
sults to new symbol classes. Concrete symbols satisfying the assumptions of
the corollary are considered in Example 4.8. Estimates for the essential norm of
operators in the Toeplitz algebra on Ap were previously obtained by Suárez [7]
and onweighted Bergman spacesAp byMitkovski, Suárez andWick [4], which
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were further improved and extended to bounded symmetric domains in [2]. We
emphasize that the essential normwas previously computed exactly only when
p = 2, while it remains an open problem to �nd a sharp constant for the upper
estimate for the other values of p. Part (b) of Corollary 4.2 was proved in [15]
for symbols f in BMO1 that satisfy the condition f̃ ∈ L∞∩VO (or equivalently,
f̂ ∈ L∞ ∩ VO).

Corollary 4.2. Assume that the symbol f ∈ L1loc(D) satis�es VWMO-condition
(3.10) and that the average function f̂ belongs to L∞. Then, the Toeplitz operator
Tf ∶ Ap → Ap is bounded for all 1 < p <∞ and there holds

(a) f̃ − f̂ ∈ C)(D),

(b) specess(Tf) = f̂(�D ⧵ D) = f̃(�D ⧵ D),

(c) max
y∈�D⧵D

|f̃(y)| = max
y∈�D⧵D

|f̂(y)| ≤ ‖Tf‖ess ≤ ‖P‖ max
y∈�D⧵D

|f̂(y)|,

(d) ‖Tf‖ess = max
y∈�D⧵D

|f̂(y)| = max
y∈�D⧵D

|f̃(y)| for p = 2.

Moreover, Tf is Fredholm if and only if Tf̂ is if and only if Tf̃ is.

Proof. By Theorem 3.8 we have f̂ ∈ VO which clearly implies that

lim
|z|→1

1
|B(z)|

sup
�∈B(z)

||||| ∫
B(z,�)

(
f̂ − f̂(z)

)
dA

||||| = 0. (4.1)

Combining this with the assumption that f satis�es (3.10) we see that the func-
tion f − f̂ satis�es condition (3.6). This implies that the Toeplitz operator
Tf−f̂ = Tf − Tf̂ is compact while Tf̂ is bounded by assumption. It also im-
plies that f satis�es (3.4), which means that f̃ is well-de�ned, by De�nition
4.1. Further, by [11], we have f̂ − ˜̂f ∈ C)(D) and

f̃ − f̂ = ˜̂f − f̂ + (f − f̂)∼ ∈ C)(D),

where (f − f̂)∼ ∈ C)(D) follows from [7, Theorem 9.5]. This proves (a).
Also, the case (b) follows from the above observations and Theorem 2.1.

Moreover, we �nd that it is enough to prove (c) and (d) for the function f̂ in-
stead of f. Hence, by Theorem 3.8 and a rede�nition of the notation, we may
assume that f ∈ L∞ ∩ VMO1 for the rest of the proof. First, for all z ∈ D we
denote by Uz ∶ Lp → Lp the surjective isometry (re�ection)

(Uzf)(w) = f(�z(w))
(1 − |z|2)2∕p

(1 − zw̄)4∕p
, w ∈ D. (4.2)

Notice that U−1
z = Uz and UzMfU−1

z = Mf◦�z , whereMf is the multiplication
operator de�ned byMfg = fg.
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Let z ∈ �D and choose a net (z) in D that converges to z. We note that
the operator UzTfU

−1
z converges strongly to Tℎz , where ℎz is a bounded and

analytic function on D. This follows from Lemma 2.1 and Proposition 2.2 of
[3]. By Theorem 22 and formula (4.1) of [2], we have

sup
z∈�D⧵D

‖Tℎz‖ ≤ ‖Tf‖ess ≤ ‖P‖ sup
z∈�D⧵D

‖Tℎz‖.

