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Abstract 
Two new hybrid iodobismuthates,  [C8H17N2][C10H22N2][BiI6] (1) and  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] (2), have 
been prepared by solvothermal synthesis in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) and ethanol. Both 
compounds have been characterized by single-crystal and powder X-ray diffraction, infrared and UV–Vis spectroscopies and 
thermogravimetric analysis. Structure determination reveals that the crystal structure of 1 contains mononuclear  [BiI6]3− ani-
ons, whilst 2 contains an unusual combination of dinuclear anions,  [Bi2I9]3− and  [Bi2I10]4−, consisting of two edge- and two 
face-sharing  [BiI6]3− octahedra, respectively. Mono- and diethylated derivatives of DABCO, which are formed in situ under 
solvothermal conditions, act as countercations and are located between the discrete anions. The optical band gaps of 1 and 
2, which are 2.29(1) and 2.03(2) eV respectively, are consistent with the red color of these compounds, and are comparable 
to the band gaps measured for other iodobismuthates containing discrete anions.

Graphical Abstract
Two new iodobismuthates,  [C8H17N2][C10H22N2][BiI6] (1) and  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] (2), have been syn-
thesized under solvothermal conditions, and their crystal structures determined by single-crystal X-ray diffraction.
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Introduction

As an important class of low-dimensional hybrid materi-
als, organic–inorganic halides of the type  RxMyXz (where 
R is a protonated amine, M is a main-group metal and X 
is a halide) have attracted considerable interest, due to 
their structural diversity and optical and electronic prop-
erties [1, 2]. This class of materials is exemplified by the 
lead perovskite  MAPbI3 (where MA =  CH3NH3

+).  MAPbI3 
has been found to be a remarkable photovoltaic material 
[3–5], which when used in single-junction solar cells has 
a conversion efficiency of 25% [6], comparable to those 
of commercial silicon-based solar cells. Given the lower 
toxicity of bismuth when compared to that of its neigh-
bors in the periodic table [7], bismuth-based organic–inor-
ganic halides, which show better stability under ambient 
atmosphere than lead perovskites, are attracting interest 
as environmentally friendly materials for optoelectronic 
applications [8–10].

In hybrid iodobismuthates, the  Bi3+ cation usually 
adopts a distorted octahedral coordination, with  BiI6 octa-
hedra linked by vertex-, edge- or face-sharing into poly-
nuclear anions [11–16]. A variety of polymeric, discrete 
polynuclear and mononuclear anionic units have been 
described previously [17]. The structures of the iodobis-
muthate anions formed are dependent on the size and shape 
of the organic countercations, as well as the synthetic con-
ditions used [18, 19]. Protonated 1,4-diazabicyclo[2.2.2]

octane (DABCO) and its N-substituted derivatives have 
been found to act as countercations in a number of iodobis-
muthates, as exemplified by  [C6H14N2]2[Bi4I16]·2H2O [20] 
and  [Et2DABCO]2[Bi2I10] (where  [Et2DABCO]2+  = N,N′-
diethyl-1,4-diazabicyclo[2.2.2]octane) [21]. Most 
DABCO-containing iodobismuthates have been pre-
pared solvothermally, in the presence of hydroiodic acid, 
and consist of discrete anions, including mononuclear 
 [BiI6]3− [22], dimeric  [Bi2I9]3− and  [Bi2I10]4− [21, 23], 
and tetrameric  [Bi4I16]4− units [20]. When  [Me2DABCO]
I2 is used as a reagent (where  [Me2DABCO]2+  = N,N′-
dimethyl-1,4-diazabicyclo[2.2.2] octane), one-dimensional 
chains with stoichiometry  [Bi2I10]4− are produced [21]. We 
have recently shown that, in the absence of hydroiodic acid 
in solvothermal reactions, DABCO can also act as a linker, 
as exemplified by  (C6H12N2)BiI3, in which pairs of edge-
sharing bismuth octahedra are linked by DABCO ligands 
into hybrid ribbons [24].

