
A numerical method for multispecies 
populations in a moving domain using 
combined masses 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Baines, M. J. and Christou, K. (2022) A numerical method for 
multispecies populations in a moving domain using combined 
masses. Mathematics, 10 (7). e1124. ISSN 2227-7390 doi: 
https://doi.org/10.3390/math10071124 Available at 
https://centaur.reading.ac.uk/104458/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.3390/math10071124 

Publisher: MDPI 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



����������
�������

Citation: Baines, M.J.; Christou, K.

A Numerical Method for

Multispecies Populations in a

Moving Domain Using Combined

Masses. Mathematics 2022, 10, 1124.

https://doi.org/10.3390/

math10071124

Academic Editor: Giorgos Kokkoris

Received: 19 February 2022

Accepted: 28 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Numerical Method for Multispecies Populations in a Moving
Domain Using Combined Masses
M. J. Baines † and Katerina Christou †,*

Department of Mathematics and Statistics, University of Reading, Reading RG6 6AH, UK;
m.j.baines@reading.ac.uk
* Correspondence: k.christou@pgr.reading.ac.uk
† These authors contributed equally to this work.

Abstract: This paper concerns the numerical evolution of two interacting species satisfying coupled
reaction–diffusion equations in one dimension which inhabit the same part of a moving domain.
The domain has both moving external boundaries and moving interior interfaces where species may
arise, overlap, or disappear. Numerically, a moving finite volume method is used in which node
movement is generated by local mass preservation, which includes a general combined mass strategy
for species occupying overlapping domains. The method is illustrated by a test case in which a range
of parameters is explored.

Keywords: multispecies populations; overlapping domains; moving domains; velocity-based moving
meshes; combined masses; finite-differences
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1. Introduction

Many simulation problems over a vast range of different sectors including physics,
finance, biology, and many more, can be described by partial differential equation models
that exhibit a priori unknown sets such as interfaces, moving boundaries, shocks, etc.

Moving or free boundary problems have emerged in increasing number in recent
years, especially in ecology, for modelling species interactions and generally for gaining
insights into population dynamics. Many theoretical results for general models in ecology
including competition–diffusion models are found in [1–6] and references cited therein.
While the theoretical analysis of free boundary problems in ecology is well represented
in the literature, there are fewer studies on the implementation of numerical methods for
solving such problems, partly due to the presence of moving boundaries.

The approximate solution of free and moving boundary problems is challenging since
a higher resolution is usually required in the vicinity of boundaries where a change in the
slope of the solution is located, often occupying a central position within the domain.

In reference [7], the authors have used both front tracking and front fixing approaches
to numerically solve competition–diffusion models with two free boundaries. The approach
involves the use of a fixed grid to locate the position of the moving boundaries, which are
then tracked explicitly. However, for solutions possessing sharp spatial transitions that
move, such as free or moving boundaries, a fixed mesh method is generally considered
inefficient since the very small spatial step required for resolution of the boundary leads to
an extremely small time step due to the stiffness of the system.

Over the years, adaptive grid methods have been used successfully to solve free and
moving boundary problems. Such methods automatically adjust the size of the space step
to better approximate critical regions of high spatial activity without the use of a large
number of nodes. The techniques of adaptive grid methods include the addition or removal
of nodes in the domain at discrete time levels and the dynamic movement of existing nodes
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continuously in time to track the features of interest. The latter, also known as moving
mesh methods, becomes preferable if the nodes move smoothly along with the solution
evolution, while the former includes the constant addition or removal of nodes followed
by a solution interpolation between the nodes.

The conservation method is a moving mesh method in which an integral is used to
preserve a desired conserved quantity, e.g., mass, within each patch of elements, from
which node velocities are constructed. A moving mesh equation is extracted and solved in
association with the PDE(s).

A similar approach was used in [8] where the method was applied to several one-
dimensional moving boundary problems, including the mass-conserving porous medium
equation, Richards’ equation in hydrology, and the Crank–Gupta problem that does not
conserve mass. Finite element versions of the velocity-based moving mesh approach
has been used by Baines, Hubbard and Jimack in [9,10] and by Baines, Hubbard, Jimack
and Mahmood in [11]. More recently, the approach of [8] was used in [12] for solving
the competition–diffusion system of [13], in which species are spatially segregated due
to high competition and interact only through a moving interface. The results in [12]
gave confidence that the method is numerically stable and robust for a wide choice of
parameter values.

Even though moving mesh methods have proved to be efficient and reliable, they
can be challenging when the system being solved includes coupled PDEs and the solution
variables occupy distinct but overlapping domains.

The novelty of this paper lies in the theoretical and numerical treatment of moving
boundaries in population dynamics, as well as a combined approach for cohabiting species,
which are not standard in the numerical modelling literature. The emphasis of the paper is
on the role of the moving mesh method based on conservation in tracking free and moving
boundaries in population dynamics.

Motivated by the work in [12], we apply the moving mesh finite volume method based
on conservation for the general case of the competition–diffusion system of [13], where
coupled species can coexist in space but still compete for common resources.

