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Abstract

Turbulent flows present rich dynamics originating from non-trivial energy
fluxes across scales, non-stationary forcings and geometrical constraints. This
complexity manifests in non-hyperbolic chaos, randomness, state-dependent
persistence and unpredictability. All these features have prevented a full
characterization of the underlying turbulent (stochastic) attractor, which will
be the key object to unpin this complexity.
Here we use a recently proposed formalism to trace the evolution of the
structural characteristics of phase-space trajectories across scales in a fully
developed turbulent flow featuring a huge number of degrees of freedom. Our
results demonstrate the failure of the concept of universality of turbulent at-
tractors since their properties depend on the scale we are focusing on. More
specifically, we observe that the geometrical and topological properties de-
pend on the large-scale forcing, with a breakdown of statistical universality
emerging at the beginning of the inertial range, where nonlinear interactions
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controlling the energy cascade mechanism develop. Given the changing na-
ture of such attractors in time and scales we term them chameleon attractors.

Keywords: Attractors, Turbulence, Stochastic, Multiscale

1. Introduction

The dynamics of turbulent flows is usually described via macroscopic
dynamical laws, the Navier-Stokes equations (NSE), derived from the meso-
scopic Boltzmann equation [1]. They accurately describe the dynamics of
averaged quantities over spatial scales much larger than the mean free path
length of fluid molecules [2]. Nevertheless, when considering large-scale tur-
bulent flows even the most powerful computer on Earth fails to accurately
describe their behavior at all relevant scales. Hence, there is a need to de-
velop accurate yet efficient parameterizations for describing the impact of
the unresolved scales of motions on those of interest [3, 4].

One way to approach the description of fluid flows containing a large
number of scales is via statistical analysis as in the multifractal formalism
developed by Parisi and Frisch [5]. It is based on characterising the high-
order statistics of the velocity field increments, thought to be representative
of fluctuations at different scales, via a set of scaling exponents [6]. Contrast-
ing the usual idea, coming from critical phenomena, that only a countable
set of scaling exponents are relevant for a complete characterization of the
statistical features of fluid flows [7, 8], Parisi and Frisch [5] introduced an
infinite hierarchy of exponents, each belonging to a given fractal set. These
exponents account for all possible (infinite) rescaling symmetries of the NSE,
describing the existence of singularities in the energy cascade mechanism in
turbulent flows [6, 9]. Since the development of the multifractal theory ex-
perimental measurements of the velocity field in fluids have proved to be
compatible with this picture [10, 11, 12, 13, 14, 15]. However, this approach
only provides global information on the scale-dependent properties of fluids
via the probability of occurrence of a given scaling exponent. Moreover, a
direct computation of the multifractal spectrum from the NSE is not possi-
ble [16], although it would be helpful to explore the local statistics of velocity
field fluctuations [9].

A complementary approach to the high-order statistics is provided in the
framework of dissipative chaotic dynamical systems [17], exploiting the fact
that the concepts of turbulence and chaos are closely connected [18]. Indeed,
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three-dimensional viscous fluids, as described via the NSE, conform to this
class of systems, being characterized by strange attractors, i.e., phase-space
states toward which the system evolves for a wide range of initial condi-
tions resulting from a series of bifurcations [18]. However, the search for
an attractor underlying turbulent flows has only proved partially success-
ful so far [19, 20, 21, 22]. Indeed, several studies have suggested that the
observed dynamical processes can be associated with the existence of non-
hyperbolic strange and possibly stochastic attractors having a dimensionality
much lower than the number of degrees of freedom of the system [23, 24].
Non-hyperbolicity manifests itself with the fact that the attractor is heteroge-
neous in terms of its local properties of persistence and predictability [24, 25].
When considering numerical models, this has important implications also in
terms of error dynamics and efficiency of data assimilation [26]. Despite the
universality of the statistics of fluctuations at small scales, the mechanisms
producing turbulence at large scales give a wealth of heterogeneous turbulent
attractors. Indeed, the traditional picture of turbulence is that, for very high
Reynolds numbers, the small-scale statistics has a universal character, i.e.,
it is the same for all turbulent flows independently on large-scale injection
mechanisms [27].

