
A novel approach exploiting machine 
learning to detect SQLi attacks 
Conference or Workshop Item 

Accepted Version 

Ashlam, Ahmed Abadulla, Badii, Atta and Stahl, Frederic 
ORCID logoORCID: https://orcid.org/0000-0002-4860-0203 
(2022) A novel approach exploiting machine learning to detect 
SQLi attacks. In: 5th International Conference on Advanced 
Systems and Emergent Technologies, 22-25 Mar 2022, 
Hammamet, Tunisia. doi: 
https://doi.org/10.1109/IC_ASET53395.2022.9765948 
Available at https://centaur.reading.ac.uk/105667/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/IC_ASET53395.2022.9765948

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



A Novel Approach Exploiting Machine Learning 

to Detect SQLi Attacks  

Ahmed Abadulla Ashlam 
Department of Computer Science 

University Of Reading 
Reading, UK 

a.ashlam@pgr.reading.ac.uk 

Atta Badii  
Department of Computer Science 

University Of Reading 
Reading, UK  

atta.badii@reading.ac.uk   

 

Frederic Stahl 

German Research Centre for Artificial 

Intelligence GmbH (DFKI) 
Laboratory Niedersachsen, Marine 

Perception, 26129 Oldenburg, Germany 

frederic_theodor.stahl@dfki.de 

Abstract— The increasing use of Information Technology 

applications in the distributed environment is increasing 

security exploits.  Information about vulnerabilities is also 

available on the open web in an unstructured format that 

developers can take advantage of to fix vulnerabilities in their 

IT applications.  SQL injection (SQLi) attacks are frequently 

launched with the objective of exfiltration of data typically 

through targeting the back-end server organisations to 

compromise their customer databases. There have been a 

number of high profile attacks against large enterprises in 

recent years.  With the ever-increasing growth of online trading, 

it is possible to see how SQLi attacks can continue to be one of 

the leading routes for cyber-attacks in the future, as indicated 

by findings reported in OWASP.  Various machine learning and 

deep learning algorithms have been applied to detect and 

prevent these attacks.  However, such preventive attempts have 

not limited the incidence of cyber-attacks and the resulting 

compromised database as reported by (CVE) repository. In this 

paper, the potential of using data mining approaches is pursued 

in order to enhance the efficacy of SQL injection safeguarding 

measures by reducing the false-positive rates in SQLi detection.  

The proposed approach uses CountVectorizer to extract 

features and then apply various supervised machine-learning 

models to automate the classification of SQLi.  The model that 

returns the highest accuracy has been chosen among available 

models.  Also a new model has been created PALOSDM 

(Performance analysis and Iterative optimisation of the SQLI 

Detection Model) for reducing false-positive rate and false-

negative rate.  The detection rate accuracy has also been 

improved significantly from a baseline of 94% up to 99%. 

Keywords— Data mining, OWASP, SQL injection, attacks, 

false positive, false negative, CountVectorizer.  

I. INTRODUCTION  

Global uptake of Communication technology and the 
resulting hyper-connectivity of people and the internet of 
things has massively increased the information flows along 
with a significant increase in the number of users of the 
internet and information technology, and all has rendered the 
system exposed to the emergence of negative practices for 
some users, and cyber-attacks, crime and fraudulent activities 
exploiting the online channels. SQLi is one of the oldest of 
these attacks, but it remains a serious threat to the 
confidentiality, integrity, and availability of web databases to 
this day.  The top 10 web application vulnerabilities reported 
by OWASP (The Open Web Application Security Project) in 
the past five reports show that SQLi ranks first in 
vulnerabilities [1]. Structured Query Language is a set of 
instructions used for manipulating and accessing data in the 
database [2]. Web programming languages such as JAVA 
and PHP can provide several ways to create and execute SQL 
statements. [3]. Developers typically generate SQL 
statements through cascading strings that users sent from web 
pages.  Due to the great diversity of SQL languages, there are 
a very large number of coding methods for creating SQL 

statements, thus given such automated SQLi attack facility 
with pervasive capabilities, it is possible to attack any 
systems anywhere by creating SQL statements [4]. During a 
SQLi attack, the attacker inserts pieces of malicious code into 
the request transaction, causing the server to execute illegal 
queries, resulting in data leakage and database corruption. 
For instance, an attacker can obtain private data such as 
usernames and passwords of website users through SQL 
injection, which poses a serious data security threat [5, 6].  
“Fig. 1” shows how an attacker can send malicious 
statements to the application, following the injection of user 
input. Over the recent years, computer security has faced 
severe difficulties arising from theft in application-layer-
based attacks such as credit card details [7].  The lack of 
assurance of the authenticity of the data entered by the user 
is one of the most common weaknesses in the security of web 
applications, as well as the design environment (including the 
vulnerabilities that mean that the attack pre-conditions are 
satisfied). Almost all major vulnerabilities of web 
applications are due to this weakness that leaves the system 
exposed to the risk of various SQLi attacks such as interpreter 
injection, cross-site scripting injection, buffer overflows, and 
SQLi attack [8].  