1.1. The Competition–Diffusion System of Cohabiting Species with Moving Boundaries

In order to demonstrate the features of the numerical method we have chosen the
one-dimensional classical Lotka–Volterra system

∂u
∂t

= δ1
∂2u
∂x2 + f (u, v)u x ∈ R1(t), t > 0 (1)

∂v
∂t

= δ2
∂2v
∂x2 + g(u, v)v x ∈ R2(t) t > 0 (2)

where f (u, v) = r1

(
1− u+K1v

k1

)
and g(u, v) = r2

(
1− v+K2u

k2

)
. Here u and v are the densities

of two competing species that move by diffusion in space, δp is the diffusion rate, rp is the
intrinsic growth rate, Kp is the carrying capacity, and kp is the competition rate (p = 1, 2).
All the parameters are positive constants. The domainsR1(t) andR2(t) are occupied by
species u and v, respectively, and partly overlap (see Figure 1).
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Figure 1. Initial conditions for the competition system, with population density u of species 1 in green
and v of species 2 in red. The blue shows the initial combined population density (u + v). The outer
boundaries are x = 0 (fixed) and x = S(t) (free), while the interfaces are at x = Z(t) (green/blue)
and x = H(t) (blue/red). The two interfaces are indicated by dotted lines and separate the domain
into the three regionsRL,RM, andRR.

1.1.1. Boundary Conditions

A zero Neumann boundary condition is imposed, i.e.,

∂u
∂x

= 0 t > 0, x = 0.

on u at the fixed left-hand boundary (x = 0) of the whole domain R1(t) ∪ R2(t), (see
Figure 1), which implies that there is no migration across the left-hand boundary.

1.1.2. Interface Conditions

The dynamics of the two inner moving boundaries H(t) and Z(t), from the continuity
of net flux, are

dH
dt

= − δ1

K1

(
∂u
∂x

)∣∣∣∣
x=H

(3)

and
dZ
dt

= − δ2

K2

(
∂v
∂x

)∣∣∣∣
x=Z

(4)

We impose u(H(t), t) = 0 and v(Z(t), t) = 0.

1.1.3. Free Boundary Condition

Lastly, the right-hand side boundary S(t) of species 2 is taken to be a free boundary,
which is assigned the condition

dS
dt

= − δ2

µ

(
∂v
∂x

)∣∣∣∣
x=S

(5)

where µ is inversely proportional to the preferred population density at the spreading front.
For the ecological background of free and moving boundary conditions refer to [14].

The difference between the model in [13] and this one is that here, the species are only
partly segregated initially, with a region in the middle of the domain where species coexist,
as shown in Figure 1.

By contrast, in [12] the application of the moving mesh method to the two-species
problem is straightforward as there is no coupling between the equations. The nonlinear
reaction terms in each equation depend only on the local species and not on that of the
competitor. Moreover, each species occupies a separate part of the domain.
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The aim of this paper is to solve the above system of competitive species using a
moving mesh finite volume method based on the conservation of mass and a known net
inward flux q(t) at x = 0.

The layout of the paper is as follows. In Section 2.1, we recall the basics of the
conservation method and state algorithms for solving mass and nonmass conserving
problems using the moving mesh finite volume based on mass balance.

In Section 2.2, we introduce a combined mass approach in which the competition–
diffusion system (1) and (2) is solved on a single mesh, thus avoiding interpolation to
approximate f and g at each time step. The essential difference in the approach is the use
of the combined mass in overlapped domains. Following the algorithm of Section 2.1.5
and the use of a combined mass approach of Section 2.2, we provide a detailed solution
for approximating the competition system (1) and (2). Section 3 provides illustrations for a
variety of parameter combinations. Finally, Section 4 gives a brief discussion of the method,
the results, and potential research directions.

2. Materials and Methods
2.1. A Solution Based on the Conservation Method

In what follows, m refers to an interval and j or i refers to a node. We introduce a
time-dependent space coordinate x̃(x, t), abbreviated to x̃(t) at a specific x, which coincides
instantaneously with the fixed coordinate x in the domain (a(t), b(t)). Let ∆x̃ denote the
interval between adjacent moving nodes. We follow an interval ∆x̃m possessing a density
um(x̃, t). The mass in the interval is

θm(t) = um(t)∆x̃m, (6)

and the total mass in the moving domain (a(t), b(t)) is

θ(t) = ∑
m

um(t)∆x̃m.

By mass balance, the rate of change of the mass θm(t) in the interval m is given by the
inward flux q(x̃, t) through the interval boundaries together with the flux due to movement,
i.e.,

[q(x̃, t)]m + [u(x̃, t)w(x̃, t)]m,

where the notation [·]m denotes the jump in the argument across the interval m.
Since w(x̃, t) = ∆x̃/∆t to the first order in ∆t, it follows from a mass balance that

d
dt

(um∆x̃m) = −[q(x̃, t) + u(x̃, t)w(x̃, t)]m (7)

where w(x̃, t)|m denotes a velocity associated with the interval m.
The flux q(x̃, t) is the mass increment within the interval m due to the inward/outward

fluxes and the source/sink terms, as provided by the problem.
The overall rate of change of mass in the moving domain (a(t), b(t)) is

d
dt ∑

m
um∆x̃m = −[q(x̃, t) + u(x̃, t)w(x̃, t)]b(t)a(t)

where q(x̃, t) =
∫ b(t)

a(t)
∂u
∂t dx and [u(x̃, t)w(x̃, t)]b(t)a(t) is the flux jump across the boundaries of

the moving domain.

