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Numerical analysis at the semiclassical analysis/numerical analysis
interface: issues and case studies

Simon Chandler-Wilde, Euan Spence

1. Introduction

This is the first of three talks that kicked off this programme, introducing issues
and problems at the interface between semiclassical analysis (SCA) and numerical
analysis (NA) from the NA side, and exhibiting opportunities at the SCA/NA
interface through case studies.

1.1. The model problem. We focus on a model problem of obstacle scattering
in time-harmonic acoustics. Let Ω− ⊂ Rd (d ≥ 2) be a bounded Lipschitz open
set (the obstacle) such that Ω := Rd \ Ω− is a connected Lipschitz domain. The
scattering problem we consider is: given k > 0 (the wavenumber) and an incident
plane wave uI(x) := eikx·d, travelling in the direction of the unit vector d, find
u ∈ C2(Ω) ∩H1

loc(Ω) such that

(1) ∆u+ k2u = 0 in Ω, u = 0 on Γ := ∂Ω,

and such that the scattered field uS := u − uI satisfies the standard Sommerfeld
radiation condition (SRC)

∂ru
S(x)− ikuS(x) = o

(
r(1−d)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r.

Both SCA and NA seek to understand u, and solution operators, for the above
problem. The key NA goal is: compute u for fixed but arbitrarily large k, to
arbitrarily high accuracy, as efficiently as possible.

1.2. The Galerkin method. The standard Galerkin method (GM) for solving
the above problem starts from a variational formulation: find v ∈ H (some complex
Hilbert space) such that

(2) a(v, w) = F (w) ∀w ∈ H,

where a(·, ·) and F (·) are, respectively, some continuous sesquilinear form and
continuous anti-linear functional on H. We choose a sequence (HN )∞N=1 of finite
dimensional subspaces of H, and, for each N ∈ N, seek vN ∈ HN such that

(3) a(vN , wN ) = F (wN ) ∀wN ∈ HN .

To solve our model problem by the GM there are three choices to make:
i) The variational formulation, notably whether to use a domain-based formu-

lation or a boundary-based formulation; see §2 below.
ii) The choice forHN . We discuss classical piecewise-polynomial (finite element)

subspaces in §3; choices adapted to (1) are discussed in the articles by Ecevit,
Chaumont-Frelet, and Moiola in this volume.

iii) How to solve the linear system associated to (3); see the discussion in the
article by Gander.
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2. Variational formulations

2.1. Domain-based. The standard domain-based variational formulation is set
in a bounded Lipschitz domain ΩR with Ω− ⊂ ΩR ⊂ Ω (commonly ΩR := Ω∩BR,
where BR := {x ∈ Rd : |x| < R}, for some R > 0). The unknown is v := u|ΩR

∈
H := H1

0 (ΩR), where H1
0 (ΩR) is the closure in H1(ΩR) of DR := {φ|ΩR

: φ ∈
C∞0 (Ω)}. To obtain (2) multiply the Helmholtz equation (1) by w ∈ DR and
integrate by parts. This gives (2) for w ∈ DR, so, by density, for all w ∈ H, where

a(v, w) :=

∫
ΩR

∇v · ∇w̄ − k2vw̄ −
∫

ΓR

DtNk(γv)γw̄ ds,(4)

F (w) :=

∫
ΓR

(
∂nu

I −DtNk(γuI)
)
γw̄ ds ∀v, w ∈ H,

γ : H1(ΩR) → H1/2(∂ΩR) is the standard trace operator and ΓR := ∂ΩR \ Γ
is the exterior boundary of ΩR. DtNk denotes the exact Dirichlet to Neumann
(DtN) map for the domain Ω+

R := Rd \ ΩR ∪ Ω− exterior to ΓR. Thus, for g ∈
H1/2(ΓR), DtNkg = ∂nu, where u ∈ C2(Ω+

R) ∩ H1
loc(Ω+

R) is the unique solution

to the Helmholtz equation (1) in Ω+
R that satisfies the SRC and u = g on ΓR. If

ΓR = ∂BR the action of DtNk can be calculated by separation of variables, but,
even when ΓR = ∂BR, it can be attractive, for efficiency, to approximate DtNk

by a local absorbing boundary condition approximating the SRC, the simplest of
which is the impedance boundary condition1

(5) ∂nu− iku = 0 on ΓR,

or to approximate DtNk using PML (complex scaling in a layer around ΩR with
u = 0 on the outer boundary); see [7] and the references therein.

2.2. Boundary-based. Alternatively one can derive a variational formulation (2)
via a boundary integral equation (BIE) formulation. The so-called direct route to
a BIE is Green’s representation theorem [2, Thm. 2.21], that, for x ∈ Ω,

uS(x) = −
∫

Γ

(
Φ(x, y)∂nu

S(y)− ∂n(y)Φ(x, y)γuS(x)
)

ds(y)

= −
∫

Γ

(
Φ(x, y)∂nu

S(y) + ∂n(y)Φ(x, y)uI(x)
)

ds(y),

where we’ve used the boundary condition (1) to obtain the 2nd expression, and
Φ(x, y) is the Helmholtz fundamental solution, Φ(x, y) = exp(ik|x−y|)/(4π|x−y|)
for d = 3. Taking Dirichlet, Neumann, or impedance traces in the above equation
gives a BIE (see, e.g., [2, §2.5, 2.6]), in operator form

(6) A∂nu
S = f,

where A is a linear combination of boundary integral operators (BIOs) and the
identity that is a bounded linear operator on some Hilbert spaceH (H = H−1/2(Γ)
and L2(Γ) are common choices). This leads to (2) with v = ∂nu

S and a(v, w) :=
(Av,w)H, F (w) := (f, w)H, where (·, ·)H is the inner product on H.