Here, we describe the solvothermal synthesis and char-
acterization of two new hybrid iodobismuthates containing 
N-substituted DABCO (Scheme 1).  [C8H17N2][C10H22N2]
[BiI6] (1) contains mononuclear  [BiI6]3− anions, while 
 [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] (2) contains an 
unusual combination of dinuclear anions,  [Bi2I9]3− and 
 [Bi2I10]4−.
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Scheme 1  Chemical structure diagram of (a)  [C8H17N2][C10H22N2][BiI6] (1) and (b)  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] (2)
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Experimental Section

All compounds were synthesized in 23 mL Teflon-lined 
stainless-steel autoclaves. Ethanol (> 99.8%),  BiI3 (99%), 
AgI (99.9%), KI (≥ 99%), and DABCO (≥ 99%) were 
obtained from Sigma-Aldrich. For each reaction, the rea-
gents were loaded into the Teflon liner and stirred for 
approximately 10 min, prior to the reaction vessel being 
sealed into the autoclave and heated. The heating and cool-
ing rates were 0.83 °C  min−1. After cooling to room tem-
perature, the products were collected by vacuum filtration 
and washed with ethanol and deionized water.

Synthesis of  [C8H17N2][C10H22N2][BiI6] (1)

BiI3 (0.5860 g, 1 mmol), KI (0.1677 g, 1 mmol), DABCO 
(0.1401 g, 1.25 mmol) and ethanol (10 mL) were heated in 
the sealed autoclave at 170 °C for 5 days. The solid prod-
uct consisted of a small amount of a dark powder, identi-
fied by powder X-ray diffraction as bismuth metal, and red 
crystals of 1. Elemental analysis of hand-picked crystals of 
1: C = 16.95%, H = 2.95%, N = 4.39%; calc for  [C8H17N2]
[C10H22N2][BiI6]: C = 16.84%, H = 3.04%, N = 4.36%.

Synthesis of  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] (2)

Initially, this compound was prepared by heating  BiI3 
(0.5913 g, 1 mmol), AgI (0.2390 g, 1 mmol), KI (0.3365 g, 
2 mmol), DABCO (0.1225 g, 1 mmol) and ethanol (10 mL) 
at 170 °C for 5 days. The solid product consisted of red nee-
dles of 2, bismuth powder, and a small amount of an uniden-
tified impurity in the form of red blocks. Subsequently, com-
pound 2 was prepared in the absence of AgI, using a reaction 
mixture with a molar ratio of 1:1.75:0.75 of Bi:KI:DABCO, 
heated at 170 °C for 5 days. Elemental analysis of hand-
picked crystals of 2: C = 12.52%, H = 2.16%, N = 3.06%; calc 
for  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9]: C = 11.71%, 
H = 2.15%, N = 2.87%.

Single‑Crystal X‑ray Diffraction

Single-crystal X-ray diffraction data (Table 1) were collected 
using Mo Kα radiation (λ = 0.71073 Å) using an Agilent 
Gemini S Ultra diffractometer for 1 and a Rigaku XtaLAB 
Synergy diffractometer for 2. Preliminary data for the impu-
rity present in the bulk sample of compound 2 were collected 
at the UK National Crystallography Service (Southampton, 
UK) [25] using a Rigaku XtaLAB Diffractometer with an 
AFC12 goniometer and a rotating anode Mo source. Data 
reduction was carried out in each case using CrysAlisPro 
[26]. The structures were solved using Superflip [27] and 

refined against F using the program CRYSTALS [28]. The 
crystal of 1, solved in space group P213, was found to be an 
inversion twin with a Flack parameter of 0.48(2). Although 
Platon/ADDSYM suggests Pa3 as a possible space group 
for 1, refinements in this space group were not successful. 
The crystal structure in this space group contains only a 
single DABCO moiety and attached ethyl groups could not 
be modelled satisfactorily. As described below, two distinct 
DABCO moieties, with one and two ethyl groups attached, 
are identified in the final structure in P213 and are necessary 
in order to achieve charge balance.