2.1.1. A Method Based on Preservation of Relative Masses

The conservation of mass fractions (CMF) method for those problems that conserve
the total mass of the solution, i.e., for which θ(t) remains constant for all t ≥ t0, is based on



Mathematics 2022, 10, 1124 5 of 17

the preservation of partial masses by supposing that x̃ moves in such a way that the mass
in any interval is independent of time, i.e.,

um(t)∆x̃m(t) = cm (8)

is constant in time.
Then both sides of (7) are zero and the nodal velocities may be constructed from the

zero right-hand side. New x̃ positions are determined by integration and new u(x̃, t + ∆t)
by Equation (6) .

For more general problems that do not conserve mass such as the one in Section 1.1,
the total mass θ(t) varies with time. Therefore, it is inconsistent to suppose that the mass (6)
in each interval is constant in time. However, the relative density, defined as u(x̃, t)/θ(t),
has a total relative mass ∫ b(t)

a(t)

u(x̃, t)
θ(t)

dx

which equals unity. It is therefore consistent to suppose that the local relative mass,∫
m

u(x̃, t)
θ(t)

dx (9)

in a cell m is conserved in time. The conservation of the relative mass in each subinterval
can therefore be used to generate fluxes and velocities to move the nodes. The approach
requires the total mass to be given as part of the problem.

The relative CMF method can be described as follows. Define a relative density

ûm =
um

θ(t)
(10)

where θ(t) is the current total mass. Then, by (9), the relative mass in cell m can be written∫
m

ûm(x, t) dx = γm, (11)

constant in time. Summing γm over m gives 1. Furthermore, by conservation of the relative
mass (8), the relative flux jump across cell m is

[q̂ + ûŵ]m = 0 (12)

where q̂ is a modified flux. Summing (12) over all intervals m, leads to [q̂ + ûŵ]ba = 0. If the
argument vanishes at one end of the domain, then q̂ + ŵû is zero at all nodes and

ŵ = − q̂
û

is the relative velocity (provided that û 6= 0).
The CMF equations for a mass-conserving problem consist of local conservation of

mass (Equation (11)) together with the flux balance (Equation (12)). We remark here that
Equations (11) and (12) are equivalent to the Lagrangian and Eulerian conservation laws,
respectively, which are coincident for small times.

We relate q̂ to the static ∂u/∂t, which is known from the statement of the problem in
Section 1.1. Differentiating (11) and using the Leibniz integral rule for the relative mass,

d
dt

∫
m

û(x, t) dx = 0 =
∫

m

∂û
∂t

dx + [ûŵ]m

By the relative mass balance Equation (12),

0 = [q̂]m + [ûŵ]m (13)
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yielding

[q̂]m =
∫

m

∂û
∂t

dx (14)

Hence, if u, θ (therefore û) are known, [q̂] can be determined from ∂u
∂t . Since by (10),

∂û
∂t

=
∂

∂t

(u
θ

)
=

1
θ

∂u
∂t
− θ̇

θ2 u

where θ̇ = dθ/dt, then from (14)

[q̂]m =
1
θ

∫
m

∂u
∂t

dx− θ̇

θ2

∫
m

u(x, t) dx

and by (11)

[q̂]m =
1
θ

( ∫
m

∂u
∂t

dx− θ̇γm

)
(15)

where ∂u/∂t is known from the statement of the problem and the time-independent γm are
given by (11), leading to

[ûŵ]m = −1
θ

( ∫
m

∂u
∂t

dx− γm θ̇
)

(16)

by Equation (13). If m denotes the interval between two successive nodes , e.g., (xi, xi+1),
the left-hand side of (16) can be written (ûŵ)i+1 − (ûŵ)i . For a unique solution of ûŵ, the
flux [ûŵ] must be imposed at one point which may be thought of as an “anchor” point.
A common choice of an anchor point is at the boundary of the region, such as xn

0 , where the
value ûŵ is known. Summing from a fixed point at node x0 to x̃i gives

(uw)i − (uw)0 = −
( ∫

m

∂u
∂t

dx− Γi θ̇
)

. (17)

since [ûŵ]mθ = [uw]m, where Γi = ∑i
j=0 γj .

The rate of change θ̇(t) of the total mass θ(t) can be evaluated using the original PDE.
By mass balance, the rate of change of the total mass equals the flux q(x̃, t) (inward/outward
fluxes and reaction terms) plus the flux due to motion, i.e.,

dθ

dt
=
∫ b(t)

a(t)

∂u
∂t

dx + [uw]
b(t)
a(t) (18)

where w in (18) is given by the problem.

Example 1. As an example related to the Equations (1) and (2), consider u such that

∂u
∂t

= δ
∂2u
∂x2 + s(x, t) (19)

where δ is the diffusion coefficient and s(x, t) denotes the source terms.
Substituting Equation (19) into Equations (17) and (18), we can calculate the velocity at each

node wi and ∂θ
∂t by integration of the diffusion term, together with the boundary conditions, i.e., the

equation for dθ
dt using (18) and (19) is

dθ

dt
=
∫ b(t)

a(t)

(
δ

∂2u
∂x2 + s

)
dx + [uw]

b(t)
a(t) =

∫ b(t)

a(t)
s dx +

[
δ

∂u
∂x

+ uw
]b(t)

a(t)
(20)

and the equation for the velocity wi of a node xi is given from (17) and (19) as

wi =
1
ui

(
Γi θ̇ −

∫
m

(
δ

∂2u
∂x2 + s

)
dx + uw|0

)
=

1
ui

(
Γi θ̇ −

∫
m

s dx− δ

[
∂u
∂x

]
m

)
(21)
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where the anchor point is taken to be the fixed node x0 (i.e., w0 = 0), m is the interval (x0, xi), and
Γi denotes the summation of all the γj from j = 0 to i. Note that θ̇ is known from (20).