1Note that (1) with the SRC replaced by (5) is a classic NA model problem.
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3. Piecewise polynomial spaces HN for FEM/BEM

The standard NA choice for HN is a space of piecewise polynomials. We con-
struct on the bounded domain G (G = ΩR or Γ) a mesh M, a finite collection
of relatively open disjoint elements τ ⊂ G, such that G = ∪τ∈Mτ . The standard
setup is that each τ is the image of a fixed reference element R under a diffeomor-
phism χτ : R → τ (standard choices for R are a unit cube or a unit simplex, e.g.,
[9]). We choose p ∈ N∪{0}, denote by Pp the set of polynomials of (total or coordi-
nate) degree ≤ p on R (e.g., [9]), and define HN to be the set of wN : G→ C such
that, for each τ ∈ M, wN |τ = P ◦ χ−1

τ , with P ∈ Pp. Without further constraint
the functions in this space HN are, generically, discontinuous at the boundary of
each τ . If needed to ensure HN ⊂ H (e.g., if H = H1

0 (ΩR)) we also require that
each wN ∈ C(G). We term the GM (3) with this HN the finite element method
(FEM) when G = ΩR, the boundary element method (BEM) when G = Γ.

This construction is made for each N ∈ N. With the hope of achieving that
the GM solution vN → v it is standard to require that i) h := max diam(τ) → 0
as N → ∞ (this termed the h-FEM/BEM); or ii) p → ∞ (p -FEM/BEM); or
iii) h → 0 and p → ∞ simultaneously (hp -FEM/BEM). Crucial (and this is
very much an endeavour at the SCA/NA interface) are sharp bounds for the best
approximation error minwN∈HN

‖v − wN‖H as a function of Ω, k, h and p. By
the Whittaker-Nyquist-Shannon criterion we expect that dim(HN ) ∼ km, where
m is the dimension of G (m = d if G = ΩR, = d − 1 if G = Γ) should be
necessary and sufficient to ensure minwN∈HN

‖v−wN‖H remains small as k →∞.
That G is lower dimensional is a significant advantage for the boundary-based
formulation, but the linear system associated to (3) is dense rather than sparse as
in the domain-based formulation.

4. NA of the Galerkin method

The major goal in the NA of a particular Galerkin method is to prove quasi-
optimality, that, for some constant Cqo > 0 independent of N ,

(7) ‖v − vN‖H ≤ Cqo min
wN∈HN

‖v − wN‖H,

at least for all sufficiently large N , where v and vN are the solutions of (2) and
(3), respectively. The standard framework where this holds is where a(·, ·) is both
continuous and coercive, i.e., for constants Ccont, Ccoer > 0,

(8) |a(u,w)| ≤ Ccont‖u‖H‖w‖H and |a(w,w)| ≥ Ccoer‖w‖2H ∀u,w ∈ H.
By Céa’s lemma (an extension of Lax-Milgram), it follows from (8) that (3) has
exactly one solution vN ∈ HN for all N ∈ N and (7) holds with Cqo = Ccont/Ccoer.
One reason why the FEM for Helmholtz is “hard” from an NA perspective is
that a(·, ·), given by (4), is not coercive; if w vanishes on ΓR then a(w,w) =
‖∇w‖2L2(ΩR) − k

2‖w‖2L2(ΩR) whereas ‖w‖2H = ‖∇w‖2L2(ΩR) + ‖w‖2L2(ΩR).

5. Case studies at the SCA/NA interface

We finish with three examples of work at this interface.
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5.1. Hybrid NA-asymptotic methods. Consider our model problem when Ω−
is C∞ and strictly convex. Melrose and Taylor [11] through SCA methods studied
the k → ∞ asymptotics of ηslow(x) := k−1∂nu(x)/eikx·d, for x ∈ Γ, especially
near shadow boundaries. Combining these results with NA, Dominguez, Graham
and Smyshlyaev [5] showed, in 2D, that a k-dependent mesh and dim(HN ) ∼ k1/9

keeps ‖ηslow − vN‖L2(Γ) small as k → ∞, where vN is a GM solution to a BIE
formulation; this is improved to kε, ∀ε > 0, in [6], and see the article by Ecevit.

5.2. “Pollution” in FEM/BEM. If a(·, ·) is only compactly perturbed coercive
(see, e.g., [3, §2.2]), then, provided (2) is uniquely solvable, (7) holds for N ≥ N0,
for some sufficiently large N0, but how do Cqo and N0 depend on k? To control
minwN∈HN

‖v−wN‖H, dim(HN ) ∼ kd is sufficient for h-FEM, but dim(HN )� kd

is needed for (7) with Cqo independent of k, the so-called “pollution effect” [1].
For h-BEM there is no pollution if Ω is C∞ and non-trapping [8]. Similarly, (7)
holds for hp-FEM/BEM with Cqo independent of k provided p ∼ log k; see [10, 7]
and the references therein, and the articles by Lafontaine and Melenk.

5.3. k-dependence of BIOs. A great SCA/NA question is how do the condition
numbers cond(A) := ‖A‖‖A−1‖ of the BIOs A arising in (6) depend on k (and Ω),
and how does this translate to discretisations of A? A recent review is [4, §6.5].
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