In this work, we use a laboratory experiment under high Reynolds number
turbulent conditions to explore the active number of degrees of freedom at
different scales. The starting point of the present paper is the problem of
universality of the steady states previously highlighted by Saint-Michel et al.
[28] who shown that it is sensitive to the energy injection at large scales. Here
we try to address the point of whether this non-universality is originated from
the small-scale properties of the turbulent flow or it is a property of the large-
scale forcing. For this purpose we use a time-dependent parameter providing
information on the symmetries of the turbulent steady state, thus allowing
us to reconstruct the underlying attractor. By combining a decomposition
method, to detect scale-dependent components, with concepts from extreme
value theory (EVT), to sample local properties of attractors, we trace the
evolution of the geometrical and topological properties of these invariant
objects across scales for a symmetric and an asymmetric turbulent state.
While the former is characterized by a scale-invariant attractor, the latter
is features an attractor that is scale- and time-dependent, being sensitive to
the emergence of an intrinsic timescale solely determined by the large-scale
forcing. Furthermore, we also demonstrate that the symmetric turbulent
steady state is characterized by a simple phase-space topology and geometry,
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resembling that of a noisy fixed point. Conversely, the asymmetric turbulent
steady state displays scale-dependent non-hyperbolic features, moving from
a noisy fixed point like structure at small scales (random attractor) towards a
two-lobe chaotic attractor at large scales. Thus, because the attractor adapts
its geometric and statistical properties dynamically in time with respect to
the intrinsic timescale, we call such attractor a chameleon attractor.

2. Data

Our data originate from a turbulent von Karman flow, obtained by stir-
ring rapidly water in a vertical cylinder of length L = 180 mm and radius
R = 100 mm. The stirring is performed via two independent impellers sepa-
rated each other by 1.4 R and maintained by two 1.8 kW brushless motors,
the latter imposing the speeds (f1(t), f2(t)) of the impellers and their torques
(C1(t), C2(t)). As a result of the forcing turbulence develops that produces
a back-reaction onto the two stirring counter-rotating impellers measured
through two torque-meters located along their common axis. Although f1(t)
and f2(t) provide a 1D (time-only) projection of the full 4D (space-time)
dynamics of the turbulent flow, they preserve intrinsic properties of the full
turbulent system such as intermittency, bi-stability and, for special forcing
conditions, a stochastic attractor. Such a situation is observed when C1

and C2 are constant [25]; as a result, the two frequencies f1(t) and f2(t)
fluctuate in time, with a typical mean frequency of f0 ∼ 7 Hz [25]. The
corresponding turbulent flow is then characterized by a Reynolds number
Re = 2πR2f0ν

−1 ∼ 3 × 105, significantly exceeding the estimated critical
Reynolds number for turbulence onset, ReT ≈ 3500. However, the time
fluctuations of f1(t) and f2(t) follow an organized pattern determined by a
control parameter γ(t) = ⟨(C1(t)−C2(t))/(C1(t) +C2(t))⟩ and traced by an
order parameter Θ(t) = (f1(t)− f2(t))/(f1(t) + f2(t)). These two quantities
can be related to the symmetries of the experimental set-up: (i) the rota-
tional invariance along the rotation axis, usually termed axisymmetry, which
is present for all imposed speeds (f1(t), f2(t)) and torques (C1(t), C2(t)), and
(ii) the upside-down flip of the experiment by exchanging the two impellers,
usually termed Rπ symmetry [28, 29]. For a perfect Rπ symmetry it is re-
quired that C1(t) = C2(t), i.e., γ(t) = 0. In this case the turbulent state is
statistically symmetric and Θ(t) fluctuates around zero [28, 29]. For γ(t) ̸= 0,
the Rπ symmetry is broken and Θ(t) presents large-scale departures from
zero. In the following we present the results obtained for a torque-imposed
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experiments, i.e., for fixed γ, as in Faranda et al. (2017) [25] for two different
values: γ = −0.0081, corresponding to a Rπ-symmetric turbulent state, and
γ = 0.0631, being representative of a Rπ-asymmetric turbulent state.
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Figure 1: The temporal behavior of a sample of Θ(t) for γ = −0.0081 (red line) and
γ = 0.0631 (blue line). The horizontal gray line refers to Θ(t) = 0.

Figure 1 reports the time behavior of a sample of Θ(t) for the two selected
values of γ used in this study. As expected, we note fluctuations around
zero for the symmetric case (i.e., γ = −0.0081), while large-scale transitions
featuring intermittent bursts are found for the asymmetric case (i.e., γ =
0.0631). The difference between the two values of γ can be also highlighted
by looking at the spectral properties of Θ(t) as depicted by the variations of
the power spectral density (PSD) across frequencies as reported in Figure 2.

