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Abstract

In November 2021, the Royal Meteorological Society Data Assimilation (DA) Spe-

cial Interest Group and the University of Reading hosted a virtual meeting on the

topic of DA for convection-permitting numerical weather prediction. The goal

of the meeting was to discuss recent developments and review the challenges

including methodological developments and progress in making the best use

of observations. The meeting took place over two half days on the 10 and

12 November, and consisted of six talks and a panel discussion. The scientific

presentations highlighted some recent work from Europe and the USA on

convection-permitting DA including novel developments in the assimilation of

observations such as cloud-affected satellite radiances in visible channels,

ground-based profiling networks, aircraft data, and radar reflectivity data, as

well as methodological advancements in background and observation error

covariance modelling and progress in operational systems. The panel discus-

sion focused on key future challenges including the handling of multiscales

(synoptic-, meso-, and convective-scales), ensemble design, the specification of

background and observation error covariances, and better use of observations.

These will be critical issues to address in order to improve short-range fore-

casts and nowcasts of hazardous weather.

KEYWORD S

convection-permitting data assimilation, covariance modelling, multiscale data assimilation,
novel observations, operational data assimilation systems

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Received: 24 February 2022 Revised: 25 July 2022 Accepted: 11 August 2022

DOI: 10.1002/asl.1130

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Atmos Sci Lett. 2022;e1130. wileyonlinelibrary.com/journal/asl 1 of 12

https://doi.org/10.1002/asl.1130

https://orcid.org/0000-0003-4305-3658
https://orcid.org/0000-0003-1690-3338
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/asl
https://doi.org/10.1002/asl.1130
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasl.1130&domain=pdf&date_stamp=2022-09-08


Correspondence
Guannan Hu, Department of
Meteorology, School of Mathematical,
Physical and Computational Sciences,
University of Reading, Reading, UK.
Email: guannan.hu@reading.ac.uk

Funding information
Engineering and Physical Sciences
Research Council, Grant/Award Number:
EP/P002331/1

1 | INTRODUCTION

Convection-permitting (or convective-scale or storm-scale)
data assimilation (DA) refers to DA in regional numerical
weather prediction (NWP) systems with horizontal grid-
lengths of around 1–4 km, where convection is modelled
explicitly rather than parametrized. Such systems have been
used in research and operational NWP for more than fifteen
years (e.g., Ballard et al., 2016; Dance, 2004; Gustafsson
et al., 2018; Park & Županski, 2003; Sun, 2005). These sys-
tems can provide improved short-term (0–36 h) nowcasts
and forecasts (Milan et al., 2020), particularly for hazardous
weather such as convective storms (Dance et al., 2019) and
fog (Clark et al., 2008).

Convection-permitting DA differs in four main
aspects from global DA. First, there is a need for observa-
tion information on appropriate scales (e.g., roughly
1 km horizontal spacing, 250 m vertical spacing, and
every 15 min in time in the boundary layer; WMO
OSCAR, 2022). There are a variety of observations avail-
able that may provide some of the required information
(e.g., geostationary satellite, radar, and ground-based
remote-sensing observations). However, assimilating
these observations can be challenging due to the need to
develop complex observation operators (e.g., Hawkness-
Smith & Simonin, 2021) and to properly represent the
observation uncertainties (Janji�c et al., 2018; Simonin
et al., 2019). Furthermore, there are few suitable observa-
tion impact measures to help guide future observing net-
work design for these systems (Fowler et al., 2020). Second,
the convection-permitting DA problem spans multiple
scales (synoptic-, meso-, and convective-scales). It is an
open question to what extent we should attempt to ana-
lyze all of these scales in regional prediction systems
(Baxter et al., 2011; Caron et al., 2019; Gustafsson
et al., 2018; Wang et al., 2021). Third, the nonlinearity of
convective processes leads to an increased need for non-
linear and flow-dependent DA techniques
(e.g., Bishop, 2016; Hodyss, 2011; van Leeuwen, 2009).
The tools developed for global DA (such as background
error covariance modelling using linear balance con-
straints) are no longer appropriate (Bannister, 2021).
Fourth, systematic errors in the model representation of

hydrometeors (and their radiative properties) present sig-
nificant challenges (e.g., Grabowski et al., 2019).