Data for compound 2 were treated with SQUEEZE [29] 
to correct for the effects of disordered organic cations. 
SQUEEZE found a total void volume of 423 Å per unit cell, 
which contained 45 electrons. This is consistent with the 
presence of half a  [Et2DABCO]2+ moiety per unit cell (48 
electrons).

Characterization

Powder X-ray diffraction patterns were collected at room 
temperature for the as-synthesized materials and for finely-
ground hand-picked crystals of 1 and 2 using a Bruker D8 
Advance powder X-ray diffractometer (Cu  Kα1 radiation, 
λ = 1.5406 Å). Pawley refinements were performed within 
Topas [30] in order to confirm the identity of the crystals 
formed in the two reactions.

Table 1  Crystallographic data for compounds 1 and 2 

a R(Fo) = ∑(|Fo| −|Fc|)/∑|Fo|
b Rw(Fo) = [∑w(|Fo| −|Fc|)2/∑w|Fo|2]1/2

Compound 1 2

Crystallographic formula C18H39N4BiI6 C33H72N7Bi4I19

Mr 1281.94 3814.09
Crystal habit Red block Red needle
Crystal system Cubic Monoclinic
T/K 150 100
Space group P  213 P  21/c
a/Å 14.9269(3) 8.95779(1)
b/Å 14.9269(3) 40.19181(2)
c/Å 14.9269(3) 22.98174(2)
α/° 90 90
β/° 90 93.166(2)
γ/° 90 90
Cell volume/Å3 3325.9(2) 8261.483(19)
Z 4 4
ρcal/g  cm−3 2.560 3.066
Rint 0.0431 0.0546
Ra (I > 3.0σ(I)) 0.0412 0.0322
Rwb 0.0420 0.0263
GoF 1.339 0.8620
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Additional characterization measurements were carried 
out on ground hand-picked crystals of 1 and 2. Thermogravi-
metric Analysis (TGA) was performed on a TA-TGA Q50 
instrument, operating under a flowing nitrogen atmosphere. 
Data were collected from room temperature to 650 °C, at a 
rate of 10 °C/min. UV–Vis diffuse reflectance data were col-
lected using a Perkin Elmer Lambda 35 UV–Vis spectrom-
eter equipped with an integrating sphere and using  BaSO4 
as a standard. The absorption data were calculated using the 
Kubelka–Munk function [31]. Fourier Transform infrared 
spectra were collected using a Perkin Elmer Spectrum 100 
FT-IR spectrometer. Elemental analysis was carried out by 
MEDAC LTD.

Results and Discussion

Analysis of the powder X-ray diffraction data for the as-
synthesized products of the reactions described above indi-
cates that, in addition to compounds 1 and 2, bismuth metal 
is always present (Supplementary Information), indicating 
that these reactions involve redox processes. In the case of 
the reaction producing 2, the solid product also contained a 
small amount of an unidentified impurity. Preliminary sin-
gle-crystal diffraction data collected on this impurity indi-
cates that it crystallises in the space group P  21/c, with lat-
tice parameters a = 9.0406(1), b = 16.0735(2), c = 34.1517(6) 
Å and β = 92.1522(13)°. Attempts to produce larger amounts 
of this impurity, to enable its full characterization, have so 
far been unsuccessful.

As illustrated in Fig. 1, there is good agreement between 
the experimental and calculated powder X-ray patterns, 
based on the structures determined for these compounds 

using single-crystal X-ray diffraction. The lattice parame-
ters determined from the powder diffraction data agree well 
with those determined by single-crystal diffraction (Supple-
mentary Information). FTIR data collected on handpicked 
crystals of 1 and 2 (Supplementary Information) are in good 
agreement with previous literature reports for DABCO [32, 
33], confirming its presence in the products. At high wave-
numbers, the absorption centered at around 2900  cm−1 is 
assignable to  CH2 stretches, while bands at 1300–1500  cm−1 
can be associated with the  CH2 deformation (δ) and  CH2 
deformation (t-w) modes.