The example ends here.

Once the velocity w has been found it can be integrated to move the nodes

dx̃
dt

= w,

while the new total mass is found by integrating

dθ

dt
= Q, (22)

where Q is the known rate of increase of mass.
Finally, having the new positions of x̃ and the new θ, we can use Equations (10) and (11)

to update u(x̃, t) from ∫
m

um(x̃, t) dx = γmθ(t). (23)

A first-order-in-time finite-difference algorithm based on this theory is as follows.

2.1.2. Finite Difference Method

Given a time step ∆t > 0 and a fixed number N of spatial nodes, choose discrete
times tn = n∆t, (n = 0, 1, . . . ) and discretise the domain at each time using the nodes
x̃n

i = x̃(xi, tn), i = 0, 1, . . . , N, for which a(tn) = xn
0 < xn

1 < . . . < xn
N = b(tn). Furthermore,

define the approximations un
i ≈ u(x̃, tn), wn

i ≈ w(x̃, tn), θn ≈ θ(tn), and θ̇n ≈ θ̇(tn). Having
defined the notation, we proceed to the initial conditions required for the approximate
solution.

2.1.3. Time-Stepping

Time-stepping xi
A first-order-in-time explicit time-stepping scheme for x̃n+1

i from (13) is

x̃n+1
i = x̃n

i + ∆t wn
i (24)

Another first-order-in-time explicit time-stepping scheme for (22) that preserves the sign of
∆x̃m (thus avoiding mesh tangling) for any positive ∆t is

∆x̃n+1
m = ∆x̃n

m exp
(

∆t
∆wn

m
∆x̃n

m

)
, (25)

which is equivalent to (24) to the first order in ∆t.
Time-stepping θ(t)
In updating the total mass θ(t), it is important to ensure that θn+1 will remain positive

so that the condition u > 0 will not be violated. In the same manner as (25), the exponential
time-integration scheme may be used to update θ, i.e.,

θn+1 = θn exp
(

∆t
θ̇n

θn

)
. (26)

ensuring that θn+1 > 0. More details on the exponential time-stepping scheme for updating
x̃ can be found in [15].

2.1.4. Initial Conditions

Choose initial node positions x̃0
i , (i = 0, 1, .., N) with corresponding initial u0

i .
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From the initial conditions, we derive ∆x0
i and compute the initial value θ0 of the total

mass θ, given by the composite trapezoidal scheme applied to (7),

θ0 =
1
2

N−1

∑
i=0

(
x̃0

i+1 − x̃0
i

)
(u0

i + u0
i+1), (27)

Given θ0, we can compute the approximate relative masses γm of (11) by a first-order-
in-space shift to the end of the interval, i.e.,

γm =
1
θ0 (x̃0

i − x̃0
i−1)u

0
i (i = m = 1, . . . ., N) (28)

Then, at time tn for n = 1, 2, . . . , given θn, x̃n
i , and un

i , we calculate θn+1, x̃n+1
i , and un+1

i
as follows:

2.1.5. Algorithm

At each time step n,

1. Evaluate the rate of change of the total mass θ̇n by discretising (18) as the boundary
influx, source terms, and flux due to motion as(dθ

dt

)n
=
∫ x̃n

N

x̃n
0

∂u(x, tn)

∂t
dx + wn

x̃N
ũn

x̃N
− wn

x̃0
un

x̃0
.

2. Evaluate the discrete velocity at interior points from (17), specifying an anchor point,
say x0, so that the equations for the velocity is given by

wn
i =

un
0 wn

0 −
∫ xn

i
xn

0

∂u(s,tn)
∂t dx + Γi θ̇

un
i

, i = 1, . . . , N (29)

where Γi = ∑i
j=0 γj.

At the boundaries extrapolate the velocity from interior values. Derive ∆wn
m for

all intervals.
3. Update the new ∆x̃n+1

m using the exponential time-stepping scheme (25).
4. Update θn+1 by the exponential time-stepping scheme (26).
5. Recover the solution un+1

m at the interior points from (23) in the form

un+1
m =

γmθn+1

∆x̃n+1
m

m = 2, . . . , N. (30)

and determine un+1
i (i = 2, . . . , N − 1) by a one-sided approximation, with un+1

0
and un+1

N being updated either from given boundary conditions or by extrapolation,
depending on the nature of the problem.

2.2. Numerical Solution for a Competition–Diffusion System with Two Interfaces and a
Moving Boundary

We divide the domain into three regions separated by the two interfaces (Z(t) and
H(t)). Denote by RL the region on the left-hand-side of the moving boundary Z(t), and
byRR the region on the right-hand-side of the moving boundary H(t). The region in the
middle, bounded by both moving boundaries Z(t) and H(t), is denoted byRM. Note that
v(t) = 0 inRL(t) and u(t) = 0 inRR(t).

