
A novel approach exploiting machine
learning to detect SQLi attacks
Conference or Workshop Item

Accepted Version

Ashlam, Ahmed Abadulla, Badii, Atta and Stahl, Frederic
ORCID logoORCID: https://orcid.org/0000-0002-4860-0203
(2022) A novel approach exploiting machine learning to detect
SQLi attacks. In: 5th International Conference on Advanced
Systems and Emergent Technologies, 22-25 Mar 2022,
Hammamet, Tunisia. doi:
https://doi.org/10.1109/IC_ASET53395.2022.9765948
Available at https://centaur.reading.ac.uk/105667/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/IC_ASET53395.2022.9765948

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

A Novel Approach Exploiting Machine Learning

to Detect SQLi Attacks

Ahmed Abadulla Ashlam
Department of Computer Science

University Of Reading
Reading, UK

a.ashlam@pgr.reading.ac.uk

Atta Badii
Department of Computer Science

University Of Reading
Reading, UK

atta.badii@reading.ac.uk

Frederic Stahl

German Research Centre for Artificial

Intelligence GmbH (DFKI)
Laboratory Niedersachsen, Marine

Perception, 26129 Oldenburg, Germany

frederic_theodor.stahl@dfki.de

Abstract— The increasing use of Information Technology

applications in the distributed environment is increasing

security exploits. Information about vulnerabilities is also

available on the open web in an unstructured format that

developers can take advantage of to fix vulnerabilities in their

IT applications. SQL injection (SQLi) attacks are frequently

launched with the objective of exfiltration of data typically

through targeting the back-end server organisations to

compromise their customer databases. There have been a

number of high profile attacks against large enterprises in

recent years. With the ever-increasing growth of online trading,

it is possible to see how SQLi attacks can continue to be one of

the leading routes for cyber-attacks in the future, as indicated

by findings reported in OWASP. Various machine learning and

deep learning algorithms have been applied to detect and

prevent these attacks. However, such preventive attempts have

not limited the incidence of cyber-attacks and the resulting

compromised database as reported by (CVE) repository. In this

paper, the potential of using data mining approaches is pursued

in order to enhance the efficacy of SQL injection safeguarding

measures by reducing the false-positive rates in SQLi detection.

The proposed approach uses CountVectorizer to extract

features and then apply various supervised machine-learning

models to automate the classification of SQLi. The model that

returns the highest accuracy has been chosen among available

models. Also a new model has been created PALOSDM

(Performance analysis and Iterative optimisation of the SQLI

Detection Model) for reducing false-positive rate and false-

negative rate. The detection rate accuracy has also been

improved significantly from a baseline of 94% up to 99%.

Keywords— Data mining, OWASP, SQL injection, attacks,

false positive, false negative, CountVectorizer.

I. INTRODUCTION

Global uptake of Communication technology and the
resulting hyper-connectivity of people and the internet of
things has massively increased the information flows along
with a significant increase in the number of users of the
internet and information technology, and all has rendered the
system exposed to the emergence of negative practices for
some users, and cyber-attacks, crime and fraudulent activities
exploiting the online channels. SQLi is one of the oldest of
these attacks, but it remains a serious threat to the
confidentiality, integrity, and availability of web databases to
this day. The top 10 web application vulnerabilities reported
by OWASP (The Open Web Application Security Project) in
the past five reports show that SQLi ranks first in
vulnerabilities [1]. Structured Query Language is a set of
instructions used for manipulating and accessing data in the
database [2]. Web programming languages such as JAVA
and PHP can provide several ways to create and execute SQL
statements. [3]. Developers typically generate SQL
statements through cascading strings that users sent from web
pages. Due to the great diversity of SQL languages, there are
a very large number of coding methods for creating SQL

statements, thus given such automated SQLi attack facility
with pervasive capabilities, it is possible to attack any
systems anywhere by creating SQL statements [4]. During a
SQLi attack, the attacker inserts pieces of malicious code into
the request transaction, causing the server to execute illegal
queries, resulting in data leakage and database corruption.
For instance, an attacker can obtain private data such as
usernames and passwords of website users through SQL
injection, which poses a serious data security threat [5, 6].
“Fig. 1” shows how an attacker can send malicious
statements to the application, following the injection of user
input. Over the recent years, computer security has faced
severe difficulties arising from theft in application-layer-
based attacks such as credit card details [7]. The lack of
assurance of the authenticity of the data entered by the user
is one of the most common weaknesses in the security of web
applications, as well as the design environment (including the
vulnerabilities that mean that the attack pre-conditions are
satisfied). Almost all major vulnerabilities of web
applications are due to this weakness that leaves the system
exposed to the risk of various SQLi attacks such as interpreter
injection, cross-site scripting injection, buffer overflows, and
SQLi attack [8].