In November 2021, the Royal Meteorological Society
(RMetS) DA Special Interest Group (SIG) hosted a virtual
meeting with the goal of discussing recent developments
and the continuing challenges of improving convection-
permitting DA. This meeting was held on 10 and 12
November, 2021. Over 70 people registered for the meet-
ing from weather services, research institutes, and uni-
versities in seventeen countries. The meeting consisted of
six presentations and a panel discussion on topics pro-
posed by the participants and organizers. The presenta-
tions were

• The assimilation of cloud-affected radiances in
convective-scale NWP (Martin Weissmann, Universi-
tät Wien)

• National Oceanic and Atmospheric Administration
(NOAA's) Experimental Warn-on-Forecast System:
Progresses and Challenges of Ensemble Data Assimila-
tion for Storm-scale NWP (Nusrat Yussouf, University
of Oklahoma/NOAA NSSL)

• The value of assimilating different ground-based profil-
ing networks for convective-scale NWP (Hristo
G. Chipilski, NCAR)

• Operational convective-scale data assimilation at the
Met Office–some selected highlights (Bruce Macpher-
son, Met Office)

• Perspectives on convective-scale data assimilation
(Ross N. Bannister, University of Reading)

• Recent work on correlation modelling at Météo France
and topics of interests for the next two years (Oliver
Guillet, Météo France)

• Three questions were discussed in the panel discussion:
• In regional DA systems, should we correct all scales,

from synoptic to convective, or focus on convective
scales? If we focus on convective scales, how should a
system be designed to use the best synoptic-scales,
while keeping convective-scales spun-up?

• What are the challenges in specifying observation and
background error covariances in convection-permitting
DA? How can we ensure observation impact on appropri-
ate scales?
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• Which scientific questions should we focus on for
convection-permitting DA methods in the next 5 years
(and why)?

In the rest of this report, we summarize the recent
progress presented during the meeting (section 2), ongo-
ing challenges (section 3), and recommendations for
future research (section 4).

2 | PROGRESS

This section presents operational systems used by some
meteorological centers (section 2.1), studies on the assim-
ilation of novel remote-sensing and aircraft observations
(section 2.2), and research on the modelling of back-
ground and observation error covariances (section 2.3).
Instead of providing a comprehensive review, we have
synthesized the material presented at the meeting. The
reader is referred to Gustafsson et al. (2018) for a broader
perspective on operational convection-permitting DA.

2.1 | Operational and quasi-operational
systems and methods

2.1.1 | The Met Office UKV hourly 4D-Var
system

Convection-permitting DA has been operational in the
UK since 2005 (Ballard et al., 2016). In July 2017,
hourly-cycling four-dimensional variational data
assimilation (4D-Var) was implemented operationally
in the Met Office's convection-permitting (approxi-
mately 1.5 km) forecast model known as the UKV
(Milan et al., 2020). The previous operational system
used Latent Heat Nudging (LHN) for radar-derived sur-
face rain rate and 3D-Var-FGAT (First Guess at Appro-
priate Time) plus Incremental Analysis Updating
(IAU) for all other observations (e.g., Waller, Simonin,
et al., 2016). The motivation for using hourly 4D-Var
was to improve post-processing products in the 0–6 h forecast
period and hourly forecasts up to 12 h. The hourly 4D-Var
has been found to bring positive impacts to forecasts of
storms and precipitation and it is an affordable single
operational system that covers both nowcasting and “day
one” timescales (Milan et al., 2020).