As discussed above, we are considering the mass at a specific location to be the
combined mass of the densities u and v. In the conservation methods the nodal velocities
are constructed by supposing that fractions of the corresponding relative mass are held
constant in time.
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For ease of exposition, we drop the tilde (˜) for the rest of the paper.
At time level t = tn, define time-dependent mesh points

0 = x0 < xn
1 < . . . < xn

ζ < . . . < xn
η < . . . < xn

N+1 = xn
σ

where xn
ζ is the node at the moving interface Z(t) and xn

η is the node at the moving interface
H(t). Let un

i and vn
i (0 ≤ i ≤ N + 1), approximate u(x, t) and v(x, t) by un

i and vn
i ,

respectively, at these points.
For the initial conditions (at n = 0) we take the x0

i to be equally spaced and the u0
i and

v0
i pointwise from an initial function

u(x, 0) = 30, (0 ≤ x ≤ 0.46)

u(x, 0) = 480(x− 0.2)(0.7− x), (0.46 ≤ x ≤ 0.7)

u(x, 0) = 0, (0.7 ≤ x ≤ 1)

v(x, 0) = 0, (0 ≤ x ≤ 0.3)

v(x, 0) = 480(x− 1)(0.3− x), (0.3 ≤ x ≤ 1)

as shown in Figure 1.
The initial values θ0

L, θ0
M, and θ0

R of the total masses θ in the intervals RL,RM, and
RR, respectively, are approximated by θn

L ≈ θL(tn), θn
M ≈ θM(tn), and θn

R ≈ θR(tn) of (27)
estimated by the composite trapezium rule. The constant-in-time relative masses γL,i, γM,i,
and γR,i in the interval (xn

i−1, xn
i ) are approximated from (28). Then, at each time step, we

proceed with the following calculations as indicated by the algorithm in Section 2.1.1.

2.3. Velocities at the Moving Boundaries

In order to evaluate the nodal velocities at the moving interfaces and the outer bound-
ary, we apply a one-sided approximation to the derivative terms of Equations (3)–(5) for xη ,
xζ , and xσ, respectively,

dη

dt
= − δ1

K1

(u(η)− u(η−)
x(η)− x(η−)

)
, (31)

where η− is the node immediately to the left of η.

dζ

dt
= − δ2

K2

( v(ζ+)− v(ζ)
x(ζ+)− x(ζ)

)
, (32)

where ζ+ is the node immediately to the right of ζ.

dσ

dt
= − δ2

µ

(v(σ)− v(σ−)
x(σ)− x(σ−)

)
. (33)

where σ− is the node immediately to the left of σ.

2.4. Approximating the Velocities and the Rates of Change of the Total Populations

From (29), by setting the anchor point x0, the velocity wn
i in regionRL satisfies,

wn
i un

i = un
0 wn

0 −
∫ xn

i

x0

∂u(s, tn)

∂t
dx + ΓL,i θ̇L (xi ∈ RL),

where ΓL,i = ∑i
j=0 γL,j for i = 1, . . . ζ − 1.

By substituting the original PDE (1) and applying the boundary condition w0 = 0, the
equation for the node velocities in regionRL is

wn
i =

1
un

i

(
ΓL,i θ̇

n
L −

∫ xn
i

x0

(
δ1

∂2u
∂x2 + r1u

(
1− u

k1

))
dx

)
(34)
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provided that un
i 6= 0, since v = 0 inRL.

Applying the integration and the Neumann boundary condition at x0
Equation (34) becomes

wn
i =

1
un

i

(
ΓL,i θ̇

n
L − δ1

∂u
∂x

∣∣∣∣
i
−Φn

i

)
, (1 ≤ i ≤ ζ − 1), (35)

where the derivative term is approximated by a one-sided approximation as Φi denotes the
reaction terms of Equation (1) approximated by the composite trapezium rule which has
summation over j = 0 and i (i = 1, . . . , ζ − 1). In order to evaluate wn

i in (35) we require θ̇n
L.

By setting xi = xζ in (34), due to the boundary conditions and the known velocity at
the moving boundary xζ , we can obtain an equation for θ̇n in regionRL, i.e.,

θ̇n
L = δ1

∂u
∂x

∣∣∣
ζ
+ Φn + uw|ζ (36)

since summing γL,j over j = 0 to ζ gives 1. The summation of the composite trapezoidal
rule approximation Φn is over j = 0 and i = ζ.

Similarly, from (29) by taking the anchor point to be xζ , the velocity wn in region
RM satisfies

wn
i un

i = un
ζ wn

ζ −
∫ xn

i

xn
ζ

∂u(s, tn)

∂t
dx + ΓM,i θ̇M (xi ∈ RM),

where ΓM,i = ∑i
j=ζ γM,j for i = ζ + 1, . . . η − 1.

By substituting the original PDEs (1) and (2) and applying the boundary conditions,
the equation for the node velocities in regionRM is

wn
i =

1
(un

i + vn
i )

(
ΓM,i θ̇

n
M

−
∫ xn

i

xn
ζ

(
δ1

∂2u
∂x2 + δ2

∂2v
∂x2 + r1u

(
1− u + K1v

k1

)
+ r2v

(
1− v + K2u

k2

))
dx + (u + v)w|ζ

)
(37)

provided that un
i + vn

i 6= 0.
Applying the integration, Equation (37) becomes

wn
i =

1
(un

i + vn
i )

(
ΓM,i θ̇

n
M − δ1

∂u
∂x

∣∣∣∣i
ζ

− δ2
∂v
∂x

∣∣∣∣i
ζ

−Ψn
i − Υn

i + (u + v)w|ζ

)
(ζ + 1 ≤ i ≤ η − 1) (38)

where Ψn
i and Υn

i denote the composite trapezoidal rule approximations for the reaction
terms of (1) and (2), respectively, with summation from j = ζ to i (i = ζ + 1, . . . , η − 1).