It has become essential to provide a comprehensive
architecture to detect and prevent all types of SQLi attacks
with the ability to update when a new type of attack appears.
Thus, building a model to detect all types of SQLi attacks is
also a challenge due to the diversity and complexities of
representations of such attacks. On the other hand, the
observed feature set from available datasets tends, display
critical sensitivity with respect of only particular SQLI
attacks; this makes it rather challenging to optimise the
feature extraction and training to build models for detection
of hybrid attacks. In addition, when various types of attack
are detected separately, the features that do not have a high
significance, would need to be excluded although when
several attacks are detected together by classical machine
learning methods, the models tend to provide correct results.
Various machine learning and deep learning algorithms have
been applied to detect and prevent these attacks. However,
such preventive attempts have not limited the incidence of
cyber-attacks and the resulting compromised database as
reported by the Common Vulnerabilities and Exposures
(CVE) repository [22].

 In this study, based on extensive exploratory data
analysis at the application payload level and feature vector
optimisation and machine learning a novel SQLi attack
detection with enhanced performance over the state-of-the-
art has been developed and validated. The feature extraction
and coding has deployed CountVectorizer. The comparative
analysis of performance of various models as carried out in
this study has included SVM, Decision Tree, KNeighbours,

AdaBoost, and Random Forest to detect SQLi attacks. These
machine learning methods provide highly accurate
predictions on test data. The innovation.

In this study is based on the feature engineering process
performed on the payloads as well as the evaluation of
different machine learning models based on these features. A
PALOSDM was used to reduce the false positive rate and the
false negative rate generated by the machine learning
module. The results show that the models achieved more
than 99% accuracy. Additionally, other performance metrics
such as Confusion Matrix and Sensitivity-Specificity
Analysis have been established for the proposed algorithm.
The remainder of this paper is organised as follows. Section
II reviews the related work; section III presents the research
methodology to develop the SQLi detection solution. In
Section IV, the experimental setup is described, and analysis
of results; finally, Section VI concludes the paper.

II. RELATED WORK

The first research project to classify security in operating
systems and software was carried out in the 1970s. [9]
Provided a classification of security vulnerabilities in an
operating system. An error in categorisation was made by
Bisbey and Hollingworth. Both studies examined security
flaws in their operating systems. Security vulnerabilities
such as SQLi attacks had not yet emerged that time [10].

 More recently, classifications of security vulnerabilities
has been provided by the Open Web Application Security
Project (OWASP) [1] and Common Weakness Enumeration
(CWE) whereby SQL injection attacks have been
prominently placed. Have been developed. In a relational
database, Structured Query Language enables us to query,
add, modify, and delete data. A typical service-oriented
architecture relies on a backend server response based on a
database and in SQL statements the server becomes the
means to interact with the database. Code generation is one
of the main causes of SQL vulnerabilities due to the practice
of passing SQL statements to the database, which are
created by the concatenation method. As a result, attackers
are able to rapidly create new SQL statements by simply
entering SQL codes or keywords to iterate through and
change the SQL statement so as to realise an attack. Based
on the outcome of the investigation, it is evident that the root
cause of system exposure to the risk of attacks is that
developers put too much trust in the data provided by the
users, by not filtering the data entered by the users. If the
server-side fails to perform a reasonable check in order to
discover the intent of a SQL statement, then this enables the
attacker to take control of the server. The system thus
becomes vulnerable to various types of attack, notably SQL
injection for exfiltration of data and/or corruption of the
database and indeed also DDOS attacks.

In “Fig. 1”, the principles and operational basis of the SQLi

attack are illustrated [11].

Fig. 1. SQL Injection Attack Process

In order to prevent SQLi attacks, most techniques use the

stored procedures to enable access to the database. Parsing,

dynamic tainting, pattern matching, information flow

analysis, defensive coding and penetration testing are the

most frequently used techniques to detect as well as prevent

a vulnerabilities subset that might cause SQLi attacks.

