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Abstract— Maritime ship traffic is globally increasing, with
90% of the world trade carried over the ocean. The emissions
of marine traffic and coastal population, especially in ports and
along shipping lanes with dense workloads, are a severe threat
to the marine environment. Therefore, we propose a complete
monitoring network to continuously monitor ship emissions by
identifying oil soot, exhaust fumes and plastic litter on the
sea surface. It is an intelligent integrated on-board system for
spatial-spectral marine pollution analysis on buoys and static
platforms. The system architecture consists of spectral vision
systems (VIS, IR-thermal) with radiometers (UV-VIS-NIR) for
spot data analysis. The study describes the proposed sensor
system architecture evaluated with synthetic data analysis using a
state-of-the-art Deep Learning algorithm. Combining our sensor
system with other environmental observations will eventually
integrate multi-sensor information towards a reliable holistic
situational awareness of the marine ecosystem.

Index Terms—Maritime traffic, marine pollution, ship emis-
sions, black carbon, oil soot, plastic litter, buoy, artificial in-
telligence, spectral data analysis, machine learning, sensor data
fusion.

I. INTRODUCTION

Detecting pollution on the ocean surface, such as oil soot,
the deposit of exhaust plumes and plastic litter, is of critical
importance for protecting marine ecosystems and the safety of
human activities [1]. Various sensors exist to address maritime
pollution challenges, with multispectral optical sensors partic-
ularly prominent on airborne and satellite-based platforms [2]–
[4]. While conventional multispectral sensors record the radio-
metric signal at only a handful of wavelengths, hyperspectral
sensors measure the reflected solar signal at hundreds of
contiguous and narrow wavelength bands ranging from visible
to infrared spectrum [5]. Therefore, hyperspectral radiometers
are routinely used for measurements of watercolour [6] and
tracked with pan-tilt units (PTUs) for spot data analysis
[7]. Using spectrographs and projecting them onto charge-
coupled device sensors and scanning the surface produces
hyperspectral images, most of which are only available at a low

temporal resolution [8]. Hyperspectral images provide much
spectral information to identify and distinguish spectrally
similar (but unique) materials, allowing good discrimination
between materials with only minor differences in their spectral
signatures. Therefore, hyperspectral imagery shows the po-
tential for correctly discriminating between oil slicks, surface
drifting objects, and other natural phenomena, including accu-
rately distinguishing between different oil types [9]. Recently,
short-wave infrared (SWIR) sensors have provided relevant
information on object types and the chemical characterisation
of marine plastics [10]. However, hyperspectral sensors with
sufficient spatial and spectral resolution are costly and produce
large amounts of data, limiting autonomous and long-term
applications. For example, a military-motivated study [11]
integrated a SWIR array sensor with a PTU to produce hy-
perspectral imaging information. Nevertheless, there is a need
for machine learning algorithms to classify objects of interest
efficiently. Currently, overall situation images of a maritime
environment are realised based on the fusion of multispectral
and multimodal sensors [12], [13], without taking advantage of
the more advanced characterisation provided by hyperspectral
techniques and their subsequent analysis.

To overcome these limitations, we propose an AI integrated
on-board system for buoy (moving) and quay (fixed) platforms.
It combines information from visible (RGB) and thermal-
infrared (TIR) vision systems [14] with a guided hyperspec-
tral radiometer for spot data analysis (Fig 1). The proposed
awareness-oriented and AI-based approach intelligently fuses
imaging spectral sensor data to access the immediate environ-
ment from the buoy and quay platforms. The hyperspectral
radiometer on a (PTU) verifies the pollution classification.
These results can train reinforcement learning models. Thus,
the contribution of the paper is a prototype method to detect
marine hazards autonomously.

The paper is organised as follows: Section II explains the
methodology of the proposed sensor system and its architec-



(a) Sensor system on harbour and quay platform (b) Sensor system legend

Fig. 1: Sensor System Design

ture. Following, Section III describes the experimental results
from synthetic data analysis using a case study. Section IV
provides concluding remarks, discusses the ongoing and future
research.