By setting i = η and since ∑
i=η
j=ζ γM,j = 1, the equation for θ̇n in regionRM is given by

θ̇n
M = δ1

∂u
∂x

∣∣∣η
ζ
+ δ2

∂v
∂x

∣∣∣η
ζ
+ Ψn + Υn + (u + v)w|ηζ . (39)

Here, the composite trapezoidal rule approximations Ψn and Υn sum from j = ζ to i = η.
Finally, from (29) by taking the anchor point xη , the velocity wn in regionRR is

wn
i un

i = un
ηwn

η −
∫ xn

i

xn
η

∂u(s, tn)

∂t
dx + ΓR,i θ̇R (xi ∈ RR),

where ΓR,i = ∑i
j=η γR,j for i = η + 1, . . . σ− 1.
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By substituting the original PDE (2), the equation for the node velocities in region
RR is

wn
i =

1
vn

i

(
ΓR,i θ̇

n
R −

∫ xn
i

xn
η

(
δ2

∂2v
∂x2 + r2v

(
1− v

k2

))
dx + vw|η

)
(40)

since u = 0 inRR, provided that vn
i 6= 0.

Applying the integration, Equation (40) becomes,

wn
i =

1
vn

i

(
ΓR,i θ̇

n
R − δ2

∂v
∂x

∣∣∣∣i
η

− Ξn
i + vw|η

)
, (η + 1 ≤ i ≤ σ− 1). (41)

Ξn
i is the composite trapezoidal rule approximation of the reaction terms of Equation (2)

with summation from j = η to i (i = η + 1, . . . σ− 1).
The equation for θ̇n in regionRR is obtained from Equation (40) by setting i = σ, i.e.,

θ̇n
R = δ2

∂v
∂x

∣∣∣σ
η
+ Ξn + vw|σ − vw|η (42)

where the composite trapezoidal rule approximation Ξn sums from j = η to i = σ.
Having found the velocities for all the nodes in the domain, we update the nodal posi-

tions.

2.5. Time-Stepping

As discussed in Section 2.1.3, a first-order exponential scheme is used to update both
the node positions of xn+1

i and the new θn+1, i.e.,

∆x̃n+1
i = ∆x̃n

i exp
(

∆t
∆wn

i
∆x̃n

i

)
(43)

and

θn+1 = θn exp
(

∆t
θ̇n

θn

)
. (44)

2.6. Population Densities

Having found the new positions of the nodes, all that is left now is to determine the
approximate population densities u and v at the moved nodes at the new time t = tn+1.

Once the xn+1
i have been found, we find an approximation solution for the population

densities un+1 and vn+1. Instead of using the conservation principle as follows by the
algorithm in Section 2.1.5, Equation (30), we use the mass balance equations for the u and v
local masses to update u and v individually throughout the domain. The rate of change of
the mass equals the augmented flux (i.e., inward/outward flux and the flux due to motion)
and the reaction terms. Thus, using the velocities and the updated x-positions found above,
we can update u and v individually throughout the domain using the Leibniz integral rule
or the arbitrary Lagrangian equation [16]:( d

dt

) ∫ xi

xi−1

u dx =
∫ xi

xi−1

∂u
∂t

dx +
∫ xi

xi−1

∂

∂x
(uw) dx (i = 0, .., η − 1) (45)

( d
dt

) ∫ xi+1

xi

v dx =
∫ xi+1

xi

∂v
∂t

dx +
∫ xi+1

xi

∂

∂x
(vw) dx (i = ζ + 1, .., N) (46)

Note that ui = 0 for i = η, .., N + 1 and vi = 0 for i = 0, .., ζ.
In detail, substituting Equations (1) and (2) into the right-hand sides of (45) and (46) gives,

=
∫ xi

xi−1

δ1
∂2u
∂x2 dx +

∫ xi

xi−1

r1u
(

1− u− K1v
k1

)
dx +

∫ xi

xi−1

∂

∂x
(uw) dx (i = 0, .., η − 1)
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=
∫ xi+1

xi

δ2
∂2v
∂x2 dx +

∫ xi+1

xi

r2v
(

1− v− K2u
k2

)
dx +

∫ xi+1

xi

∂

∂x
(vw) dx (i = ζ + 1, .., N)

Applying the integration on the right-hand side,

= δ1
∂u
∂x

∣∣∣i
i−1

+
∫ xi

xi−1

r1u
(

1− u− K1v
k1

)
dx + uw|ii−1 (i = 0, .., η − 1)

= δ2
∂v
∂x

∣∣∣i+1

i
+
∫ xi+1

xi

r2v
(

1− v− K2u
k2

)
dx + vw|i+1

i (i = ζ + 1, .., N)

Now, integrating in time,∫ xi

xi−1

u dx = ∆t
(

δ1
∂u
∂x

∣∣∣i
i−1

+
∫ xi

xi−1

r1u
(

1− u− K1v
k1

)
dx + uw|ii−1

)
(i = 0, .., η − 1)