Due to the small domain size, it is questionable
how well analyses can fit large scale information com-
ing from the observations (e.g., Baxter et al., 2011). To
address this issue, the Met Office will incorporate
large-scale blending into the convection-permitting
DA system for operational forecasting in early 2022.
The global analysis will first be downscaled and then

blended with the background from a Limited Area
Model (LAM). The algorithm for the large-scale blend-
ing is to calculate a blended background increment,
δxh, such that

δxh ¼ S Gxh�xb
� �

,

where xh is the model state downscaled from the global
analysis, xb is the LAM background and the two linear
operators, S and G denote a low-pass filter and a reconfi-
guration function respectively. The low-pass filter
removes small scales and the reconfiguration function
interpolates xh to the same grid as the LAM background,
accounting for the surface terrain. Then the observation
innovations are calculated as

d¼ y� H xb
� �þH δxhþδx

� �� �
,

where δx denotes LAM increments and y denotes obser-
vations. The symbols H and H are the nonlinear and lin-
ear observation operators respectively. Trial results have

TABLE 1 The configuration of NOAA's WoFS

Model version: WRF-ARW v3.8+

Grid points: 300�300�50

Grid spacing: 3 km

Ensemble
members:

36-member multiphysics ensemble

Long- and short-
wave radiation:

Dudhia/rapid radiative transfer model
(RRTM) or rapid radiative transfer
model for GCMs (RRTMG)

Microphysics: NSSL 2-moment

Planetary
boundary layer:

Yonsei University (YSU), Mellor–
Yamada–Janji�c (MYJ), or Mellor-
Yamada-Nakanishi-Niino (MYNN)

Data assimilation
technique:

Ensemble Kalman Filter

Initial and
boundary
conditions:

HRRRE convection-permitting ensemble

Observations
assimilated:

Weather Surveillance Radar-1988
Doppler (WSR-88D) reflectivity and
radial velocity; geostationary
operational environmental satellites
(GOES) cloud water path and clear sky
radiances; conventional National
Centers for Environmental Prediction
(NCEP) prepbufr observations:
METeorological Aerodrome Report
(METAR), automated surface
observing systems (ASOS), radiosonde,
aircraft, marine, mesonets
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shown that large-scale blending improves the fit between
the merged background and observations.

2.1.2 | The NOAA experimental
warn-on-forecast system

Currently, in the USA, warnings for severe storms, torna-
does, and intense rainfall and flash floods are usually
based on radar- and spotter-based detections. Guidance
from numerical models has not been geared toward these
warnings. Therefore, NOAA is developing an ensemble
analysis and forecast system that can provide probabilis-
tic forecasts of individual thunderstorms and their haz-
ards from the time they are generated until 6 h later
(Stensrud et al., 2009; Stensrud et al., 2013). Table 1
shows the configuration of NOAA's experimental
Warn-on-Forecast System (WoFS). WoFS produces fore-
cast graphics every 5 min, measuring the probability and
the severity of events. Experimental results indicate that
WoFS can predict thunderstorm events with associated
hazards reasonably well at 0–6 h lead time and from
regional to local spatial scales (Clark et al., 2021; Yussouf
et al., 2020; Yussouf & Knopfmeier, 2019).

2.1.3 | The Météo-France AROME
3DEnVar, 4DEnVar, and EDA systems

The object-oriented prediction system (OOPS) project
started in 2009 at European Centre for Medium-Range
Weather Forecasts (ECMWF), in collaboration with
Météo-France and the ACCORD consortium. OOPS is a
framework that eases research, development, and main-
tenance of new DA algorithms for several forecast
models. Under the OOPS framework, Météo-France has
implemented experimental versions of a variety of DA
algorithms in their convection-permitting numerical pre-
diction model, AROME, and also in the global model,
ARPEGE. The algorithms include 3D-Var (Brousseau
et al., 2011), 3DEnVar (Montmerle et al., 2018), 4DEnVar
(e.g., Bannister, 2017; Desroziers et al., 2016) and
(Ensemble of Data Assimilations [EDA]; Brousseau
et al., 2012). The EDA is an ensemble of independent 3D-
Var data assimilations that are performed by randomly
perturbing observations, forecast model, and lateral
boundary conditions. The AROME 3DEnVar and 4DEn-
Var use flow-dependent background error covariance
matrices that are computed using the ensemble members
from AROME EDA. The AROME 3DEnVar has been
shown to improve over 3D-Var, which uses a static back-
ground error covariance matrix, in forecasting many
meteorological variables such as geopotential height,

temperature, wind and humidity (Michel &
Brousseau, 2021). The 3DEnVar will undergo intensive
testing for its final operational implementation in 2023. A
case study over France on May 26, 2018 showed that 4DEn-
Var produced a closer 24-hour rainfall accumulation in
comparison with radar observations than 3D-Var and
3DEnVar. Thus, the 4DEnVar will be further tested in 2023
for possible operational use in 2024. Another area of
research is model error representation, which is currently
based on Stochastically Perturbed Parametrization Tenden-
cies (Palmer et al., 2009). Météo-France is undertaking work
on using model parameter perturbations to represent model
uncertainties for AROME-EPS (and later for EDA). This
allows model uncertainties to also be represented in areas
where physical tendencies are small.