Some promising results with regard to the use of machine

learning, data mining and research on text analysis methods

for SQL injection detection have been achieved [13]. In

fact, stored procedures rely on the implementation of such

techniques to provide their protection against SQLi using

stored procedures which however is not guaranteed to offer

full protection For instance, applications use stored

procedures, escaping of characters, and different forms of

input validation in certain approaches, these usages could

be vulnerable to SQLi attacks [14]. Huang et al. proposed

WAVES, a black box technique used to test for SQLi

vulnerabilities in web applications.

Machine learning is used to guide testing to improve

general penetration testing techniques, but like all black box

testing techniques, the use of these based on static analysis

cannot provide security guarantees [15]. However,

properties have been used instead of taxonomy in order to

classify security flaws by Seacord et al. Their approach

allocates properties to parts of the source code; then security

flaws are classified based on those properties. Therefore,

properties that can be matched successfully can be

classified as known categories [16]. A classification system

based on machine learning is proposed to detect and prevent

SQLi attacks by monitoring datasets collected from known

attacks reported in the literature. Then, the proposed

classification system tests the dataset by checking the

signature list to verify and validate the results of the token-

based stage. The classification system tests a support vector

machine algorithm for preventing malicious web requests

from entering the target backend database. The advantage

of the proposed work is that it is performed on a huge data

set; however, it lacks implementation for sufficiently

diverse set of machine learning classifiers. In addition, the

authors did not provide any models to test their system [17].

The database has suffered much damage and changes

resulting from this attack. Since it is difficult to identify

unknown attacks using the current raw formatting method,

a SQLi attack detection strategy based on machine learning

has been proposed [18]. It is recommended to use a new

query transformation system and hashing technology. This

technique is a lightweight way to prevent SQLi attacks.

When applied to an e-commerce application prototype,

experimental results show that it can successfully and

effectively block various SQLi attack instances. This

method can also be easily implemented in any language or

on any database platform with only minor modifications.

Large web applications have hundreds of places where

users can enter data, and each location can provide

opportunities for SQLi. Attackers can steal the confidential

data of the organisation through these attacks, resulting in

the loss of the market value of the organisation [19].

III. METHODOLOGY

The research followed a statistical, analytical and
empirical methodology, whereby the severity (likelihood and
impacts) of various SQLi attacks was studied accordingly, an
analysis of the modus operandi and possible impacts of,
various SQL injection types of attack that websites and
applications are exposed to, was performed. Hence, datasets
of the latest instances of SQL injection attacks were obtained.
Subsequently, the system was designed and implemented as
illustrated in “Fig. 2”, which presents the workflow of the
proposed method; this includes: Data Collection,
Preprocessing, Feature extraction, CountVectorizer, a
Classification Model, Performance Analysis, PALOSDM,
Recalculation of the Confusion Matrix and Results.

Fig. 2. Workflow of the proposed method

A. Data Collection

Gathering a dataset for SQLi attacks is challenging since
no data sets were available with public access to the actual
SQLi attacks launched. Due to this, the dataset has been taken
from the National Vulnerability Database [20] and a python

library named Lib-Injection [21]. Libinjection is an open-
source tool which is used for web-applications penetration
testing, which have data on all categories of SQLi attacks.
Moreover, normal SQL queries have been added to this dataset
for discriminating a normal text from SQLi queries. This was
to balance the dataset to sufficient size to enable the optimal
training of the model so that all types of SQL injections could
be correctly identified. Accordingly, model development was
implemented with the resulting dataset of 1950 SQLI queries
and 2000 normal SQL queries.

B. Data Pre-processing

Tokens and stop words removal is a process in which a text
is split into individual words to be processed to enable
carrying out certain operations on words. This process is
normally called tokenisation. There is also another process
named stop words which includes words that have no intrinsic
contextual meaning. Those words do not change the actual
sentence, so these were removed in order to improve the
model performance.

C. Feature extraction

Malware feature extraction for classifier model
development requires an epistemological analysis of the
feature space with an ontological commitment to the
particular attack-tree-theoretic ontology of the preconditions
and triggers of the attack as well as its dynamic behavioural
model [19]. Segmentation is a process that enables users to
understand the real meaning of all labels in the presented
dataset. Word segmentation enables the translation of a text
for input to a machine learning problem. Thus, another
preprocessing step to enable the modelling process was the
vectorization of the samples. The first step in this process was
to quantify the words, for which one-hot code is considered
as the most common method. CountVectorizer is a technique
that transforms a corpus of text into a vector used in this
vectorization process. This permits the pre-processing of a
text before generating the vector representation; it was used
to transform the word list to a long vector with only one
dimension as 1s, others as 0s.