∫ xi+1

xi

v dx = ∆t
(

δ2
∂v
∂x

∣∣∣i+1

i
+
∫ xi+1

xi

r2v
(

1− v− K2u
k2

)
dx + vw|i+1

i

)
(i = ζ + 1, .., N)

With φn = φ(tn) and φi =
1

∆t
∫ tn+1

tn φ(xi, t) dt,

un+1
i =

1
xn+1

i − xn+1
i−1

(
un

i (xn
i − xn

i−1) + ∆t
(

δ1
∂un

∂x

∣∣∣i
i−1

+
∫ xn

i

xn
i−1

r1un
(

1− un − K1vn

k1

)
dx + unwn|ii−1

))
(i = 0, .., η − 1) (47)

vn+1
i =

1
xn+1

i+1 − xn+1
i

(
vn

i (xn
i+1 − xn

i ) + ∆t
(

δ2
∂vn

∂x

∣∣∣i+1

i

−
∫ xn

i+1

xn
i

r2vn
(

1− vn − K2un

k2

)
dx + vnwn|i+1

i

))
(i = ζ + 1, .., N) (48)

The algorithm in this paper for the approximate solution of the Lotka–Volterra
competition–diffusion system of cohabiting species (1) and (2) using the moving mesh
finite volume method based on conservation and the combined mass procedure can be
summarised as follows.

2.7. Algorithm for the Competition–Diffusion System

First, evaluate the combined mass θL, θM, and θR by (27), noting that u = 0 inRR and
v = 0 inRL, and calculate γm in each interval m, for each region by (28).

Then, at each time step, we proceed with the following calculations:

1. Evaluate the rate of change of mass in each region θ̇n
L, θ̇n

M, and θ̇n
R by (36), (39), and

(42), respectively.
2. Evaluate the velocities at the two interfaces by (31) and (32) and at the free boundary

by (33). Calculate the nodal velocities wn+1
i in each region by (35), (38), and (41). For

RL, the anchor point is taken at x0, in regionRM, it is taken at xζ , and in regionRR
at xη .

3. Update the new nodal positions xn+1
i and the new masses θn+1

L , θn+1
M , and θn+1

R by the
exponential time-stepping scheme ((43) and (44)).

4. Recover the solutions un+1
i for i = 0, .., η − 1 and vn+1

i for i = ζ + 1, .., N by the use of
the mass balance equations and the updated nodal positions xn+1

i from Equations (47)
and (48), respectively.

In order to check whether the procedure of using a single mesh for the combined mass
is reliable for solving the two-component Lotka–Volterra competition–diffusion model,
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we first compared our results against the standard, well-established, moving mesh finite
volume method of [8,12], where each species’ equation was solved on a unique mesh and
the coupling terms were approximated using interpolation.

3. Results

The model was found to be stable and robust for a variety of parameter choices. Even
though the use of the exponential time-stepping scheme ensured that no tangling would
occur, it remains an explicit scheme. Therefore, the time step was restricted by stability
considerations. For this reason the time step value was set at ∆t = 0.0005.

3.1. Parameter Choices

For the following examples, we have used the initial conditions illustrated in Figure 1.
The mass of species 2 is set initially to be greater than species 1, and species 2 can escape
the overlapping region through the outer right moving boundary. Species 1 is restricted by
the left-hand-side stationary boundary where we have imposed a zero Neumann boundary
condition which implies no migration. The default variables used for the simulations
(δ1 = δ2 = 0.001, K1 = K2 = 1, k1 = k2 = 100, r1 = r2 = 1, and µ = 50) are similar to
the ones used in [12,17] for the extreme case of the competition–diffusion system (1) and
(2), presented in [13], where the competition parameters K1 and K2 were very large to
spatially segregate the two populations. A sensitivity analysis was carried out by varying
one parameter at a time to test the robustness of the results, which showed that the model
and the numerical method produced stable results for each parameter change. A selection
of results is presented below, which indicates that the method is likely to be able to satisfy
the requirements of modelling a wide variety of competition systems.

In the following figures, the initial conditions are shown in black while green, blue,
and red indicate, respectively, how the population densities u, u + v, and v evolve through
time. All results were run with a time step of 0.0005 and we plotted the results for every
step of 0.25.

Figure 2 shows the evolution of the populations as time progresses using δ1 = δ2 =
0.001, K1 = K2 = 1, k1 = k2 = 100, r1 = r2 = 1, and µ = 50. The two populations have
both reached their maximum carrying capacities and individuals are spreading throughout
the domain through the moving boundaries.
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Figure 2. Result of the competition–diffusion model at t = 10. Here, we use δ1 = δ2 = 0.001,
K1 = K2 = 1, k1 = k2 = 100, r1 = r2 = 1, and µ = 50. Both species have reached their maximum
carrying capacities (k1 and k2) and diffuse in the domain through the moving boundaries.

We investigated other parameter choices. We selected a conservatively representative
set of parameters, chosen to demonstrate some of the interesting behaviours that this model
is able to describe.
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3.1.1. Decreasing the Carrying Capacity K2

For Figure 3, we have used the same parameter values as the example above except for
the carrying capacity of species 2, which is set to be lower (k2 = 60 instead of k2 = 100). We
have restricted the growth of species 2 by lowering its carrying capacity and in comparison
to Figure 2, we observe that the decrease in the carrying capacity caused the population to
disperse less through the moving boundaries. Species 1 on the other hand has benefited
from the restriction of species 2 and increased its mass, and species 1 has dispersed faster
in the domain through the moving boundary, taking over most of the domain.