2.1.4 | The DWD COSMO-KENDA and
ICON-D2 systems

In February 2021, the Deutscher Wetterdienst (DWD)
convection-permitting ensemble prediction system
COSMO-D2 (-EPS) was replaced with ICON-D2(-EPS), an
ICOsahedral Nonhydrostatic (ICON) model with a horizon-
tal resolution of about 2.2 km (Reinert et al., 2020; Zängl
et al., 2015). The operational DA system, known as
KENDA, provides hourly analyses, using an Local Ensem-
ble Transform Kalman Filter scheme (Schraff et al., 2016).
In operational predictions, it assimilates radiosonde ascent
and descent profiles, AMDAR and Mode-S aircraft data,
wind profiler data, observations from surface stations, and
Doppler radar winds and reflectivity from the German
radar network. In addition, a latent heat nudging scheme
(Stephan et al., 2008) assimilates radar-derived precipitation
rates from the European radars within the model domain
between analysis steps, during the first 30 min of the fore-
cast. A separate system updates sea surface temperatures
once per day and snow depth every 6 h.

2.2 | Novel observations

Current observing networks do not meet user require-
ments for convection-permitting DA (WMO OSCAR,
2022). This section describes some efforts to reduce data-
gaps by assimilating novel observations.

2.2.1 | Cloud-affected satellite radiances

Many centers are moving toward an “all-sky” approach
for satellite DA in operational forecasting, in which the
satellite radiances that are affected by cloud are directly
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assimilated. This could improve forecasts of weather phenom-
ena that are poorly observed by conventional instruments,
such as low stratus clouds and convective precipitation (e.-
g., Geer et al., 2018).

Idealised experiments using the COSMO-KENDA sys-
tem and simulated observations showed that assimilating
cloud-affected satellite observations can bring improve-
ments that are of similar magnitude to the benefits of
radar assimilation (Bachmann et al., 2019; Bachmann
et al., 2020; Schröttle et al., 2020). These benefits usually
lasted longer than the lifetime of a convective system.
These experiments also showed that assimilating both
infrared and visible radiances was more effective than
assimilating only infrared radiances.

In addition to these idealized experiments, real-
observation experiments using the ICON-D2 system have
been carried out (Geiss, 2021). The observations assimi-
lated consisted of all operational observations, plus the
visible channel of Spinning Enhanced Visible and Infra-
red Imager (SEVIRI). These experiments showed that
assimilating SEVIRI visible channel satellite observations
improved the forecasts of satellite specific quantities such
as solar reflectance as well as meteorological quantities
such as precipitation (up to 12 h). Furthermore, the
assimilation improved the prediction of global horizontal
irradiance at the Earth's surface which is expected to ben-
efit solar energy forecasting.

2.2.2 | Ground-based remote-sensing
observations

Many operational centers have been improving their
treatment of radar observations (e.g., Simonin
et al., 2019; Zeng et al., 2021). At the Met Office, LHN of
surface rain rate has been applied for 25 years (Jones &
Macpherson, 1997). Following development of improved
observation operators and better treatment of observation
errors, direct 4D-Var assimilation of radar reflectivity
became part of the Met Office operational system in May
2022. The new trial results showed that directly assimilat-
ing radar reflectivity improves the analysis and forecast
of organized bands of convection (Hawkness-Smith &
Simonin, 2021).

