
Enabling automated machine learning for
model-driven AI engineering
Article

Accepted Version

Moin, A., Wattanavaekin, U., Lungu, A., Badii, A., Gunnemann,
S. and Challenger, M. (2022) Enabling automated machine
learning for model-driven AI engineering. IEEE Software. ISSN
1937-4194 (In Press) Available at
https://centaur.reading.ac.uk/108613/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

Publisher: Institute of Electrical and Electronics Engineers

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

1

Enabling Automated Machine Learning

for Model-Driven AI Engineering

Armin Moin, School of Computation, Information, and Technology (CIT), Technical University of

Munich (TUM), University of Antwerp & Flanders Make, Germany & Belgium

Ukrit Wattanavaekin and Alexandra Lungu, School of CIT, Technical University of Munich (TUM),

Germany

Atta Badii, Department of Computer Science, University of Reading, United Kingdom

Stephan Gunnemann School of CIT & Munich Data Science Institute, Technical University of

Munich, Germany

Moharram Challenger, Department of Computer Science, University of Antwerp & Flanders Make,

Belgium

Abstract—This article presents our work in progress in supporting automated machine learning

in the model-driven engineering process of AI-enabled software systems. We argue that the state

of practice suffers from two key issues. First, data scientists often follow a trial-and-error process

and use certain heuristics to practice machine learning engineering. Therefore, their results are

typically far from optimized as we show through an example in this study. Second, software

engineers without deep knowledge of machine learning are often required to collaborate with data

scientists, integrate and maintain their code, or even take over their tasks due to a general shortage

of data scientists worldwide. Hence, there is an urgent need for tools that can support these novice

machine learning practitioners. To address the mentioned issues, we deploy the model-driven

engineering paradigm and enable automated machine learning in an existing software

development methodology and tool that supports this paradigm.

Introduction

two groups of practitioners serve as the target audience of this study: i) Machine Learning (ML) experts,

such as data scientists, who propose ad hoc ML solutions to problems, but their ML models might not

possess the most optimized architectures and hyperparameters; moreover, their practice is often not

concerned with the architecture of the larger system in which the ML component should be deployed;

ii) Software developers who are not ML experts but may occasionally have to carry out certain ML

tasks or integrate ML components into larger systems. Several recent studies, such as the work of Lewis

et al. [1] on the so-called ML Mismatch problem clearly pointed out part of the mentioned issues. The

rest is reflected in our motivating example below.

Prior work in the literature (e.g., see [2], [3], and [4]) proposed deploying the Model-Driven

Engineering (MDE) paradigm for AI (specifically ML) engineering. Due to abstraction and

automation, domain-specific Model-Driven Software Engineering (MDSE) approaches in the industry

have enabled a 300-1,000% productivity leap on average compared to general-purpose modelling or

manual software coding [5]. Combined with ML engineering, prior work [2] reported a 236%

productivity leap by using the domain-specific MDE approach compared to manual software

development and ML practices. Although the full source code in Python and Java would be generated

out of the high-level specifications (i.e., ML-enabled software models) in their work [2], ML

2

practitioners had to still choose the suitable ML model architecture and the hyperparameters. However,

in this work, we propose enabling Automated ML (AutoML) to automate and optimize the processes

of ML model architecture selection and ML model hyperparameter tuning. In the following, we first

present a motivating example from the domain of smart energy systems. We then propose the AutoML-

enhanced MDE approach and elaborate on our implementation details. Finally, we conclude, point out

the limitations, and refer to future work.

Motivating example

Given an aggregate signal of the electrical energy consumption of a household over a period of time,

it is possible to disaggregate the signal into a number of individual loads, thus making educated guesses

about the type of electrical appliances inside the household (according to their signatures), as well as

their individual power consumption with a reasonable level of accuracy. This is called Non-Intrusive

(Appliance) Load

Monitoring (NIALM/NILM) or energy disaggregation. The problem is an inverse problem similar to the

Single Channel Blind Source Separation (SCBSS) problem in Physics and Signal Processing. Energy

disaggregation has various use cases, such as increasing user awareness, thus improving energy saving

and sustainability. The problem has been identified since the 1980s and has recently gained interest in

the ML community.

We present the energy disaggregation use case and the proposed approaches to this problem in the

literature to motivate our study and illustrate the highlighted issues above. Recently, various ML

approaches with rather complex ML models have been proposed in the literature on energy

disaggregation which can be easily outperformed by simpler ML models (as we show) that require much

fewer resources for training and prediction. However, in the absence of AutoML approaches (or due to

refraining from employing such techniques), complex and resource-inefficient methods have become

adopted. Additionally, different studies used different datasets, setups, and even metrics to validate their

work. Hence, they were not essentially comparable with each other.