As ℎz is bounded and analytic, we have ‖Tℎz‖ ≤ ‖ℎz‖∞. Moreover, it is well-
known that spec(Tℎz) = clos(ℎz(D)) (“clos” denotes the closure of the set). In-
deed, T(ℎz−�)−1 is an inverse of Tℎz−� if � ∉ clos(ℎz(D)) and conversely ℎz(w) is
an eigenvalue of T∗ℎx for every w ∈ D since

T∗ℎzKw = P(ℎzKw) = ℎz(w)Kw.

Since ‖Tℎz‖ ≥ w for all w ∈ spec(Tℎz), we get ‖Tℎz‖ = ‖ℎz‖∞. Moreover,

lim
z→x

f̃(�z(w)) = lim
z→x

f̃◦�z(w) = ℎ̃x(w) = ℎx(w)

implies
sup

x∈�D⧵D
‖ℎz‖∞ = max

y∈�D⧵D
|f̃(y)|.

Combining these estimates, we obtain (c) and (d). �

Corollary 4.3. If f ∈ L1(D) satis�es the VWMO-condition (3.10), f̂ is bounded
and Tf is Fredholm on Ap for 1 < p <∞, then

indTf = indTf̂ = −wind f̂|{|z|=r}

wherewind denotes the winding number and r is su�ciently close to 1. The same
statement also holds if f̂ is replaced by f̃.

Proof. Notice �rst that

indTf = indTf̂ + indTf−f̂ = indTf̂

because Tf−f̂ is compact. By Theorem 3.8, f̂ ∈ VO, and the rest now follows
from Theorem 2.1 (ii) and Corollary 4.2. �

In the next result we need to assume f ∈ L1(D) instead of f ∈ L1loc(D),
although some implications would hold even for locally integrable symbols.

Corollary 4.4. Assume that the symbol f ∈ L1(D) satis�es BWMO-condition
(3.9). Then, the following are equivalent:
(i) Tf ∶ Ap → Ap is bounded for some 1 < p <∞,
(ii) Tf ∶ Ap → Ap is bounded for all 1 < p <∞,

(iii) f̂ ∈ L∞(D),
(iv) f̃ ∈ L∞(D).
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Proof. (iii) ⇒ (ii) ⇒ (iv): Assume (iii) holds. We have, for some constant
C > 0 and all z ∈ D and � ∈ B(z),

1
|B(z)|

||||| ∫
B(z,�)

(f − f̂)dA
||||| ≤

1
|B(z)|

||||| ∫
B(z,�)

(
f(�) − f̂(z)

)
dA(�)

|||||

+ 1
|B(z)|

||||| ∫
B(z,�)

(
f̂(�) − f̂(z)

)
dA(�)

||||| ≤ C, (4.3)

because the �rst integral on the right is bounded due to f ∈ BWMO and the
second one due to f̂ ∈ L∞. Hence, the function f − f̂ satis�es condition (3.4),
and thus the Toeplitz operator Tf−f̂ is bounded in anyAp. The boundedness of
the average function f̂ also implies that the operatorTf = Tf−f̂+Tf̂ is bounded
in anyAp. The boundedness of Tf yields the boundedness of the Berezin trans-
form f̃, see the beginning of Section 4.
(i) ⇒ (iii): Assume p is such that Tf is bounded in Ap. We can use (4.3) to

see that the operator Tf−f̂ is bounded in Ap. The boundedness of the second
integral on the right of (4.3) follows from f̂ ∈ BO, see Theorem 3.8. Next, Tf
and Tf−f̂ bounded implies Tf̂ bounded, hence the Berezin transform ˜̂f is a
bounded function, and this fact does not depend on p. Since f̂ ∈ BO ⊂ BMO1

we obtain that also ˆ̂f ∈ L∞(D) (see Corollary 2.3.(d) of [14]). Also, f̂ ∈ BO
implies

(
f − f̂

)∧
∈ L∞(D). We obtain

f̂ =
(
f − f̂

)∧
+ ˆ̂f ∈ L∞(D).