II. METHODOLOGY

Many marine pollutants are significantly present at the sea
surface due to their inherently positive buoyancy. The upper
and near-surface layers of seawater contain oil soot stains due
to ship emissions and oil slicks originating from accidents
and illegal discharges. Remote sensing is a proven and widely
used approach for oil monitoring using aircraft and satellites
[3]. However, these platforms have some drawbacks that make
them unsuitable for sustained monitoring of marine hazards
in coastal areas or human-influenced environments, such as
ports. The spatial resolution of satellite images and temporal
coverage is insufficient for data processing compared to an on-
board sensor data analysis [2]. In addition, features that require
visual inspection may hide behind clouds. Airborne remote
sensing can compensate for some of these shortcomings, but
has a drawback for long-term operations due to expensive
operational and logistical efforts. Drone operations are helpful
for event-driven situations such as fumes, yet limited in range,
endurance and sensor carrying capacity. The proposed design
of the sensor system uses maritime platforms such as buoys
and quays, achieving a more local perspective and offering
ease to relocate sensors.

A. Senor System Architecture
The proposed static awareness prototype (Fig 1a) will be

a forward-looking multi-sensor system for marine pollution
monitoring. Due to its outdoor exposure on fixed and moving
platforms, this system needs to be ruggedised and seawater
resistant. Sensors will be placed on the Gannet G1800, JFC
MarineTM [20] data buoy head and quay close to the water
surface. A non-corrosive metal housing unit is necessary for
the sensor systems to avoid damages. Wipers prevent sea
sprays on optical windows for both platforms.

The proposed sensor system architecture will consist of a
combined fixed and directional unit (Fig 1b). The fixed unit
will contain an RGB camera and an irradiance radiometer. The
RGB camera intended is the Emergent Vision TechnologiesTM

HT-50000-C [21], equipped with a 14 mm wide-angle lens to
provide a maximised surveillance area with acceptable optical
distortion. The event distance is fixed to 10-15 m due to the
varying event size. If the event size is relatively large, events
can be detected in a farther vision range. Oil soot can be
identified by applying sensor data fusion and data analysis.
However, detecting deformed floating plastics will still be a
challenge.

Fig. 2: Sensor Data Flowchart

The directional unit will use a robotic FLIRTM PTU-D48
E [23] for the movement of the sensors, an RGB camera,
a thermal infrared camera and a hyperspectral radiometer for
spot data analysis (Fig 1b). The information from the RGB and
thermal infrared camera will help in event detection and classi-
fication (Fig 2). It can also be helpful to check the radiometer’s
field of view to acquire data. The technical specifications of the



(a) Label histogram (b) Label correlation matrix

Fig. 3: MAPO training labels correlogram

forward looking infrared, FLIRTM A615 [22] thermal infrared
camera are supportive of the required sensor system. Since 3D
hyperspectral sensors are much more complex and expensive,
we plan to use the TriOSTM RAMSES-ARC [24].

B. Senor System Data Analysis

This system can acquire spatial-spectral data of oil soot or
plastic litter on the sea surface. A Machine Learning algorithm
trained with these spatial-spectral features enables the sensor
system to identify real-time pollution event detection and
classification (Fig 2). In addition, the fusion of the visible and
thermal information results in pixel-to-pixel correspondence
of the information. Based on the fused VIS-IR data, feature
detection algorithms can identify the surface pollutants and
get verified by the hyperspectral radiometer.

Adaptive AI optimisation algorithms will guide the PTU
and its trajectories to efficiently manoeuvre to the most
likely pollution targets. Multispectral image information and
localised spectrum require unique integration and interpre-
tation. Combining two 2D sensors with automated feature
extraction followed by point-by-point hyperspectral exami-
nation results in a novel 3D spectral map. Deep Learning
algorithms such as long short-term memory (LSTM) [15]–[17]
or reinforcement learning algorithms can furthermore analyse
the multi-dimensional data and support probabilistic models
for pollution characterisation. These models need training with
situations generated from the observations and augmenting the
observed data. The result will be a model that includes central
location, extent, orientation, motion, colour and probability of
containing one of the target contaminants.