To avoid anecdotal claims and enable objective benchmarking, we conducted experiments with the

implementations of six proposed approaches in the prior work, as well as three other methods proposed

by ourselves, on two reference datasets for energy disaggregation, namely the REDD [6] and the UK-

DALE [7] datasets, with similar computational resources, and the same metric, that is the Mean Absolute

Error (MAE) for energy disaggregation. We believe that this metric is the most important one among

the alternatives reported by various prior work since the key underlying question is how much the

predicted energy consumption signal deviates from the actual signal. Also, the advantage of the MAE

(i.e., the L1 norm or error) compared to the Mean-Squared Error (MSE), that is the L2 norm (or error),

is that it is more robust against outliers. Some of the selected related work methods were already

implemented in the open-source NILMTK toolkit [8]. For the ones which were not available, we had to

re-implement them on our own since the authors refused to share their code. The results are shown in

Table 1.

As we can the easy-to-train and fast-performing Decision Tree (DT) method can outperform the state of

the art. Moreover, Gated Recurrent Units (GRUs) ranked second. Further, with an appropriate

Hyper-parameter set, the simplest architecture for Artificial Neural Networks (ANNs) could outperform

the more complex architectures, such as the DNN-HMMs model [9] or the dictionary-based approach

[10], which were both more expensive in terms of computational resources and time.

3

Table 1. The average Mean Absolute Error (MAE) of the

proposed approaches to energy disaggregation

Rank Approach MAE

1st Decision Trees (DTs) 14.86

2nd Gated Recurrent Units (GRUs) 19.55

3rd LSTMs (Kelly and Knottenbelt, 25.77

 2015 [11])

4th DAEs (Kelly and Knottenbelt, 41.44

 2015 [11])

5th Fully-Connected Neural Networks 48.96

 (FCNNs)

6th Dictionary-based (Elhamifar and 61.15

 Systry, 2015 [10])

7th DNN-HMMs (Mauch and Yang, 118.52

 2016 [9])

8th FHMMs (Reyes-Gomez et al., 139.40

 2003 [12])

9th Combinatorial Optimization (Hart, 204.83

 1992 [13])

Please note that we excluded some other related work in the literature from our experiments since we

believed that they were not practical for real-world use case scenarios. In fact, typical household

electricity meters cannot offer high-frequency sampling data (i.e., more than once in a second or 1 Hz).

However, many prior works had proposed approaches that were suitable for high-frequency samples

which are easier to deal with but more expensive to acquire. In contrast, for our experiments, we adopted

the sampling rate of once every 20 seconds (i.e., 0.05 Hz).

Proposed approach

We build the proposed approach on the prior work, called ML-Quadrat1 [2], which provided a

methodology and an open-source modelling tool for creating ML-enabled Internet of Things (IoT)

services. In ML-Quadrat, practitioners should specify the target system at the design time using the

provided Domain-Specific Language (DSL). Once the model was complete and valid, the full source

code of the desired software solution could be generated in a number of programming languages and for

several libraries, such as Scikit-Learn and Keras (with the TensorFlow backend). The DSL provided a

higher level of abstraction at which the structure and behaviour of the tar-get system including its ML

components could be specified in a platform-independent manner. However, the practitioner had to

explicitly specify the ML model architecture (e.g., the Multi-Layer Perceptron ANNs) and the

hyperparameters (e.g., the learning algorithm, learning rate, weight initialisation, and data preparation

techniques). By contrast, in this work, we advocate automating the ML model architecture selection and

hyper-parameter tuning processes using AutoML. Figure 1 illustrates part of a sample model instance

in ML-Quadrat. The red arrow emphasizes the part which was manually specified by the practitioner,

but it should be possible to have this automatically specified (on demand) in the future as a result of the

present work.

4

 Figure 1. Part of a sample model instance in ML-Quadrat

Current data science practices involve lots of heuristics and trial-and-error tasks. AutoML aims to

automate the practice of ML by offering systematic solutions to non-experts (and experts) in the field

of ML in a more efficient manner, compared to the manual approach. The automation might be applied

to any part of the ML pipeline: from data pre-processing to hyper-parameter optimization and model

evaluation. Most existing AutoML solutions concentrate on one particular part of the ML pipeline,

such as Neural Architecture Search (NAS) [14].