When γ ∼ 0 the time series resembles that of an uncorrelated white
noise, typically characterized by a flat spectrum over a wide range of scales,
while for γ > 0 a turbulent spectrum emerges. Furthermore, the charac-
teristic frequency f0 ∼ 7 Hz associated with the average impeller rotation
frequency is also recognizable in the spectrum, together with its harmonics
at 2f0 [25]. Then, the spectrum saturates to that of a white noise for f > 20
Hz. To account for this behavior, in the following we apply a low-pass fil-
tering procedure with a cut-off frequency fcut ∼ 20 Hz to our time series
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Figure 2: Power spectral density versus frequency for the two values γ ∈ {−0.0081, 0.0631}
as reported by red and blue lines, respectively. The vertical dotted lines refer to the typical
mean propeller frequency f0 = 7 Hz and its harmonic [25].

to reduce high-frequency fluctuations, also saving computational time in our
subsequent calculations [25].

3. Methods

3.1. Attractor reconstruction

As shown in Faranda et al. [25] the dynamical behavior of Θ(t) can be
globally described by a stochastic strange attractor whose geometry depends
on γ. Thus, as a first step of our procedure we reconstruct the global at-
tractor via Takens’ embedding method [19]. This means to translate our
univariate representation of the system in terms of the time series Θ(t) into
an m−dimensional manifold M via the following diffeomorphism

Θ(t) → Θm,∆(t) = [Θ(t),Θ(t−∆),Θ(t− 2∆), . . . ,Θ(t− (m− 1)∆]† (1)

where † indicates the transposition operator. The two parameters, i.e., the
embedding dimensionm and the time delay ∆, are selected according to stan-
dard criteria based on the false nearest neighbor method, suggesting m = 3,
and the time lag at which the auto-correlation function reduces to 0.5, giving
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us ∆ = 20 time steps [see, e.g., 25]. In this way, we move from a univariate
time series Θ(t) to a 3-D multivariate signal Θµ(t) = [Θ1(t),Θ2(t),Θ3(t)].
The 3-D phase-space for both values of γ is reported in Figure 3.

Figure 3: 3-D reconstruction of the full attractor of the system for γ = −0.0081 (red) and
γ = 0.0631 (blue).

A clear difference emerges between the two reconstructed attractors: while
the symmetric case (γ ∼ 0) is characterized by a noisy fixed point like struc-
ture, the asymmetric case is clearly characterized by a two-lobe attractor,
like that observed for many dissipative chaotic systems [17]. However, there
is an additional complexity hidden in this global attractor, that reflects the
scale dependent properties of turbulence, as we demonstrate in the following.

3.2. Multivariate Empirical Mode Decomposition (MEMD)

To uncover the scale dependence, we first decompose the data into intrin-
sic modes by using the multivariate empirical mode decomposition [MEMD,
30] that is the multivariate extension of the standard empirical mode decom-
position (EMD) [31]. It is an algorithmic procedure directly working in the
data domain to detect embedded patterns into multivariate signals Θµ(t) in
the form of so-called Multivariate Intrinsic Mode Functions (MIMFs) [30].
These patterns are derived through the sifting process [31], slightly modified
to implement an appropriate cubic spline procedure for multivariate signals
[30]. It consists of the following steps:
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1. identify local extremes, i.e., points where the µ-variate derivative of
Θµ(t) is zero;

2. use cubic spline interpolation over these points to derive the upper
(maxima) and the lower (minima) envelopes Uµ(t) and Lµ(t), respec-
tively;

3. derive the mean envelope Mµ(t) =
Uµ(t)+Lµ(t)

2
and evaluate the detail

Hµ(t) = Θµ(t)−Mµ(t).