(iv) ⇒ (iii) It su�ces to show that f̃ ∈ L∞ implies ˜̂f ∈ L∞. Once we have
this, we deduce as in the previous item that ˆ̂f ∈ L∞(D) and then

(
f − f̂

)∧
∈

L∞(D) and �nally f̂ ∈ L∞(D).
We utilize the decomposition of the disc into the hyperbolic sets Bn = B(zn),

mentioned in Remark 3.2 (ii) and write

˜̂f (z) = ∫
D

f̂|kz|2dA =
∑

n∈ℕ
∫
Bn

f̂(w)|kz(w)|2dA(w). (4.4)

We note that since f̂ ∈ BO, the modulus of the expression

f̂(w) − f̂(zn) =∶ Fn(w)

is bounded for every w ∈ Bn by a constant C1 > 0 independent of w or n.
Hence, (4.4) equals

∑

n∈ℕ
∫
Bn

f̂(zn)|kz(w)|2dA(w) +
∑

n∈ℕ
∫
Bn

Fn|kz|2dA, (4.5)
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where
|||||
∑

n∈ℕ
∫
Bn

Fn|kz|2dA
||||| ≤

∑

n∈ℕ
∫
Bn

C1|kz|2dA = C1‖kz‖22 = C1

since kz is the normalized kernel, see (2.5). To estimate the �rst term in (4.5)
we write

Gz(w, �) = |kz(w)|2 − |kz(�)|2, (4.6)

which again is bounded by a constant C2 > 0 independent of z ∈ D and n ∈ ℕ
and w, � ∈ Bn. We get

∑

n∈ℕ
∫
Bn

f̂(zn)|kz(w)|2dA(w) =
∑

n∈ℕ
∫
Bn

1
|Bn|

∫
Bn

f(�)|kz(�)|2dA(�)dA(w)

+
∑

n∈ℕ
∫
Bn

1
|Bn|

∫
Bn

f(�)Gz(w, �)dA(�)dA(w). (4.7)

Here, the �rst term equals f̃. The second one is bounded by
∑

n∈ℕ
∫
Bn

1
|Bn|

∫
Bn

C2|f(�)|dA(�)dA(w) ≤ C2
∑

n∈ℕ
∫
Bn

|f(�)|dA(�) ≤ C2‖f‖1.

This completes the proof of the corollary. �

Corollary 4.5. (i)Assume that the symbol f ∈ L1(D) satis�es BWMO-condition
(3.9). Then, the Toeplitz operator Tf−f̂ is bounded in A

p for all 1 < p <∞.
(ii) If f ∈ L1(D) satis�esVWMO-condition (3.10), then Tf−f̂ is compact inAp

for all 1 < p <∞. If, in addition, Tf is bounded inAp for some 1 < p <∞, then
also Tf−f̃ is compact in all spaces Ap.

Proof. The boundedness of Tf−f̂ follows from the proof of Corollary 4.4, (i) ⇒
(iii), and the compactness from the beginning of the proof of Corollary 4.2. If
in addition Tf is bounded, Corollary 4.4 yields that f̂ ∈ L∞. We obtain from
Corollary 4.2 that the bounded, continuous function f̃ − f̂ belongs to C)(D).
Hence, the operator Tf̃−f̂ and thus also Tf−f̃ are both compact. �

Remark 4.6. (i) The proof of Theorem 3.7 in [15] shows that if f ∈ BMO2

and the Berezin transform f̃ ∈ L∞ ∩ VO, then the Toeplitz operator Tf−f̃ is
compact on Ap. Since in this case f̃ is a bounded continuous function, the
results concerning the Berezin transform in (b)–(d) of Corollary 4.2 hold true
for such symbols.