3.1.2. Increasing the Competition Rate K2

The result in Figure 4 is focused on the effect of changing the competition parameter.
We have increased the competition parameter of species 2 (K2) by a factor of 5. As shown
in Figure 4, due to the high competition of species 2, the population of species 2 is shifting
towards the right-hand side of the domain, away from the overlapping region.

3.1.3. Decreasing the Diffusion Coefficient δ1

In Figure 5, we have decreased the diffusion coefficient of species 1 by a factor of 10.
As expected, that has restricted the ability of species 1 to disperse in the domain compared
to Figure 6.

3.1.4. Decreasing the Parameter µ

Lastly, in Figure 6, we have investigated the µ parameter in the boundary condition at
the right-hand-side outer moving boundary. We set µ = 1 instead of 50. In [14], it is shown
that µ is inversely proportional to the preferred population density at the spreading front.
Thus, increasing 1

µ causes the population to disperse more through the moving boundary
in its effort to increase the population density, as shown in Figure 6. We can also observe
that the velocity of the right-hand-side outer moving boundary is increasing at earlier times
and remains constant for the rest of the time.
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Figure 3. Result of the competition–diffusion model at t = 10. Here, we use δ1 = δ2 = 0.001,
K1 = K2 = 1, k1 = 100, k2 = 60, r1 = r2 = 1, and µ = 50. The restriction on the carrying capacity of
species 2 has caused its inability to increase its mass resulting in species 1 taking over most of the
domain.
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Figure 4. Result of the competition–diffusion model at t = 10. Here, we use δ1 = δ2 = 0.001, K1 = 1,
K2 = 5, k1 = k2 = 100, r1 = r2 = 1, and µ = 50. Due to the high competition rate of species 1, species
2 is unable to compete.
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Figure 5. Result of the competition–diffusion model at t = 8. Here, we use δ1 = 0.0001, δ2 = 0.001,
K1 = K2 = 1, k1 = k2 = 100, r1 = r2 = 1, and µ = 50.
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Figure 6. Result of the competition–diffusion model at t = 10. Here, we use δ1 = δ2 = 0.001,
K1 = K2 = 1, k1 = k2 = 100, r1 = r2 = 1, and µ = 1. Decreasing µ has caused the population to
disperse more though the boundary and the velocity of the moving boundary is slightly increasing at
earlier times and remains constant for the rest of the time.
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4. Discussion

In this paper, we have described a one-dimensional moving mesh finite volume numerical
method based on local mass conservation for the approximate solution of a two-species Lotka–
Volterra (L–V) competition system with a free boundary and moving internal interfaces.

The system consists of two species governed by coupled Lotka–Volterra equations
in one dimension, partially coexisting in space and competing for common resources.
The domain has a moving outer boundary and there are moving interfaces in the inte-
rior, where species arise, overlap, or disappear. We therefore considered an L–V model
with distinct moving regions in which species are smooth, separated by interfaces with
interface conditions.

Numerically, rather than allocate a separate mesh to each species (which would have
led to the need for interpolation and a generally messy scheme), we used a single moving
mesh for both species and adjusted the solution using the arbitrary Lagrangian Euler (ALE)
equations. The mesh is generated by preserving the total sum of local densities (therefore
masses) at a point in time. We called this the combined mass approach, which allows a
single moving mesh to be used in overlapping regions and handles moving interfaces at
points where species arise, overlap, or disappear. The combined mass procedure is general
and can be applied to other overlapping situations.

We used a method to move the nodes based on the preservation of relative densities
(i.e., those normalised by the total mass), since relative masses are conserved. Once the
nodes had been moved, the local densities of each species were computed from the ALE
schemes. The procedure generated nodal velocities and nodal displacements, while the
densities were recovered using relative conservation. Throughout the paper, we used
an exponential time-integrating scheme for nodal intervals, which produces nontangling
meshes and is stable for sufficiently small time steps.

We implemented the model for a number of parameter combinations and observed a
variety of scenarios. We altered one parameter at a time from the initial set of parameters
and observed various effects dominating in turn, as the populations evolve through time.
The illustrations indicated that the method was stable for a variety of different set-up
parameters and can be applied to many other competition problems.

In certain ecological contexts, reaction–diffusion models may not adequately describe
how organisms move and disperse through space. For example, besides the classical
Laplacian diffusion in (1) and (2), ecological modellers have included an advection term
to describe the ability of living organisms to sense the stimulating signals in the environ-
ment and adjust movements accordingly [18]. Many authors have modelled the directed
movements of species either through motion along gradients “taxis” or through cross/self-
diffusion terms [19,20]. The results of this paper indicate that the methodology can be
generalised for more complex equations that are able to more realistically describe the
species behaviour and evolution through time.

This paper is proof-of-concept rather than exhaustive and can be refined in a number
of ways. Generalisation to two dimensions is a priority and is currently under investigation.
Furthermore, the time step can be made semi-implicit, allowing larger time steps, albeit at
the risk of losing accuracy.

We conclude that the approach can be used on a variety of ecological models in-
volving multispecies populations and moving boundaries, and is capable of simulating
complex behaviour.

Future work will also include the adaptation of the parameters for use on empirical
data sets and comparison of results against observations.
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