These steps are iterated until the detail Hµ(t) has the same number of ex-
trema and zeros (or having them differing at most by one) and a zero-average
mean envelope Mµ(t). This means that Hµ(t) can be classified as the first
Multivariate Intrinsic Mode Function Cµ,1(t) (also called multivariate empir-
ical mode) [31, 30]. Then, the algorithmic procedure is repeated over the first
residue Rµ,1(t) = Θµ(t)−Cµ,1(t) until no more MIMFs Cµ,k(t) can be filtered
out from the data, i.e., the final residue Rµ(t) is a µ−variate non-oscillating
(monotonic) trend [30]. Hence, we can write

Θµ(t) =
N∑
k=1

Cµ,k(t) +Rµ(t). (2)

Each Cµ,k(t) is a multivariate pattern representative of a peculiar dynamical
feature that evolves on a typical multivariate mean timescale τk defined as
[30]

τk =
1

Np∆t

∫ Np ∆t

0

t′⟨Cµ,k(t
′)⟩µdt′, (3)

where Np is the number of data points, ∆t is the time resolution, and ⟨· · ·⟩
stands for ensemble average over the µ-dimensional space. MIMFs are by
construction ordered in terms of decreasing frequency [30, 31]. Although an
a priori decomposition basis is not fixed, the derived basis, i.e., the set of
{Cµ,k(t)}, is a formal mathematical basis, that is, the MIMFs are empirically
and locally orthogonal with respect to each other [30]. Thus, partial sums of
Eq. (2) can be exploited to provide additional information over specific ranges
of scales, making the multivariate signal Θµ(t) interpreted as a superposition
of scale-dependent fluctuations [32]. This property is used in the following to
diagnose the dynamical properties of the instantaneous (in time) and local
(in phase-space) states. The main advantage of using the EMD is that it
better identifies gradients in signals and/or intermittent bursts, thus better
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classifying them at different scales and also in terms of their properties. In-
deed, by using a fixed-basis decomposition method (as Fourier or Wavelet)
we could obtain a misleading description of the instantaneous dynamics of
system since they are not suited for non-stationary signals (as those origi-
nated from turbulent systems). However, on average (over time) the results
are equivalent by using any decomposition method [32].

3.3. Dynamical system metrics

The dynamical properties of the µ−variate systems can be investigated
by means of two dynamical systems metrics [33], the instantaneous dimension
(d) and the inverse persistence (θ), based on extreme value theory (EVT).
The former is a measure of the active number of degrees of freedom, while the
latter is a measure of the short-term stability of the phase-space trajectory
associated with the extremal index of the generalized extreme value (GEV)
distribution of recurrence distances [34]. These instantaneous metrics are
obtained by sampling the recurrences (i.e., close encounters) of some reference
state ζ and observing that they are distributed according to EVT [23, 33, 35].

Formally, let x(ζ) be the trajectory of the system and let ζ∗ be an arbi-
trary reference state in the phase-space. Let further introduce the negative
logarithmic return as the Euclidean distance between each point of the tra-
jectory x(ζ) and the arbitrary reference state ζ∗, i.e.,

g(x(ζ), ζ∗) = − log [dist(x(ζ), ζ∗)] . (4)

Then, for any given configuration ζ∗ observed at an arbitrary time t∗, we
introduce the probability of finding a different state ζ∗′ at a different time in-
stant t′ located within a ball of radius r centered at ζ∗. If we define s(q, ζ∗) as
the q–th empirical percentile of g(x(ζ), ζ∗), we can consider all neighborhoods
of ζ∗ which are encountered with the same probability of 100%− q. Then, if
we define exceedances as X(ζ∗) = g(x(ζ), ζ∗)−s(q, ζ∗), with s(q, ζ∗) being an
upper threshold corresponding to the q–th empirical quantile of g(x(ζ), ζ∗),
the Freitas-Freitas-Todd theorem modified by Lucarini et al. (2014) [35]
states that the cumulative distribution F (X, ζ∗) of returning to a sphere of
radius r around ζ∗ converges to the exponential member of the generalized
Pareto family

F (X, ζ∗) ≃ exp

[
−θ(ζ∗)

X(ζ∗)

d−1(ζ∗)

]
, (5)
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where 0 ≤ d < ∞ is the local dimension and 0 ≤ θ ≤ 1 is the inverse
persistence of the state ζ∗. Since each point of the trajectory of the phase-
space corresponds to a time instant of our embedded time series by means
of d and θ we have a time-dependent view of the properties of our system.
However, this only provides information on the full structure of the attractor,
without revealing additional features that can be related to processes and
mechanisms operating at different scales. For this reason, following Alberti
et al. (2020) [32] we firstly use the MIMFs to reconstruct the dynamics at
different ranges of frequencies by exploiting partial sums of Eq. (2)