(ii) It is known that for f ∈ BMO1, the compactness of Tf ∶ Ap → Ap for
some 1 < p < ∞ is equivalent to the vanishing of the Berezin transform at the
boundary, i.e. f̃ ∈ C)(D); see [14], Theorem 3.1. We do not know if this result
can be generalized for symbols in the BWMO-class.
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We give one simple application of Theorem 3.8 to the study of block Toeplitz
operators. For a suitable f = (fjk)Nj,k=1 with fjk ∈ L1, N ≥ 2, denote the block
Toeplitz operator by Tf ∶ A

p
N → Ap

N , where A
p
N = {g = (g1,… , gN) ∶ gk ∈ Ap}

with ‖g‖ApN = max ‖gk‖p. More precisely, if

g = (g1,… , gN) = (gk)k=1,…,N ∈ Ap
N ,

then

Tfg = P(fgT) = P
⎛
⎜
⎜
⎝

⎛
⎜
⎝

N∑

k=1
fjkgk

⎞
⎟
⎠j=1,…,N

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

N∑

k=1
Tfjkgk

⎞
⎟
⎠j=1,…,N

,

where gT is the transpose of g. Similarly, the Berezin transform of Tf is amatrix
operator which is de�ned componentwise by using the scalar de�nition in the
beginning of Section 4. For further details, see [5]

For scalar symbols f, g ∈ L∞, it is easy to see that

TfTg = Tfg − PMfHg. (4.8)

Note that the Hankel operatorHg is compact in any Lp if g ∈ VO, see, e.g., [3].

Proposition 4.7. Let f = (fjk) with fjk ∈ L1 ∩ VWMO and suppose that
f̂jk ∈ L∞. Then Tf is Fredholm onAp

N if and only if det f̃ is bounded away from
zero near )D.

Proof. First, we note that all operators Tjk ∶ Ap → Ap and Tf ∶ A
p
N → Ap

N are
bounded as a consequence of Corollary 4.4. Hence, the Berezin transform f̃ =
(f̃jk) is a well de�ned, bounded and continuous matrix function D → ℂN×N .
Moreover, Tf−f̃ is compact on Ap

N by Corollary 4.5.
We reduce the matrix-valued case to the scalar case using the following well-

known theorem: if the entries Ajk of a bounded linear matrix operator A on
a product Banach space XN commute modulo compact operators, then A is
Fredholm on XN if and only if detA is Fredholm on X (see, e.g., [5]).

Since
Tf = Tf̃ + Tf−f̃

and Tf−f̃ is compact on Ap
N , it follows that Tf is Fredholm if and only if Tf̃ is

Fredholm. By (4.8), if the scalar symbols g, ℎ belong to L∞∩VO, thenTg andTℎ
commute modulo compact operators. Now, by Theorem 3.8, all f̂jk belong to
L∞∩VO, and the same is true also for all f̃jk, by Corollary 4.2.(a). We conclude
by the above mentioned theorem that Tf̃, equivalently, Tf, are Fredholm if and
only if detTf̃ is Fredholm. Notice that

detTf̃ =
∑

�∈SN

⎛
⎜
⎝
sgn(�)

N∏

j=1
Tf̃j,�j

⎞
⎟
⎠
= Tdet f̃ + K,
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where SN is the permutation group andK is some compact operator. Therefore,
because f̃jk ∈ L∞ ∩ VO so that det f̃ ∈ L∞ ∩ VO, the scalar case (see Corol-
lary 4.2 or [1, 5]) implies that Tf is Fredholm if and only if det f̃ is bounded
away from zero near )D. �

Example 4.8. We present examples of symbols which (i) satisfy the VWMO-
condition (3.10) but which are not in BMO1, or (ii) bounded VWMO-symbols
which are not in VMO1. In the following examples the average function f̂ be-
longs to C)(D) and the operator Tf̂ is compact. Although the example resem-
bles that in Remark 2.4 of [8], the proof is completely di�erent, the reason being
that the standard de�nition of BMO1 involves hyperbolic discs D(z, r) instead
of the sets B(z), and the present technique is more convenient here. We de�ne
for all b ≥ � > 0 the function

f(rei�) ∶=
⎧

⎨
⎩

1
r(1 − r)b−�

sin 1
(1 − r)b

, r ≥ 1
2

1 , r < 1
2
.