Crystal Structure of  [C8H17N2][C10H22N2][BiI6] (1)

The asymmetric unit of 1 (Supplementary Information) con-
tains one third of a  [BiI6]3− octahedron, and one third of two 
N-substituted DABCO cations. Although the reagents used 
were DABCO and ethanol, an alkylation reaction has taken 
place under the solvothermal conditions, and the product 
of this reaction contains ethylated DABCO cations. In-situ 
alkylation reactions have been previously observed in sol-
vothermal reactions involving amines and alcohols [24, 34]. 
In the cubic crystal structure of 1, the  [BiI6]3− anions and 
the DABCO moieties are located on crystallographic three-
fold axes, while the ethyl chains on the DABCO moieties 
are disordered around the threefold axes. Charge balancing 
considerations require the presence of one  [EtDABCO]+ and 
one  [Et2DABCO]2+ cation per formula unit, and the elemen-
tal analysis is in excellent agreement with the proposed for-
mula,  [Et2DABCO]2+[EtDABCO]+[BiI6]3−.

In the distorted  [BiI6]3− octahedron found in 1, the Bi–I 
bond distances are 3.040(2) and 3.121(2) Å. The I–Bi–I 
angles range between 88.52(5) and 92.62(7)°, a small but 
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Fig. 1  Experimental powder X-ray diffraction patterns (red line) collected for handpicked crystals from the reactions producing (a) 1 and (b) 2. 
The patterns calculated using the structures determined by single-crystal X-ray diffraction are shown in black (Color figure online)
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significant deviation from ideal octahedral geometry. The 
mononuclear  [BiI6]3− anion is relatively rare when com-
pared with discrete polynuclear anions [17, 18]. Similar 
octahedral  [BiI6]3− anions have been previously found 
in [C(NH2)3]3[BiI6] [35],  [CH3CH2NH3]3[BiI6] [36], 
 [TTF]4[BiI6] (where TTF = tetrathiafulvalene) [37] and 
 [Et2DABCO]3[BiI6]2 [22], while  [H3N–R–NH3]2[I3][BiI6] 
[38, 39] and  [C6H13N]4[I3][BiI6] [40] contain two types 
of anions; namely  [BiI6]3− units and triiodide,  I3

−, ions.
In the crystal structure of 1  (Fig.  2a), each 

 [BiI6]3− anion is surrounded by eight  [Et2DABCO]2+ 
cations. Figure 2b shows a slice of the crystal structure, 
parallel to the (010) planes, in which each  [BiI6]3− anion 
is surrounded by two diethylated and two monoeth-
ylated DABCO cations in the same plane. Two addi-
tional ethylated DABCO cations are located above each 
 [BiI6]3− anion, and two below. There are no short I···I 
distances (below the van der Waals’ radii for two iodine 
atoms, 3.96 Å) [41], between the  [BiI6]3− anions. Instead, 
there are a number of short C–H···I contacts (Supplemen-
tary Information), which are likely to contribute to the 
stabilization of this crystal structure.

Crystal Structure of  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10]
[Bi2I9] (2)

Compound 2,  [C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9], 
which crystallizes in the monoclinic space group P21/c, 
contains two types of dimeric anions,  [Bi2I9]3− and 
 [Bi2I10]4− (Fig. 3a). The coexistence of two types of dimeric 
anions in the structure of iodobismuthates is quite unusual, 
with only one previous example containing  [Bi2I9]3− and 
 [Bi2I10]4−,  [MV]5[Bi2I10][Bi2I9]2 (where  MV2+  = methyl 
viologen) [42], reported to date. The  [Bi2I9]3− and 
 [Bi2I10]4− anions are formed by two  [BiI6]3− octahedra which 
share a face or an edge, respectively (Fig. 3a). In  [Bi2I9]3−, 
the two  Bi3+ cations are bridged by three iodides, with 
each  Bi3+ cation additionally coordinated by three terminal 
iodides. The Bi–I bond lengths lie between 2.9619(4) and 
3.2190(4) Å, with the Bi–I distances for the bridging μ2-
I− anions being significantly longer than those for the termi-
nal iodides. These distances are comparable to those found in 
other iodobismuthates containing  [Bi2I9]3− dimers, including 
 [C9H17N2]3[Bi2I9] [43] and  [Me2DABCO]7[BiI6]2[Bi2I9]2·2I3 
[23]. In the  [Bi2I10]4− dimers, which contain two bridging 
μ2-I−, the Bi-I bond distances vary between 2.9515(4) and 
3.2597(4) Å while the I–Bi–I angles range from 80.401(9)° 
to 99.599(9)°. These values are similar to those found in 