Θf
µ(t) =

∑
k|fk=1/τk>f∗

Cµ,k(t), (6)

giving us a description of the dynamical features at frequencies larger than
f ∗. Starting from the largest frequency (i.e., k = 1) and adding lower and
lower ones (k = 2, 3, ..., N) we can introduce for each frequency f a scale-
dependent instantaneous dimension D(t, f) and inverse persistence θ(t, f) by
diagnosing the dynamical properties of Θf

µ(t).
Summarizing, our procedure consists of the following steps:

1. extract intrinsic patterns by using the MEMD and evaluate partial
sums of Eq. (2) at different frequencies as in Eq. (6)

2. for each frequency fk, i.e., for each mode index k reconstruct the phase-
space;

3. then evaluate the scale-dependent instantaneous dimension D(t, f) and
inverse persistence θ(t, f).

Due to the completeness property of the MEMD the concepts of scale-
dependent instantaneous dimension D(t, f) and inverse persistence θ(t, f)
are well-posed since they allow us to describe the instantaneous features
of the dynamics over a range of scales and they also satisfy convergence
criteria. Indeed, when all scales are summed up, then they converge to
the instantaneous dimension and inverse persistence of the full attractor of
the system. Furthermore, when averaging over time they converge to the
fractal dimension and the sum of the Lyapunov exponents of the attractor,
respectively [23].

4. Results

Figures 4 and 5 show the instantaneous dynamical system metrics for (a)
the symmetric case with γ = −0.0081 and (b) a case with full symmetry
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breaking at γ = 0.0631, respectively.
In the symmetric case (Figure 4), we observe that the geometrical prop-

erties of the attractor in phase-space are completely invariant with respect
to frequency, suggesting that the properties of the system do not depend
on the scale. The scale-dependent instantaneous dimension D(t, f) slightly
depends on frequency, although the most probable and the average value
⟨D(t, f)⟩ ≈ 3 are about the same for all frequencies. The scale-dependent in-
verse persistence θ(t, f) is mostly characterized by values larger than 0.8, with
an average value ⟨θ(t, f)⟩ ≈ 1 for all frequencies as expected for an unstruc-
tured stochastic system [25]. By contrast, in the non-symmetric case (Figure
5), this scale-invariance is broken. As a result, we observe sudden bursts of
scale-dependent instantaneous dimensions D(t, f) ≥ 6, temporally localized
differently at different frequencies. We also observe a different distribution
of the inverse persistence at different frequencies across the scale-dependent
attractor. The scale-dependent inverse persistence θ(t, f) moves from val-
ues close to one at high frequencies (i.e., f > 1 Hz) to values less than 0.2
at lower frequencies (i.e., f < 0.2 Hz). Apart the instantaneous values of
the dimensions and the inverse persistence, we clearly observe a transition
from a one-lobe attractor at high frequencies towards a two-lobe attractor
at lower ones, the latter matching the expected phase-space geometry of the
full attractor reported in previous works [25]. Thus, for the symmetric case
(γ = −0.0081) D(t, f) and θ(t, f) are homogeneously distributed across the
attractor, implying that its topology is very simple and compatible with a
noisy fixed point; conversely, for the non-symmetric case the attractor dis-
plays scale-dependent features with a heterogeneous spatial distribution of
the two metrics.