The proposed approach in this work is based on two pillars. First, we define and realize various rules

according to the guidelines of the API documentation of the target libraries, namely Scikit-Learn and

Keras, as well as the ML domain knowledge and best practices in the model-to-code transformation

(i.e., code generator) of ML-Quadrat. For instance, the practitioner receives warning or error messages

if certain hyper-parameters are out of the recommended or allowed ranges. Moreover, if the AutoML

mode is set to on, the rules will be enforced, thus preventing the practitioner from making certain

problematic choices, such as shuffling data when the order should be preserved (e.g., deploying the

cross-validation technique for sequential data), or re-fusing to standardize numeric data when certain

ML models that are sensitive to scale imbalance (e.g., ANNs) should be used.

 Second, we offer a standalone, open-source tool, called AutoNIALM2. Unlike the first pillar, this one

is specific to the problem domain of the example above, namely energy disaggregation. However, it

serves as a proof-of-concept that can be extended to cover other use cases and vertical domains too. This

tool deploys Bayesian Optimisation (BO) through the Hyperopt library [15]. In fact, AutoNIALM is a

domain-specific and low-code workbench that enables practitioners and domain experts in the field of

energy disaggregation to select the best ML model architecture and hyperparameters for their specific

dataset in an automated manner. This is in line with the so-called citizen data scientist and end-user

programmer trends. Once they have the results, they may utilize them in their software model instance

in ML-Quadrat. In other words, they can explicitly specify the recommended ML model architecture

and hyperparameters using the DSL of ML-Quadrat in the software model instance. Alternatively, they

may use the so-called black box ML mode of ML-Quadrat, thus using a pre-trained ML model without

specifying the ML component in the software model. This way, they can simply plug the ML model that

is trained by the AutoNIALM workbench into the software model instance in ML-Quadrat.

1 https://github.com/arminmoin/ML-Quadrat

5

Although the Hyperopt Python library is open-source and publicly available, many practitioners do not

feel confident to use it. As a result, we see the status quo that we elaborated on through the example

above (see Table 1). Therefore, we believe that our workbench may support practitioners in the future

in choosing the appropriate ML methods for their energy disaggregation use cases.

The alternative ML methods that can be automatically selected and the possible hyper-parameters to be

automatically tuned for each of them are presented in Figure 2. The Hyperopt library requires the

depicted tree-structured search space as input to carry out the BO. As shown, we currently support the

following methods for energy disaggregation:

1) Decision Trees (DTs),

2) Random Forests (RFs),

3) Gated Recurrent Units (GRUs),

4) Long Short-Term Memories (LSTMs) [11],

5) Fully-Connected Neural Networks (FC-NNs),

6) Denoising Autoencoders (DAEs) [11],

7) Factorial Hidden Markov Models (FH-MMs) [12], and

8) Combinatorial Optimization (CO) [13].

Further, we allow the hyperparameters that are demonstrated in Figure 2 to be tuned automatically as

follows:

• criterion ∈ {MSE3, Friedman MSE, MAE4},

• min sample split ∈ Uniform [2,200],

• n estimators5 ∈ Uniform [5,100],

• optimizer ∈ {Adam, Nadam, RMSprop},

• learning rate ∈ {1e-2, 1e-3, 1e-4, 1e-5},

• loss function ∈ {MSE, MAE},

• n layers6 ∈ Uniform [5, 8],

• dropout probability ∈ Uniform [0.1, 0.6],

• sequence length ∈ {64, 128, 256, 512, 1024}.

In addition, we enabled three modes in the AutoNIALM workbench: auto, quick, and manual. The auto

mode launches a total of 200 trials to find the best ML model architecture and hyperparameters. Also,

the number of epochs for training the ML model is set to 2, 000, and the so-called patience rate is set to

15. In contrast, in the quick mode, the total number of trials, the number of training epochs, and the

patience rate are set to 50, 500, and 5, respectively. However, in the manual mode, all of the said

parameters can be set by the practitioner to the desired values. Finally, regardless of the mode, the data

are split into the typical 80% and 20% parts for the training and the validation datasets, respectively.

Two screenshots of the AutoNIALM workbench are provided in Figures 3 and 4.