(4.9)

Given z = rei� we calculate using integration by parts, for all � = r̃ei�̃ ∈ B(z),
� = �ei� ∈ B(z, �),

∫
B(z,�)

f(�)dA(�) =

�̃

∫
�

r̃

∫
r

(1 − �)1+� 1
(1 − �)b+1

sin 1
(1 − �)b

d�d�

= −

�̃

∫
�

(
[ (1 − �)1+�

b
cos 1

(1 − �)b
]�=r̃
�=r

+
1 + �
b

r̃

∫
r

(1 − �)� cos 1
(1 − �)b

d�)d� (4.10)

We estimate | cos(…)| ≤ 1 and take into account the lengths of the integration
intervals, hence, the modulus of the replacement term is bounded by

C

�̃

∫
�

(1 − r)1+�d� ≤ C′(1 − r)2+�

and the last integral in (4.10) has the same bound. Since |B(z)| ≥ C(1 − r)2,
we obtain the following two conclusions: �rst, f satis�es condition (3.6) and
second, |f̂| ∈ C)(D). These two imply f ∈ VWMO.

To see that f ∉ BMO1 we �rst show that also the average function f̂1, see
(2.2), belongs to C)(D). To this end we �x z = rei� and consider a set D(z, 1)
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instead of B(z). It follows from the de�nition of the hyperbolic geometry, see
[13], Ch. 6, that for some constant C > 0 we have for all � ∈ D(z, 1)

1
C
(1 − r) ≤ 1 − |�| ≤ C(1 − r),

sup
w1,w2∈D(z,1)

|w1 − w2| ≤ C(1 − r).
(4.11)

It is also obvious that the set D(z, 1) can be presented using polar coordinates
as

D(z, 1) =
{
� = �ei� ∶ � − �0 < � < � + �0, r1(�) < � < r2(�)

}

for some number �0 > 0 and functions rj ∶ (�−�0, �+�0)→ (0, 1). The points
rj(�)ei�, j = 1, 2, form the boundary of the disc D(z, 1); moreover, by (4.11), �0
and rj are bounded by C(1 − r) and also bounded from below by C′(1 − r).

We obtain in the same way as in (4.10)

∫
D(z,1)

f(�)dA(�) =

�+�0

∫
�−�0

(
[ (1 − �)1+�

b
cos 1

(1 − �)b
]�=r2(�)
�=r1(�)

+
1 + �
b

r2(�)

∫
r1(�)

(1 − �)� cos 1
(1 − �)b

d�)d�,

and as above we see that the modulus of this is bounded by C(1− r)2+� . Hence,
|f̂1(z)| ≤ C(1 − r)� for all z = rei� ∈ D and in particular f̂1 ∈ C)(D).

It is quite obvious that there is a constant � > 0 such that we have the lower
bound | sin(1∕(1 − r))| ≥ � for rei� in a subset D3 of D(z, 1) with measure at
least |D(z, 1)|∕2 , thus |f(z)| ≥ C(1−r)�−b for z = rei� ∈ D3. As a consequence

1
|D(z, 1)|

∫
D(z,1)

|f(�) − f̂1(z)|dA(�)

≥ 1
|D(z, 1)|

∫
D3

|f|dA − 1
|D(z, 1)|

∫
D3

|f̂1(z)|dA(�)

≥ C
|D(z, 1)|

∫
D3

1
(1 − r)b−�

dA − C′

|D(z, 1)|
∫
D3

(1 − r)�dA ≥ C′′(1 − r)�−b.

In view of the de�nition of the norm of BMO1, see (2.1), we get an example
of type (i) by taking any parameters b, � such that b > � > 0. Moreover, if
b − � < 1, then there holds f ∈ L1, but if b − � ≥ 1, we only have f ∈ L1loc. To
obtain an example of type (ii) one chooses b = � > 0.
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