To further highlight the scale-dependent features, we show in Figure 6
the behavior of the average dimension ⟨D(t, f)⟩ and persistence ⟨θ(t, f)⟩ in
comparison with the PSD. We clearly observe that, on average, the sym-
metric case presents a scale-invariant behavior of the two metrics, with val-
ues close to those expected for a stochastic system (i.e., ⟨D(t, f)⟩ = 3 and
⟨θ(t, f)⟩ = 1). Conversely, a scale-dependent behavior is observed in the non-
symmetric case, with a transition between ⟨D(t, f)⟩ < 3 and ⟨D(t, f)⟩ > 3
occurring around the low-frequency break observed in the PSD. This also
corresponds to changes from ⟨θ(t, f)⟩ < 0.5 to ⟨θ(t, f)⟩ → 1. Thus, our
findings suggest that we have a scale-dependent modification of the geo-
metrical and topological properties of the underlying attractor, depending
on the large-scale forcing and then affecting the distribution of the energy
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Figure 4: The 3-D attractor of the system at different frequencies colored by, respectively,
the scale-dependent instantaneous dimension D(t, f) (left panels) and the scale-dependent
inverse persistence θ(t, f) for the symmetric case γ = −0.0081. Moving from top to bottom
we consider high to low cutoff frequencies. The color bar for the left panels is saturated
between 2 and 4 for visual purposes.
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Figure 5: Same as Figure 4 but for the case γ = 0.0631.
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Figure 6: The behavior of the average dimension ⟨D(t, f)⟩ (upper panel, filled circles) and
persistence ⟨θ(t, f)⟩ (lower panel, filled circles) in comparison with the PSD (reported as
solid lines). Red symbols/lines refer to γ = −0.0081, while blue symbols/lines refer to
γ = 0.0631.
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across the inertial range of scales. This seems to suggest that there is a time
behavior mirroring the scaling behavior of a turbulent flow. This feature
cannot be highlighted with usual methods based on global properties (as for
structure function analysis) since the main difference resides in the distribu-
tion of singularities which are the main responsible of breaking the global
self-similarity and can only be highlighted if time-dependent (instantaneous)
and scale-dependent (local) features are investigated. At scales larger than
the injection scale, the energy transfer is small, and the individual scales are
in quasi-equilibrium; for scales smaller than the injection scale, the mean
energy transfer is positive, and there is an out-of equilibrium energy cascade
towards smaller scales, following a Kolmogorov spectrum with intermittency
corrections [27]. In the present case, the low frequencies are associated to
low-dimensional dynamics, showing that the statistical equilibrium at large
scales is driven by a few degrees of freedom, generating a well defined low-
dimensional attractor. On the other hand, the dynamics at scales smaller
than the injection scale effectively plays the role of noise, which restores the
broken symmetry and provides the ”statistical temperature” for large scales,
or the stochasticity of the attractor [36]. Finally, since our reconstructed 3D
phase-space defined via Θµ(t)) is just a projection of a higher-dimensional
attractor where other degrees of freedom are lump in stochastic terms (i.e.,
at small scales), it is not surprising that we find dimensions larger than 3.
As shown in Faranda et al. (2017) [25], this points towards the existence
of an unstable fixed point associated with abrupt changes and hints at the
existence of an underlying stochastic attractor. Our scale-dependent results
also suggest that, although the flow dynamics involves a wide range of scales,
some of them can be described by stochastic theory [37].

5. Conclusions

In this paper we have introduced a new multiscale analysis tool to deal
with the investigation of time and scale-dependent properties of a simple sys-
tem derived from a turbulent flow. By exploiting two different cases with dif-
ferent properties in terms of symmetry, we find evidence of a scale-invariant
nature of the geometrical properties of the phase-space for the symmetric
case. Conversely, in the non-symmetric case the scale-invariance is broken by
sudden bursts of elevated scale-dependent instantaneous dimensions D(t, f),
temporally localized differently at different frequencies, with also markedly
different behavior of the local persistence properties. We clearly observe a
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transition towards a two-lobe attractor at low frequencies matching the ex-
pected phase-space geometry of the full attractor as well as the frequency
break observed in the spectral properties. Thus, we have demonstrated that
the geometrical and topological properties of invariant objects (i.e., attrac-
tors) are in fact both scale and time-dependent, being sensitive to the emer-
gence of an intrinsic timescale solely determined by the injection mechanism.
For this reason, since the studied attractor adapts its geometric and statis-
tical properties dynamically in time with respect to the intrinsic timescale,
we suggest to call such an attractor a chameleon attractor. Furthermore, we
also observed that the symmetric case has a very simple phase-space topol-
ogy and can be associated with a noisy fixed point, while the non-symmetric
case attractor displays scale-dependent features with a heterogeneous spatial
distribution.

Our results demonstrate that we cannot appropriately describe such at-
tractors with full/averaged properties, and that we need refined analysis tools
to detect their heterogeneity and the state-dependent properties of the sys-
tem. Hence, it is apparent that the analysis of multiscale systems requires
considering concepts allowing us to explore local and instantaneous proper-
ties of the system [25, 37]. Our analysis shows that the highly heterogeneous
chameleon attractors discussed here could be common in high-dimensional
dynamical systems as those encountered in climate sciences. We are confi-
dent that follow-up studies will further demonstrate their existence in such
systems by exploiting the framework applied in the present work.
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