Fig. 2  (a) Polyhedral view of the crystal structure of  [C8H17N2]
[C10H22N2][BiI6] (1). The unit cell is shown. Only one orientation of 
the disordered ethyl chains is shown. (b) Polyhedral view of one slice 
of 1, parallel to the (010) planes. Hydrogen atoms have been omit-

ted for clarity. Key: bismuth, large red spheres; iodine, large purple 
spheres; carbon, small black spheres; nitrogen, small blue spheres; 
bismuth centered-octahedra are shown in red (Color figure online)
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other compounds containing dimeric  [Bi2I10]4− anions, such 
as  [Et2DABCO]2[Bi2I10] [21].

The crystallographically-determined formula for com-
pound 2 is  [DABCO]0.5[Et2DABCO]2+

3[Bi2I10]4−[Bi2I9]3−. 
Charge balancing considerations require the incorporation 
of three and a half  [Et2DABCO]2+ cations per formula 
unit. Although only three  [Et2DABCO]2+ cations were 
located in the crystal structure by single-crystal X-ray 
diffraction, there is a significant amount of void space 
(423 Å per unit cell), where half an  [Et2DABCO]2+ moi-
ety per unit cell could be accommodated. Elemental anal-
ysis is consistent with the proposed formula for 2, which 
is  [DABCO]0.5[Et2DABCO]2+

3.5[Bi2I10]4−[Bi2I9]3−. In the 
crystal structure of 2, layers of  [Bi2I9]3− anions and layers 
of  [Bi2I10]4− anions, separated by the organic moieties, alter-
nate along the [010] direction (Fig. 3b). There are a number 
of I···I contacts between the anions over the range 3.91 to 
4.19 Å (Supplementary Information), comparable to the sum 
of the van der Waals’ radii for two iodine atoms [41], which 

link the discrete anions into a pseudo-two-dimensional struc-
ture (Fig. 3c). It has been suggested that in crystal structures 
containing discrete iodobismuthate anions, the presence of 
I···I contacts might lead to increased band dispersion, par-
ticularly when the I···I distances are comparatively short 
[44]. In addition to the I···I contacts, in the crystal structure 
of 2 there are also many short C–H···I distances at under 
3.4 Å, which are also likely to stabilize the crystal structure.

Thermal Stability and UV–Vis Diffuse Reflectance

Thermogravimetric data (Fig. 4a) indicate that, under a 
nitrogen atmosphere, both compounds are stable up to 
approximately 280 °C, with decomposition occurring in 
each case in a single step. UV–Vis diffuse reflectance data 
collected on ground crystals of 1 and 2 are shown in Fig. 4b. 
Absorption peaks observed at approximately 2.6 and 2.3 eV 
for 1 and 2, respectively, might be attributed to an exciton. 
These are often observed in the UV–Vis absorption spectra 

Fig. 3  (a) The  [Bi2I9]3− (upper) 
and  [Bi2I10]4− (lower) anions 
found in 2. (b) View of the crys-
tal structure of 2 along [100] 
with unit cell outlined showing 
the locations of the DABCO 
and  [Et2DABCO]2+ species. 
Hydrogen atoms have been 
omitted for clarity. (c) Short I···I 
contacts (green lines) are shown 
between the  [Bi2I9]3− and 
 [Bi2I10]4− anions, viewed along 
[100]. Organic cations have 
been omitted for clarity. Key as 
for Fig. 1 (Color figure online)
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of iodobismuthates, even when measurements are performed 
at room temperature [45, 46].