The sensor data will have random and repeated partitions
to allow for optimisation and validation. A mini-computer

suitable for executing AI models is necessary to process data
on-board; hence, the proposed sensor system contains the
NVIDIATM Jetson AGX Xavier Industrial [25] module for
operations. It has ruggedised features to resist shock, temper-
ature, humidity, and vibration. Due to the light requirement
for the visible sensors, the designed system can operate only
during the day (Fig 1a). It will activate in cycles of 10 to
15 minutes in a day due to the expected event ratio and
reduced power consumption and processing load compared
with continuous operation. The RGB overview camera’s tilt
and focus will be set to the angle that gives a well-balanced
distribution between maximised close range water surface
surveillance and a general overview of the surrounding area
up to the far horizon level. Finally, this highly aggregated
data is provided to the end-user to achieve comprehensive
environmental awareness of marine hazards and pollution (Fig
2).

III. EXPERIMENTAL RESULTS AND DISCUSSIONS ON
SYNTHETIC DATA

The following analysis of synthetic data of marine plastic
and oil soot image set is intended to gain insights into the
sensor system design (section II). The experiment consists of
a marine pollution image set used for training and a state-of-
the-art Deep Learning algorithm. It answers questions about
the necessity for real-time data, requirements regarding data
quality and robustness. Furthermore, it will help to design the
overall AI event detection and classification model and to elicit
computational requirements to form the complete AI-based
marine monitoring system (Fig 1a).



A. Case Study

As there is a lack of real-time marine plastic and oil soot
data for our research, synthetic data was aquired to train a
state-of-the-art Deep Learning object detection model. The
synthetic data is a collection of marine floating plastics and
oil soot images. It was collected from Google Images TM with
search keywords: marine oil slick, marine oil soot, marine
plastics, floating plastics, ship oil leakage. This data was
labelled to train the Deep Learning object detector, YOLOv5
[18] as it outperforms other versions of YOLO with faster,
more accurate object detection and less memory storage.
Initially synthetic data is used to train a custom-YOLOv5
on RGB images containing marine plastics and oil soot. This
custom-YOLOv5 trained on marine plastics and oil soot RGB
images is termed MAPO for the remainder of this paper. The
case study was limited to RGB data, since IR-thermal and
hyperspectral radiometric data could not be acquired at this
time. However, with the realised hardware system also IR-
thermal and hyperspectral radiometric data will be collected in
the future. The analysis of this case study helped to design the
entire sensor system (section II-A). The Weights and Biases
Inc. software [19], a developer tool for Machine Learning was
used to obtain all graphs for the analysis presented in this
section.

B. Synthetic Data Acquisition

The synthetic data comprised 162 images of marine plastic
and oil soot RGB data to train and test custom-YOLOv5.
The RGB image data was randomly divided into 80% for the
training set and 20% for the test set (32 images). Furthermore,
the training set was randomly divided into 80% of images for
training (104 images) and 20% for validation (26 images). The
training classes are plastics, oil soot, ship and fumes as shown
in Fig 3. The marine plastic and oil training labels histogram
and correlation matrix gives the number of labels (Fig 3b),
instances and bounding box sizes (Fig 3a). Nearly, 70 plastic
and ship labels, 90 oil soot and 10 fumes labels trained MAPO.
It used different numbers of epochs, 100, 200, 300 and 400,
with the same labels to find the impact of training epoch on
the data. The training, validation and test data are evaluated for
performance, data loss, computational analysis and overfitting
of the model during each epoch.