It has become essential to provide a comprehensive 
architecture to detect and prevent all types of SQLi attacks 
with the ability to update when a new type of attack appears.  
Thus, building a model to detect all types of SQLi attacks is 
also a challenge due to the diversity and complexities of 
representations of such attacks.  On the other hand, the 
observed feature set from available datasets tends, display 
critical sensitivity with respect of only particular SQLI 
attacks; this makes it rather challenging to optimise the 
feature extraction and training to build models for detection 
of hybrid attacks. In addition, when various types of attack 
are detected separately, the features that do not have a high 
significance, would need to be excluded although when 
several attacks are detected together by classical machine 
learning methods, the models tend to provide correct results. 
Various machine learning and deep learning algorithms have 
been applied to detect and prevent these attacks.  However, 
such preventive attempts have not limited the incidence of 
cyber-attacks and the resulting compromised database as 
reported by the Common Vulnerabilities and Exposures 
(CVE) repository [22].    

  In this study, based on extensive exploratory data 
analysis at the application payload level and feature vector 
optimisation and machine learning a novel SQLi attack 
detection with enhanced performance over the state-of-the-
art has been developed and validated. The feature extraction 
and coding has   deployed CountVectorizer. The comparative 
analysis of performance of various models as carried out in 
this study has included SVM, Decision Tree, KNeighbours, 



AdaBoost, and Random Forest to detect SQLi attacks. These 
machine learning methods provide highly accurate 
predictions on test data.  The innovation.  

In this study is based on the feature engineering process 
performed on the payloads as well as the evaluation of 
different machine learning models based on these features.  A 
PALOSDM was used to reduce the false positive rate and the 
false negative rate generated by the machine learning 
module.  The results show that the models achieved more 
than 99% accuracy.   Additionally, other performance metrics 
such as Confusion Matrix and Sensitivity-Specificity 
Analysis have been established for the proposed algorithm. 
The remainder of this paper is organised as follows.  Section 
II reviews the related work; section III presents the research 
methodology to develop the SQLi detection solution.  In 
Section IV, the experimental setup is described, and analysis 
of results; finally, Section VI concludes the paper.  

 

II. RELATED WORK  

The first research project to classify security in operating 
systems and software was carried out in the 1970s.  [9] 
Provided a classification of security vulnerabilities in an 
operating system.  An error in categorisation was made by 
Bisbey and Hollingworth.  Both studies examined security 
flaws in their operating systems. Security vulnerabilities 
such as SQLi attacks had not yet emerged that time [10].  

 More recently, classifications of security vulnerabilities 
has been provided by the Open Web Application Security 
Project (OWASP) [1] and Common Weakness Enumeration 
(CWE) whereby SQL injection attacks have been 
prominently placed. Have been developed.  In a relational 
database, Structured Query Language enables us to query, 
add, modify, and delete data.  A typical service-oriented 
architecture relies on a backend server response based on a 
database and in SQL statements the server becomes the 
means to interact with the database.  Code generation is one 
of the main causes of SQL vulnerabilities due to the practice 
of passing SQL statements to the database, which are 
created by the concatenation method.  As a result, attackers 
are able to rapidly create new SQL statements by simply 
entering SQL codes or keywords to iterate through and 
change the SQL statement so as to realise an attack.  Based 
on the outcome of the investigation, it is evident that the root 
cause of system exposure to the risk of attacks is that 
developers put too much trust in the data provided by the 
users, by not filtering the data entered by the users.  If the 
server-side fails to perform a reasonable check in order to 
discover the intent of a SQL statement, then this enables the 
attacker to take control of the server.  The system thus 
becomes vulnerable to various types of attack, notably SQL 
injection for exfiltration of data and/or corruption of the 
database and indeed also DDOS attacks.   

In “Fig. 1”, the principles and operational basis of the SQLi 

attack are illustrated [11].  

 
Fig. 1. SQL Injection Attack Process  

In order to prevent SQLi attacks, most techniques use the 

stored procedures to enable access to the database. Parsing, 

dynamic tainting, pattern matching, information flow 

analysis, defensive coding and penetration testing are the 

most frequently used techniques to detect as well as prevent 

a vulnerabilities subset that might cause SQLi attacks.  