In an experimental study in the USA, Chipilski et al.
(2022) explored the impacts of assimilating ground-based
remote-sensing observations on the forecasts of bore-
generating nocturnal convection using the GSI-EnKF-WRF
system (Johnson et al., 2015). The observations assimilated
were from Radar Wind Profilers, Doppler Wind Lidar,
Atmospheric Emitted Radiance Interferometers, and radio-
sondes. They found that assimilating all observations con-
sidered brought the largest benefit to precipitation forecasts

compared to assimilating observations from a single instru-
ment. Assimilating observations from single instruments
was shown to have neutral impacts due to (1) forecast sensi-
tivity to the initial moisture and wind fields, (2) deficiencies
in the EnKF algorithm for nonlinear processes and (3) insuf-
ficient temporal frequency of radiosonde data. Overall, the
promising findings from these experiments are in agree-
ment with earlier work (e.g., Chipilski et al., 2020; Degelia
et al., 2020) and pave the way for the integration of these
instruments in operational convective-scale NWP systems.

2.2.3 | Mode-S EHS aircraft data

Mode-S EHS (enhanced surveillance) aircraft data allow
the derivation of wind and temperature observations
from air traffic management reports (e.g., de Haan, 2011).
At the Met Office, Mode-S EHS wind observations have
been assimilated operationally in the UKV convection-
permitting system since 2018. Li (2021) showed that
assimilating Mode-S winds has a positive benefit on the
forecast skill in wind profiles in the first 6 h of the fore-
cast, and for hourly precipitation accumulations up to
9 h into the forecast. The assimilation of Mode-S EHS
temperature data is more challenging as the temperature
observations have been shown to be of lower quality, par-
ticularly in the boundary layer (Mirza et al., 2016; Mirza
et al., 2019; Mirza et al., 2021). However, these data can
be used after some processing (de Haan, 2013; de Haan &
Stoffelen, 2012). The Met Office has brought these tem-
perature observations into operational use in May 2022.

2.3 | Covariance modelling

2.3.1 | Balance relationships in background
error covariance modelling

In global DA, extensive use is made of balance relation-
ships in modelling multivariate relationships in back-
ground error statistics. Geostrophic and hydrostatic
balances are though weaker and less relevant for convec-
tive events (e.g., Vetra-Carvalho et al., 2012). A simplified
model of convective-scale flow developed from the Euler
equations (the “ABC model”; Petrie et al., 2017) and its
DA system (Bannister, 2020) have been used to investi-
gate the role of these geophysical balances in
DA. Bannister (2021) showed that switching on the geo-
physical balances minimizes errors in the large-scale
components of the analyzed flow fields. This allows wind
and pressure observations of the large-scale flow to com-
plement each other. On the other hand, switching off
these balances is beneficial for the small-scale (smaller
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than a few 10s km). This implies that the assimilation
problem should be split into two parts–one analyzing the
larger scales, where geophysical balances provide useful
information, and another analyzing the smaller scales,
where geophysical balances are not relevant and can in
fact be harmful.

2.3.2 | Modelling spatial correlations in
observation errors

Many observation types have spatially correlated observa-
tion representation errors (e.g., Cordoba et al., 2017; Janji�c
et al., 2018; Michel, 2018; Waller et al., 2019; Waller,
Ballard, et al., 2016; Waller, Simonin, et al., 2016; Zeng
et al., 2021). It has been shown that accounting for spatial
observation error correlations allows more observation
information to be extracted in idealized systems (Fowler
et al., 2018; Rainwater et al., 2015; Stewart et al., 2008;
Stewart et al., 2013) and leads to improved forecast skill in
operational systems (Simonin et al., 2019). A spatially corre-
lated observation error covariance matrix model has been
proposed by Guillet et al. (2019), based on a finite-element
discretization of a diffusion operator. The performance of
the method depends on the distribution of the observations,
as this determines the mesh for the finite element tech-
nique. New observation thinning strategies and their impact
on the observation distribution are currently being investi-
gated, with possible application to radar reflectivity.

3 | CHALLENGES

Forecasting of low stratus clouds, fog, convective precipi-
tation, and storms is a major challenge for convection-
permitting NWP (e.g., Dance et al., 2019; Hu &
Franzke, 2020). The prediction of these fast processes
requires rapid DA cycling and careful treatment of many
aspects of the system. In this section, we present some of
the challenges discussed at the meeting.