D. Classification Model

Five machine-learning algorithms namely SVM,
Decision Tree, K-Nearest Neighbors, AdaBoost, and
Random Forest were implemented using Python to train the
dataset. After the classification, the models was re-trained to
reduce the false positive and false negative results. The
performance of each classifier was optimised and the most
accurate classifier was identified as SVM with an accuracy
of 94% and lowest false positive and false negative.

E. Performance analysis and Iterative optimisation of the

SQLI Detection Model (PALOSDM)

In this phase four indicators of the algorithm with the
highest performance were acted on to execute the
supplementary training for the enhanced model namely True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN) values. The FP and FN represented the
SQL statements that had been classified incorrectly, and
which were used for re-training the algorithm. The algorithm
was re-tested, and the resulting confusion matrix enabled the
iterative re-training of the model to arrive at the finally
optimised process.

IV. THE RESULTS AND DISCUSSION

The accuracy of the results of any machine learning-
based system is measured based on the True Positive (TP),
False Positive (FP), True Negative (TN) and False Negative
(FN) values in the results generated through the testing the
model with the TP and TN being the correctly results and FP
and FN representing the incorrect ones and the higher the TP
and TN values, the more accurate the classification. The
confusion matrix shown in Table 1 presents the result of the
model development and testing to identify the optimal
supervised machine-learning model for the detection of
SQLi. After vectorization, 80% was used for training the
dataset with the remaining randomly selected 20% of the data
instances set aside for training. As can be seen in Table 2
below, the Support Vector Machine performed with the
highest accuracy (94%), precision (96%), recall (91%), F1-
Score (94%), and specificity 96% (Table 4). However, these
preventative attempts have not limited the consequences and
damage to attacked databases. However, it was proposed to
seek further improvements upon the results shown in (Table
4), through avoidance of any overfitting to reduce the error
rate further. Using the new method lead to enhanced
performance of the model, raising the detection rate from a
baseline of about 94% to 99% accuracy as illustrated in
(Table 3).

Table 1. The guide of confusion matrix

TP
Classified correctly

 FP
Classified incorrectly

 FN
Classified incorrectly

TN
Classified correctly

Table 2: Accuracy comparison of different ML Classifiers

Model Accuracy score

SVM 94%

Decision Tree 93%

KNeighbours 92%

AdaBoost 92%

Random Forest 90%

Table 3: Comparing accuracy (SVM and SVM with PALOSDM)

Classifier Confusion Matrix Accuracy

score

SVM
91 3

94%
8 89

SVM with

PALOSDM
99 1

99%
0 91

Table 4: The improvements upon the results

Model SVM SVM with PALOSDM

Accuracy score 94% 99%

Precision 96% 1

Recall 91% 98%

F1 94% 99%

Specificity 96% 1

Importantly, by resulting in lower False Negative (FP) and
False Positive (FP), the method has enhanced the overall
reliability of the SQLi detection using the proposed approach.
In “Fig. 3”, the comparison of SVM classification results and
the results SVM with PALOSDM.

Fig. 3 comparing accuracy (SVM and SVM with PALOSDM)

V. CONCLUSION AND FUTURE WORK

According to reports from the security consortiums,
OWASP, injection vulnerabilities remain the most common
and dangerous attacks on web applications. SQLi attacks,
were selected as the focus of this research study given that
these are increasing sharply with some malicious content for
unrestricted access to databases, exfiltration and extraction of
sensitive information. New technologies have emerged to
deal with such attacks. However, it is difficult to find the most
suitable solution for a particular web application. Therefore, a
new model (PALOSDM) has been proposed to address the
difficulties in SQLi classifier model development so as to
achieve enhanced performance in SQLi detection. The first
step in this work was to create a balanced dataset containing
both normal and malicious SQL queries. In order to obtain the
best possible results and distinguish malicious queries from
normal text, the data was subjected to a set of machine
learning algorithms, which achieved the highest accuracy rate
of 0.94. Subsequently, PALOSDM was proposed to enhance
the accuracy of the results. This provided for an accuracy of
more than 99% with a small error rate approximately, which
proved to be very effective in order to distinguish between
SQLi attack queries from normal (non-attack) text input and
SQL queries.

This method has been used on static stored data, the
proposed future work is to adapt this method to be used on
real-time data.

REFERENCES

[1] OWASP, "OWASP Top Ten," 2021. [Online]. Available:

https://owasp.org/Top10.