Some promising results with regard to the use of machine 

learning, data mining and research on text analysis methods 

for SQL injection detection have been achieved [13].  In 

fact, stored procedures  rely on the implementation of such 

techniques to provide their protection against SQLi using 

stored procedures which however is not guaranteed to offer 

full protection For instance, applications use stored 

procedures, escaping of characters, and different forms of 

input validation in certain approaches, these usages could 

be vulnerable to SQLi attacks [14]. Huang et al. proposed 

WAVES, a black box technique used to test for SQLi 

vulnerabilities in web applications.   

Machine learning is used to guide testing to improve 

general penetration testing techniques, but like all black box 

testing techniques, the use of these based on static analysis 

cannot provide security guarantees [15]. However, 

properties have been used instead of taxonomy in order to 

classify security flaws by Seacord et al.  Their approach 

allocates properties to parts of the source code; then security 

flaws are classified based on those properties. Therefore, 

properties that can be matched successfully can be 

classified as known categories [16]. A classification system 

based on machine learning is proposed to detect and prevent 

SQLi attacks by monitoring datasets collected from known 

attacks reported in the literature.  Then, the proposed 

classification system tests the dataset by checking the 

signature list to verify and validate the results of the token-

based stage.  The classification system tests a support vector 

machine algorithm for preventing malicious web requests 

from entering the target backend database.  The advantage 

of the proposed work is that it is performed on a huge data 

set; however, it lacks implementation for sufficiently 

diverse set of machine learning classifiers.  In addition, the 

authors did not provide any models to test their system [17].  

The database has suffered much damage and changes 

resulting from this attack.  Since it is difficult to identify 

unknown attacks using the current raw formatting method, 

a SQLi attack detection strategy based on machine learning 

has been proposed [18].  It is recommended to use a new 

query transformation system and hashing technology.  This 

technique is a lightweight way to prevent SQLi attacks.  

When applied to an e-commerce application prototype, 



experimental results show that it can successfully and 

effectively block various SQLi attack instances.  This 

method can also be easily implemented in any language or 

on any database platform with only minor modifications.  

Large web applications have hundreds of places where 

users can enter data, and each location can provide 

opportunities for SQLi.  Attackers can steal the confidential 

data of the organisation through these attacks, resulting in 

the loss of the market value of the organisation [19].  

III. METHODOLOGY  

The research followed a statistical, analytical and 
empirical methodology, whereby the severity (likelihood and 
impacts) of various SQLi attacks was studied accordingly, an 
analysis of the modus operandi and   possible impacts of, 
various SQL injection types of attack that websites and 
applications are exposed to, was performed. Hence, datasets 
of the latest instances of SQL injection attacks were obtained.  
Subsequently, the system was designed and implemented as 
illustrated in “Fig. 2”, which presents the workflow of the 
proposed method; this includes: Data Collection, 
Preprocessing, Feature extraction, CountVectorizer, a 
Classification Model, Performance Analysis, PALOSDM, 
Recalculation of the Confusion Matrix and Results.  

 
Fig. 2. Workflow of the proposed method 

A. Data Collection  

Gathering a dataset for SQLi attacks is challenging since 
no data sets were available with public access to the actual 
SQLi attacks launched.  Due to this, the dataset has been taken 
from the National Vulnerability Database [20] and a python 

library named Lib-Injection [21]. Libinjection is an open-
source tool which is used for web-applications penetration 
testing, which have data on all categories of SQLi attacks. 
Moreover, normal SQL queries have been added to this dataset 
for discriminating a normal text from SQLi queries. This was 
to balance the dataset to sufficient size to enable the optimal 
training of the model so that all types of SQL injections could 
be correctly identified.  Accordingly, model development was 
implemented with the resulting dataset of 1950 SQLI queries 
and 2000 normal SQL queries.  

B. Data Pre-processing  

Tokens and stop words removal is a process in which a text 
is split into individual words to be processed to enable 
carrying out certain operations on words. This process is 
normally called tokenisation.  There is also another process 
named stop words which includes words that have no intrinsic 
contextual meaning. Those words do not change the actual 
sentence, so these were removed in order to improve the 
model performance.  

C. Feature extraction   

Malware feature extraction for classifier model 
development requires an epistemological analysis of the 
feature space with an ontological commitment to the 
particular attack-tree-theoretic ontology of the preconditions 
and triggers of the attack as well as its dynamic behavioural 
model [19]. Segmentation is a process that enables users to 
understand the real meaning of all labels in the presented 
dataset.  Word segmentation enables the translation of a text 
for input to a machine learning problem.  Thus, another 
preprocessing step to enable the modelling process was the 
vectorization of the samples. The first step in this process was 
to quantify the words, for which one-hot code is considered 
as the most common method.  CountVectorizer is a technique 
that transforms a corpus of text into a vector used in this 
vectorization process.  This permits the pre-processing of a 
text before generating the vector representation; it was used 
to transform the word list to a long vector with only one 
dimension as 1s, others as 0s.  