3.1 | The handling of multiple spatial
scales

Convection-permitting DA may require knowledge from
both synoptic and meso scales. However, it is very diffi-
cult to correct all scales with a LAM (e.g., Baxter
et al., 2011; Johnson et al., 2015). Some discussion at the
meeting addressed whether we should better focus our
efforts on improving just the small scales (incorporating
larger scales by blending with a large-scale analysis) or
whether truly multiscale assimilation techniques should be
pursued. Can we produce ensembles that can represent

small-scale background error statistics well? On the other
hand, accurate large scale information can be impor-
tant even for forecasts of very short periods (Durran &
Gingrich, 2014). Furthermore, tropical regions may
require different approaches from midlatitude regions.

3.2 | Model errors

In ICON-D2 simulations, model deficiencies in represent-
ing cloud statistics are observed in the following aspects:
(1) too few mid-level and semi-transparent clouds; (2) too
many thick ice clouds; and (3) too many clouds with low
brightness temperatures. These issues have also been
found in many other weather prediction models (Geiss
et al., 2021). Thus, improving the representation of clouds
in weather prediction models is of utmost importance. It
is also important for DA algorithms to be able to take
account of known model deficiencies, by accounting for
model errors, through weak constraint variational DA
(Trémolet, 2007), ensembles (Raynaud et al., 2012),
model bias correction (Bell et al., 2004) or other
approaches (e.g., Brajard et al., 2021). Development of
NWP models and DA systems is a continuously ongoing
process. Closer interactions between modelers and DA
scientists may lead to better systems.

3.3 | Background uncertainty

Small-scale atmospheric processes, such as convection
and cloud microphysical processes, are usually strongly
nonlinear, so that models describing these processes can
produce non-Gaussian forecast errors (e.g., following
gamma or inverse-gamma distributions; Posselt &
Bishop, 2018). In addition, the nonlinearity of the model
enhances the need for flow-dependent background error
covariances. Therefore, forecast ensembles are likely to ben-
efit the estimation of background error statistics. The
ensembles replace proxies such as forecast differences
(Berre et al., 2006; Parrish & Derber, 1992). However,
unlike in synoptic-scale DA, the ensemble mean should not
be used as the best estimate in this non-Gaussian case
(Lorenc & Payne, 2007). For instance, positive variables like
rainfall amount may deviate considerably from their mean.
Moreover, for highly complex distributions, one would ide-
ally need to obtain a representative sample and the notion
of a single best estimate may not be useful.

3.4 | Observation uncertainty

The assimilation of geostationary satellite and radar
observations has brought great benefits to convection-
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permitting NWP (Gustafsson et al., 2018). However, the
assimilation of these observations can be a challenge due
to the non-Gaussian characteristics of observation errors
and strong spatial observation error correlations.

The non-Gaussianity of observation errors needs to be
carefully introduced into convection-permitting DA sys-
tems, because it will result in differently shaped error distri-
butions (e.g., Bannister et al., 2020; Bocquet et al., 2010).

Many recent works have addressed the issue of
including the spatial observation error correlations in
convective-scale DA systems. In addition to the work by
Guillet et al. (2019) on modelling wind error correlations
(see section 2.3.2), methods such as eigenvalue decompo-
sition (e.g., Fowler, 2019; Michel, 2018; Stewart
et al., 2013), spatial difference observations (Bédard &
Buehner, 2020), and spectral transformation (e.g., Chabot
et al., 2020; Ying, 2020) have also been studied. More-
over, pragmatic parallelization strategies (Simonin
et al., 2019) and numerical approximation methods
(Hu & Dance, 2021) have been explored in order to
reduce computational costs (particularly parallel commu-
nication costs). While the approach of Simonin et al.
(2019) is already used for operational assimilation of
Doppler radar winds at the Met Office, the challenge
going forwards is to extend these methods to other opera-
tional centers and observation types.