2 https://github.com/ukritw/autonialm
3MSE stands for the Mean Squared Error.
4MAE stands for the Mean Absolute Error.
5 i.e., number of estimators

6i.e., number of layers

6

Figure 2. The tree-structured search space for the proposed AutoML approach

Conclusion and future work

In this article, we have presented our work in progress concerning supporting AutoML in model-driven

AI (specifically ML) engineering. First, we have shown the need for such an approach through a

motivating example. Second, we have addressed this by proposing AutoML in MDE practices for ML

engineering, in particular for the use case domain of energy disaggregation. Our preliminary validation

has been conducted by using our open-source AutoNIALM workbench for the case of the motivating

example (i.e., energy disaggregation using the mentioned reference datasets). It transpired that our tool

could find the most suitable ML model architecture and the optimal hyperparameters to outperform the

state of the art. However, a more thorough validation study will be required to show the feasibility and

efficiency for other datasets, use case scenarios, vertical domains, and even other ML model

architectures, methods, and techniques, which were not supported by this study. In particular, an

empirical user study, ideally in the form of a randomized controlled experiment, with external

practitioners will be required to show the productivity leap that is expected to be the result of deploying

the proposed methodology and tooling for developing ML-enabled software systems.

Furthermore, the AutoNIALM workbench and the ML-Quadrat modelling tool are currently loosely

coupled. In other words, practitioners need to first use the AutoNIALM workbench and then utilize the

results (e.g., the recommended ML model architecture and hyperparameters, or the trained ML model)

in ML-Quadrat. Future work will integrate these projects so that ML-Quadrat can serve as a one-stop-

shop for practitioners.

References

1. Lewis, G.A., Bellomo, S., Ozkaya, I. (2021). Characterizing and Detecting Mismatch in Machine-

Learning-Enabled Systems. IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for

AI (WAIN), 133-140. https://doi.org/10.1109/WAIN52551.2021.00028.

2. Moin, A., Challenger, M., Badii, A., Guineaman, S. (2022). A model-driven approach to machine

learning and software modelling for the IoT. Software and Systems Modelling (SoSyM). Vol. 21, No.

3. pp. 987-1014. https://doi.org/10.1007/s10270-021-00967-x.

https://doi.org/10.1109/WAIN52551.2021.00028

7

3. Hartmann, T., Moawad, A., Fouquet, F. et al. (2019). The next evolution of MDE: a seamless

integration of machine learning into domain modelling. Software and Systems Modelling (SoSyM)

Vol. 18, No. 2, pp. 1285–1304. https: //doi.org/10.1007/s10270-017-0600-2.

4. Bishop, C. M. (2013). Model-Based Machine Learning. Philosophical Transactions of the Royal

Society A. Vol. 371, No. 1984. https://doi.org/10.1098/rsta.2012.0222.

5. Kelly, S., Tolvanen, J.P. (2008). Domain-Specific Modelling: Enabling Full Code Generation, 1st

edn. Wiley, Hoboken.

6. Kolter, J. Z., Johnson, M. J. (2011). REDD: A public data set for energy disaggregation research.

Proc. of the SustKDD workshop on Data Mining Applications in Sustainability.

7. Kelly, J., Knottenbelt, W. (2015). The UK-DALE dataset, domestic appliance-level electricity

demand and whole-house demand from five UK homes. Sci Data 2, 150007. Nature.

8. Batra, N., Kelly, J., Parson, O. et al. (2014). NILMTK: an open-source toolkit for non-intrusive load

monitoring. In Proceedings of the 5th international conference on Future energy systems (e-Energy

’14). ACM, New York, NY, USA, pp. 265–276. https://doi.org/10.1145/2602044. 2602051.

9. Mauch, L., Yang, B. (2016). A novel DNN-HMM-based approach for extracting single loads from

aggregate power signals. Proc. of the IEEE ICASSP.

10. Elhamifar, E., Sastry, S. (2015). Energy disaggregation via learning ’Powerlets’ and sparse coding.

Proc. of the AAAI Conf. on Artificial Intelligence.

11. Kelly, J., Knottenbelt, W. (2015). Neural NILM: Deep Neural Networks Applied to Energy

Disaggregation. Proc. of the ACM Int. Conf. on Embedded Systems for Energy-Efficient Built

Environments.

12. Reyes-Gomez, M. J., Raj, B., Ellis, D. R. W. (2003). Multi-channel source separation by factorial

HMMs. Proc. of the IEEE ICASSP.

13. Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proc. of the IEEE, vol. 80, no. 12, pp.

1870-1891.

14. He, X., Zhao, K., Chu, X. (2021). “AutoML: A survey of the state-of-the-art” Knowledge-Based

Systems., Volume 212.

15. Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter

Optimization in Hundreds of Dimensions for Vision Architectures. Proc. of ICML.

8

16.
Figure 3. A screenshot of the AutoNIALM workbench: the input form for practitioners

9

Figure 4. A screenshot of the AutoNIALM workbench: the output results of AutoML