[2] D. Mitropoulos, P. Louridas, M. Polychronakis, and A. D.

Keromytis, "Defending against web application attacks: approaches,

challenges and implications," IEEE Transactions on Dependable and

Secure Computing, vol. 16, no. 2, pp. 188-203, 2017.

[3] E. Pollack, "Protecting Against SQL Injection," in Dynamic SQL:

Springer, 2019, pp. 31-60.

[4] Q. Li, W. Li, J. Wang, and M. Cheng, "A SQL injection detection

method based on adaptive deep forest," IEEE Access, vol. 7, pp.

145385-145394, 2019.

[5] A. Maraj, E. Rogova, G. Jakupi, and X. Grajqevci, "Testing

techniques and analysis of SQL injection attacks," in 2017 2nd

International Conference on Knowledge Engineering and

Applications (ICKEA), 2017: IEEE, pp. 55-59.

[6] D. Das, U. Sharma, and D. Bhattacharyya, "Defeating SQL injection

attack in authentication security: an experimental study,"

International Journal of Information Security, vol. 18, no. 1, pp. 1-

22, 2019.

[7] A. Saha and S. Sanyal, "Application layer intrusion detection with

combination of explicit-rule-based and machine learning algorithms

and deployment in cyber-defence program," arXiv preprint

arXiv:1411.3089, 2014.

[8] D. Tripathy, R. Gohil, and T. Halabi, "Detecting SQL injection

attacks in cloud SaaS using machine learning," in 2020 IEEE 6th Intl

Conference on Big Data Security on Cloud (BigDataSecurity), IEEE

Intl Conference on High Performance and Smart Computing,(HPSC)

and IEEE Intl Conference on Intelligent Data and Security (IDS),

2020: IEEE, pp. 145-150.

[9] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S.

Tokubo, and D. A. Webb, "Security analysis and enhancements of

computer operating systems," NATIONAL BUREAU OF

STANDARDS WASHINGTONDC INST FOR COMPUTER

SCIENCES AND …,
1976.

[10] R. Bisbey and D. Hollingworth, "Protection analysis: Final report,"

ISI/SR-78-13, Information Sciences Inst, vol. 3, 1978.

[11] D. Chen, Q. Yan, C. Wu, and J. Zhao, "Sql injection attack detection

and prevention techniques using deep learning," in Journal of

Physics: Conference Series, 2021, vol. 1757, no. 1: IOP Publishing,

p. 012055.

[12] S. McDonald, "SQL Injection: Modes of attack, defense, and why it

matters," White paper, GovernmentSecurity. org, 2002.

[13] C. Anley, "Advanced SQL injection in SQL server applications,"

2002.

[14] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, "Web

application security assessment by fault injection and behavior

monitoring," in Proceedings of the 12th international conference on

World Wide Web, 2003, pp. 148-159.

[15] R. C. Seacord and A. D. Householder, "A structured approach to

classifying security vulnerabilities," CARNEGIE-MELLON UNIV

PITTSBURGH PA SOFTWARE ENGINEERING INST, 2005.

[16] S. O. Uwagbole, W. J. Buchanan, and L. Fan, "Applied machine

learning predictive analytics to SQL injection attack detection and

prevention," in 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), 2017: IEEE, pp. 1087-1090.

[17] A. Sivasangari, J. Jyotsna, and K. Pravalika, "SQL Injection Attack

Detection using Machine Learning Algorithm," in 2021 5th

International Conference on Trends in Electronics and Informatics

(ICOEI), 2021: IEEE, pp. 1166-1169.

[18] D. Kar and S. Panigrahi, "Prevention of SQL Injection attack using

query transformation and hashing," in 2013 3rd IEEE International

Advance Computing Conference (IACC), 2013: IEEE, pp. 1317-

1323.

[19] A. Badii and D. Patel, "Evolving features-algorithms knowledge map

to support NIDS data intelligence and learning loop architecting–a

generalised approach to NIDS pattern feature space knowledge

processing," 2008.

[20] U.S. government, "National Vulnerability Database " 2021. [Online].

Available: https://nvd.nist.gov/.

[21] Nick Galbreath, "libinjection," 2012. [Online]. Available:

https://github.com/client9/libinjection.git.

[22] U.S. Department of Homeland Security “Common Vulnerabilities

and Exposures," 2021. [Online]. Available:

 https://cve.mitre.org/.

https://nvd.nist.gov/
https://github.com/client9/libinjection.git
https://www.dhs.gov/