From the absorption edge, the optical band gap of 1, 
which contains mononuclear  [BiI6]3− anions, is estimated as 
2.29(1) eV, while 2, which contains dinuclear  [Bi2I9]3− and 
 [Bi2I10]4− units, exhibits a band gap estimated as 2.03(2) eV. 
Comparison with previously reported band gaps for iodobis-
muthates containing only either mononuclear [22, 39, 40] or 
dinuclear  [Bi2I9]3− [23, 40, 43, 47–50] and  [Bi2I10]4− [21, 
22, 51] anions (Table  2) reveals that the optical band 
gap is largely independent of the nature of the organic 

countercations. The band gaps of hybrid iodobismuthates are 
mainly determined by the inorganic moieties, because the 
main contributors to the top of the valence band are iodine 5p 
states, while the bottom of the conduction band is primarily 
formed by bismuth 6p states [44]. Incorporation of triiodide 
anions has been successfully exploited to achieve signifi-
cant reductions in band gap, as exemplified by  [C3H10N]4[I3]
[BiI6] [39] and  [Me2DABCO]7(BiI6)2(Bi2I9)2·2I3 [23] 
(Table 2). Lower optical band gaps have also been found 
for polymeric bismuth iodides, which are comparatively 
rare. Examples include  [MV][BiI5] (where  MV2+  = methyl 
viologen), which contains one-dimensional chains of cor-
ner-sharing  [BiI6]3− octahedra and exhibits a band gap of 
1.48 eV [34], and  [C3H5N2S][BiI4], which has a band gap 
of 1.78 eV and contains one-dimensional chains of edge-
sharing octahedra [52]. Incorporation of additional metals to 
form ternary iodobismuthates, such as  [HPy]2[Py][CuBi3I12] 
(where Py = pyridine) which has a band gap of 1.59 eV [53], 
may provide an alternative approach to achieve significant 
reductions in the band gap [54].

Conclusions

In summary, two new iodobismuthates have been synthe-
sized under solvothermal conditions in the presence of 
DABCO and ethanol, and their crystal structures determined 
by single-crystal X-ray diffraction. Although we have pre-
viously shown that DABCO can act as a linker between 
iodobismuthate moieties [24], in-situ alkylation of DABCO 
is occurring under the solvothermal conditions described 
here. Compounds 1 and 2 contain discrete mononuclear and 
dinuclear anions, rather than polymeric units, and exhibit 
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Fig. 4  (a) TGA data and (b) UV–Vis diffuse reflectance data for compounds 1 (black) and 2 (red) (Color figure online)

Table 2  Optical band gaps for selected iodobismuthates

Formula Band gap/eV Ref.

[C8H17N2][C10H22N2][BiI6] (1) 2.29 This work
[Et2DABCO]3[BiI6]2 2.24 [22]
[C3H10N]3[BiI6] 2.1 [39]
[C3H10N]4[I3][BiI6] 1.34 [39]
[C6H13N]4[I3][BiI6] 1.58 [40]
[C6H12N2]0.5[C10H22N2]3.5[Bi2I10][Bi2I9] 

(2)
2.03 This work

[C6H14N]3[Bi2I9] 2.02 [40]
[MA]3[Bi2I9] 2.0–2.1 [47, 48]
[C8H12N]3[Bi2I9] 2.38 [49]
[(CH3)3NH]3[Bi2I9] 2.0 [50]
[C9H7N2]3[Bi2I9] 2.1 [43]
[Me2DABCO]7(BiI6)2(Bi2I9)2  2I3 1.61 [23]
[C9H14N4]2[Bi2I10] 1.9 [51]
[i-Pr2DABCO]2[Bi2I10] 1.73 [22]
[Et2DABCO]2[Bi2I10] 2.10 [21]
[Pr2DABCO]2[Bi2I10] 2.16 [21]
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optical band gaps comparable to those of other iodobismuth-
ates containing discrete anions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10870- 022- 00957-x.
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