C. MAPO Model Evaluation

Average precision (AP) is a metric to measure the accuracy
of deep learning models. The mean average precision (mAP)
is a metric derived from the PASCAL visual object classes
challenge (VOC) [28] and COCO [27] data evaluation. The
mAP defines the intersection over union (IoU) between the
ground truth and predicted value. IoU is the measure of how
much the predicted boundary overlaps with the ground truth
data (Equation 1). The mAP is the average over multiple IoU,
the minimum IoU required to choose a true positive prediction.

IoU =
area of overlap
area of union

(1)

(a) mAP at 0.5 (b) mAP at 0.95

Fig. 4: MAPO mean average precision

(a) Training object loss (b) Validation object loss

(c) Training box loss (d) Validation box loss

(e) Training class loss (f) Validation class loss

Fig. 5: MAPO training and validation loss

The mAP 0.5 is mean AP at IOU = 0.5 and mAP 0.5:0.95
is the mean AP for IoU from 0.5 to 0.95 with a step size
of 0.05. The mAP 0.5 (Fig 4a) and mAP 0.5:0.95 (Fig 4b)
for 300 epoch are highest among other epoch as the precision
(positive predictive value) is almost similar, but 300 epoch has
the highest recall (sensitivity) value. The F1 score of the test
data on all classes was 0.83 with 0.798 precision-recall (PR)
curve at mAP 0.5. The accuracies for plastics is 1.0, oil soot
is 0.67, ship is 0.86 and fumes is 0.60. This analysis helped



to determine that mAP value and accuracy of a model are
directly proportional.

D. MAPO Data Quality and Robustness Analysis

The data quality and robustness is analysed with the training
losses (Fig 5). The training object classification loss (Fig 5a),
training bounding box loss (Fig 5c) and training class loss (Fig
5e) is at lowest at 400 epochs. The training loss is inversely
proportional to the epoch, more training steps are required
to obtain a lower loss during model training. However, a
model trained with more epochs to gain less loss, can lead to
overfitting. MAPO showed some small amount of overfitting
at 400 epochs since it performed better at 300 epochs with less
training loss. This analysis explained the significance of the
training steps and loss for a model. Loosely speaking better
quality data is required from a better sensor system (section
II-A) for the model to perform better.

E. MAPO Computing Quality Analysis

The computational quality of a model can be analysed
with its CPU and GPU utilization during training and testing.
NVIDIATM Tesla K80 GPU [26] is used for executing each
epoch and the runtime is recorded (Fig 6) with respect to GPU
power usage (Fig 6a), GPU temperature (Fig 6b), GPU utiliza-
tion (Fig 6c) and CPU utilization (Fig 6d). This experiment
explained that a GPU’s runtime behaves linearly to the number
of epochs and the amount of training and test data. There will
be more utilization of the computing system for synergistic
sensor data. The proposed system will need a more powerful
and ruggedized computing unit due to its outdoor operations
on buoy and quay platform for marine pollution monitoring
(section II-B).

(a) GPU power usage (b) GPU temperature

(c) GPU utilization (d) CPU utilization

Fig. 6: MAPO GPU and CPU computing analysis

IV. CONCLUSIONS

Marine traffic emissions influence the ecosystem. A com-
plete pollution monitoring system is designed with visible and
thermal-infrared spectral sensors and hyperspectral radiome-
ters to observe the pollution simultaneously from a buoy and
quay. Event detection is planned by fusing visible and thermal
infrared information and subsequent classification of pollutant
classes. The classification will be verified using a spot-wise
hyperspectral radiometer.

MAPO, an AI system presented in this paper, was trained
with synthetic data to analyse the performance of object
detectors and to assess the need for more actual data. Fur-
thermore, MAPO was used to gather information about the
computational requirements of the proposed sensor system.
The results of MAPO served as a proof of concept and were
used to improve the design of the proposed system.

The proposed multi-sensor system in combination with
MAPO will lead to a more complete situational awareness
system. Ongoing research aims to collect more real-time,
actual data using the proposed sensor system for training
MAPO. Future work includes data acquisition from a seawater
basin with only floating plastic samples and data from an
upcoming research vessel expedition in the southern part of
the North Sea.
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