3.5 | Satellite observation operators

While geostationary satellites provide spatially dense and
frequent-in-time observations, many of these data are not
used in DA. Many observations are discarded due to
cloud-affected radiances, a lack of understanding of land-
surface emissivity, a lack of knowledge on how to treat
observations in visible bands and systematic model errors
in representing the observed quantities. The problem of
assimilating cloud-affected radiances has already been
addressed in section 2.2.1. Land-surface emissivity atlases
for use with fast radiative transfer schemes have recently
been improved (Borbas & Feltz, 2019), but further
research is needed to allow for a greater proportion of
observations over land to be used in operations. An effi-
cient and accurate forward operator for visible geosta-
tionary satellite observations has been developed over the
last ten years (VISOP; Kostka et al., 2014; Scheck
et al., 2016, Scheck et al., 2018; Geiss et al., 2021). It is
based on a method for fast 1D radiative transfer (Scheck
et al., 2016) and now implemented in RTTOV (radiative
transfer for TOVS), which makes it available for opera-
tional use. Several weather services are planning to use it
for monitoring in the near future. However, there is still
ongoing development to account for 3D-effects in this 1D
operator (Scheck et al., 2018).

4 | OUTLOOK AND
RECOMMENDATIONS

A number of future steps for convection-permitting DA
research were discussed at the meeting. This
section provides some outlook and recommendations for
the future, focusing on the use of novel observations and
better generation of ensembles.

4.1 | Improving the use of currently
available observations

Despite the exciting progress described in section 2.2,
work is still needed to improve the use of currently avail-
able observations via improvements in satellite observation
operators (see section 3.5), and increasing understanding of
polarimetric radar observations such as nonprecipitation ech-
oes (e.g., Augros et al., 2018;Rennie et al., 2011), radar refrac-
tivity (Dance et al., 2019) and differential phase (Augros
et al., 2018). Waller et al. (2021) showed that representation
error biases and correlations may be critical for convection-
permitting NWP. However, computationally feasible
methods for treating large datasets with long spatial error
correlation lengths still need to be developed for operational
purposes (see sections 2.3.2 and 3.4).

4.2 | Assimilating new and emerging
observation-types

There are many gaps in the observing network that affect
our ability to forecast on convection-permitting scales
(WMO OSCAR, 2022). There are few suitable observation
impact measures to help guide strategic future observing
network design for these systems (Fowler et al., 2020)
and more work needs to be done to provide these tools
and the evidence for new international observing net-
works. However, it is known that storm prediction
requires accurate model representation of rapid changes
in the near-storm environment. Ground-based remote-
sensing instruments (see section 2.2.2), and unmanned
aircraft systems could provide well-resolved information
about these environments. The use of these observations
could improve the prediction of convection initiation as
well as the evolution of storms. New observation operators
may need to be developed for effective assimilation of
ground-based remote-sensing observations (for instance, the
use of raw observations instead of retrievals).

Crowdsourcing may provide new, inexpensive sources
of observations (Hintz, Vedel, & Kaas, 2019). For example,
private citizen's automatic weather stations (Chapman
et al., 2017), surface pressure observations from mobile
phones (e.g., Hintz, O'Boyle, et al., 2019) and temperature
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observations from cars or other vehicles (Bell et al., 2022;
Siems-Anderson et al., 2020), are potentially useful sources
of observations for convection-permitting DA. However,
there are complex issues regarding data ownership and pri-
vacy, quality control (particularly for moving observing plat-
forms such as mobile phones and cars), and dealing with
large data volumes to be resolved before these data will see
widespread use in NWP.

4.3 | Ensemble design

The use of ensembles is important for the provision of
non-Gaussian, flow-dependent estimates of background
uncertainty (see section 3.3), and for the provision of
seamless probability forecasts (such as WoFS in sec-
tion 2.1.2). Hence, there is a need for ensembles that can
better describe the error statistics of small-scale atmo-
spheric processes. Stochastic approaches and multiphy-
sics could be considered as part of the future ensemble
generation system.

5 | SUMMARY

This article reports on the RMetS DA SIG meeting on
convection-permitting DA held in November 2021. Pro-
gress in operational DA systems at several centers, the
assimilation of novel observations, and the estimation
and treatment of background and observation error
covariances were addressed in this report. A number of
future steps for convection-permitting DA research were
discussed at the meeting with a particular focus on
improving the observing network in the boundary layer,
better observation operators for existing observations,
better treatment of observation uncertainty and better
ensemble design. It is essential that these challenges are
addressed to protect lives and livelihoods from hazardous
weather events.
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