D. Classification Model   

Five machine-learning algorithms namely SVM, 
Decision Tree, K-Nearest Neighbors, AdaBoost, and 
Random Forest were implemented using Python to train the 
dataset. After the classification, the models was re-trained to 
reduce the false positive and false negative results. The 
performance of each classifier was optimised and the most 
accurate classifier was identified as SVM with an accuracy 
of 94% and lowest false positive and false negative.  

E. Performance analysis and Iterative optimisation of the 

SQLI Detection Model (PALOSDM)   

In this phase four indicators of the algorithm with the 
highest performance were acted on to execute the 
supplementary training for the enhanced model namely True 
Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN) values.  The FP and FN represented the 
SQL statements that had been classified incorrectly, and 
which were used for re-training the algorithm. The algorithm 
was re-tested, and the resulting confusion matrix enabled the 
iterative re-training of the model to arrive at the finally 
optimised process.  



IV. THE RESULTS AND DISCUSSION   

The accuracy of the results of any machine learning-
based system is measured based on the True Positive (TP), 
False Positive (FP), True Negative (TN) and False Negative 
(FN) values in the results generated through the testing the 
model with the TP and TN being the correctly results and FP 
and FN representing the incorrect ones and the higher the TP 
and TN values, the more accurate the classification.  The 
confusion matrix shown in Table 1 presents the result of the 
model development and testing to identify the optimal 
supervised machine-learning model for the detection of 
SQLi.  After vectorization, 80% was used for training the 
dataset with the remaining randomly selected 20% of the data 
instances set aside for training.  As can be seen in Table 2 
below, the Support Vector Machine performed with the 
highest accuracy (94%), precision (96%), recall (91%), F1-
Score (94%), and specificity 96% (Table 4).  However, these 
preventative attempts have not limited the consequences and 
damage to attacked databases.  However, it was proposed to 
seek further improvements upon the results shown in (Table 
4), through avoidance of any overfitting to reduce the error 
rate further.  Using the new method lead to enhanced 
performance of the model, raising the detection rate from a 
baseline of about 94% to 99% accuracy as illustrated in 
(Table 3).   

Table 1. The guide of confusion matrix 

TP  
Classified correctly  

 

 FP  
Classified incorrectly  

 

 FN  
Classified incorrectly  

TN  
Classified correctly  

 

 

Table 2: Accuracy comparison of different ML Classifiers 

Model  Accuracy score  

SVM  94%  

Decision Tree  93%  

KNeighbours  92%  

AdaBoost  92% 

Random Forest  90% 

  

Table 3: Comparing accuracy (SVM and SVM with PALOSDM) 

Classifier  Confusion Matrix  Accuracy 

score  

SVM  
91  3  

94%  
8  89  

SVM with 

PALOSDM 
99  1  

99%  
0  91  

 

Table 4: The improvements upon the results  

Model  SVM  SVM with PALOSDM 

Accuracy score  94% 99%  

Precision  96%  1  

Recall  91%  98%  

F1  94% 99%  

Specificity  96%  1 

  

Importantly, by resulting in lower False Negative (FP) and 
False Positive (FP), the method has enhanced the overall 
reliability of the SQLi detection using the proposed approach. 
In “Fig. 3”, the comparison of SVM classification results and 
the results SVM with PALOSDM.  

 

 

 

Fig. 3 comparing accuracy (SVM and SVM with PALOSDM) 

V. CONCLUSION AND FUTURE WORK  

According to reports from the security consortiums, 
OWASP, injection vulnerabilities remain the most common 
and dangerous attacks on web applications.  SQLi attacks, 
were selected as the focus of this research study given that 
these are increasing sharply with some malicious content for 
unrestricted access to databases, exfiltration and extraction of 
sensitive information.   New technologies have emerged to 
deal with such attacks.  However, it is difficult to find the most 
suitable solution for a particular web application. Therefore, a 
new model (PALOSDM) has been proposed to address the 
difficulties in SQLi classifier model development so as to 
achieve enhanced performance in SQLi detection.  The first 
step in this work was to create a balanced dataset containing 
both normal and malicious SQL queries.  In order to obtain the 
best possible results and distinguish malicious queries from 
normal text, the data was subjected to a set of machine 
learning algorithms, which achieved the highest accuracy rate 
of 0.94. Subsequently, PALOSDM was proposed to enhance 
the accuracy of the results.  This provided for an accuracy of 
more than 99% with a small error rate approximately, which 
proved to be very effective in order to distinguish between 
SQLi attack queries from normal (non-attack) text input and 
SQL queries.   

This method has been used on static stored data, the 
proposed future work is to adapt this method to be used on 
real-time data.  
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