
Simulating the flow of interacting 
ferrofluids with multiparticle collision 
dynamics 
Article 

Accepted Version 

Ilg, Patrick ORCID logoORCID: https://orcid.org/0000-0002-
7518-5543 (2022) Simulating the flow of interacting ferrofluids 
with multiparticle collision dynamics. Physical Review E, 106 
(6). 064605. ISSN 2470-0053 doi: 
https://doi.org/10.1103/PhysRevE.106.064605 Available at 
https://centaur.reading.ac.uk/110028/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1103/PhysRevE.106.064605 

Publisher: American Physical Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Simulating the Flow of Interacting Ferrofluids with Multiparticle Collision Dynamics
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(Dated: November 22, 2022)

Ferrofluid flow is fascinating since their fluid properties can conveniently be manipulated by ex-
ternal magnetic fields. Novel applications in micro- and nanofluidics as well as in biomedicine have
renewed the interest in the flow of colloidal magnetic nanoparticles with a focus on small-scale be-
havior. Traditional flow simulations of ferrofluids, however, often use simplified constitutive models
and do not include fluctuations that are relevant at small scales. Here, we address these challenges
by proposing a hybrid scheme that combines the multi-particle collision dynamics method for mod-
elling hydrodynamics with Brownian Dynamics simulations of a reliable kinetic model describing
the microstructure, magnetization dynamics and resulting stresses. Since both, multi-particle colli-
sion dynamics and Brownian Dynamics are mesoscopic methods that naturally include fluctuations,
this hybrid scheme presents a promising alternative to more traditional approaches, also because
of the flexibility to model different geometries and modifying the constitutive model. The scheme
was tested in several ways. Poiseuille flow was simulated for various model parameters and effective
viscosities were determined from the resulting flow profiles. The effective, field-dependent viscosities
are found to be in very good agreement with theoretical predictions. We also study Stokes’ second
flow problem for ferrofluids. For weak amplitudes and low frequencies of the oscillating plate, we find
that the velocity profiles are well described by the result for Newtonian fluids at the corresponding,
field-dependent viscosity. Furthermore, the time-dependent profiles of the nonequilibrum magne-
tization component are well approximated by their steady-state values in stationary shear, when
evaluated with the instantaneous local shear rate. Finally, we also apply the new scheme to simu-
late ferrofluid shear flow over rough surface. We find characteristic differences in the nonequilibrium
magnetization components when the external field is oriented in flow and in gradient direction.
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I. INTRODUCTION

Colloidal suspensions of magnetic nanoparticles (MNPs) in non-magnetic carrier fluids – known as ferrofluids –
show fascinating flow behavior due to their sensitivity to externally applied magnetic fields [1, 2]. Since the apparent
viscosity can conveniently be controlled by an external field, these fluids find promising applications ranging from
engineering and micro- and nanofluidics to biomedicine [3–6]. Not surprisingly, this exciting field is currently under
active research (see e.g. Refs. [7, 8] for recent reviews).

From a theoretical point of view, ferrofluids are a particularly interesting kind of complex fluid where the fluid
magnetization comes into play as a slow, non-hydrodynamic variable [9, 10]. Similar to other complex fluids, formu-
lating reliable constitutive models for ferrofluids is a formidable challenge. Over the last decades, several different
magnetization equations and corresponding constitutive models have been proposed, based on thermodynamic or
kinetic theory arguments, but no agreement has been reached yet (see e.g. [10–18] and references therein). Some of
these constitutive models have been tested in experiments [19, 20] or against detailed molecular simulations [21, 22].
Despite significant progress in modelling ferrofluids, many flow simulations to date still use rather simple constitutive
models, sometimes neglecting the magnetization dynamics altogether [23–27]. Since flow simulations are needed to
design and plan technical applications as well as biomedical treatments, the urgent need for novel methods that are
able to implement reliable constitutive models by incorporating the suspension microstructure has been pointed our
recently [28].

Here, we address this challenge by extending the multi-particle collision (MPC) approach to ferrofluids that we de-
veloped recently [29]. MPC is a very flexible method to simulate fluid flow that naturally includes thermal fluctuations
[30–32]. The method has recently been used to include hydrodynamic interaction effects in particle-level simulations
of ferrofluids [33]. On a more coarse-grained level, the MPC method has recently been extended to describe the flow
of complex fluids such as polymer solutions [34] and nematics [35]. The hybrid MPC scheme proposed for ferrofluids
in Ref. [29] couples Brownian Dynamics simulations of a kinetic model of ferrofluids to the MPC flow solver. In the
spirit of similar hybrid schemes which simulate complex fluids with stochastic simulations and finite-element flow
solvers [36], these methods do not require closed-form constitutive equations. Instead, the stochastic simulations
directly solve the underlying kinetic model, thereby avoiding the need for closure approximations. Note that the
stochastic simulations include fluctuations in the stress contributions due to the finite size of the ensemble used [36].
In Ref. [29], the classical kinetic model of Martsenyuk et al. [13] was implemented using the MPC method. Although
this model is widely considered as a reliable representation of ultra-dilute ferrofluids, the model fails to account for
several phenomena observed for real ferrofluids, such as enhanced anisotropy of the magnetoviscous effect [37, 38] and
sensitivity to non-rotational components of the flow field [20].

The failure of the classical kinetic model to describe these phenomena can be traced back to the neglect of the
internal microstructure of ferrofluids. The chain model proposed by Zubarev and Iskakova [14, 15] extends the
classical kinetic model and thereby overcomes these shortcomings. Rather than considering isolated MNPs, the
chain model develops a kinetic theory for the dynamics of rigid, chain-like aggregates of MNPs that are formed
due to dipolar interactions among the nanoparticles. Comparison to experiments and to more detailed, many-body
molecular simulations of interacting ferrofluids show that the chain model captures the relevant phenomena at least
semi-quantitatively [16, 22, 39, 40]. Therefore, in the present communication, we extend our previous work [29] by
implementing the chain model in a hybrid MPC scheme for ferrofluids. Thereby, we also drop the restriction to two
spatial dimension employed in Ref. [29] and present here a fully three-dimensional scheme that is able to provide a
physically sound description of the flow of real ferrofluids. We verify our implementation of the model by quantitatively
comparing simulation results for the effective viscosity extracted from Poiseuille flow to analytical results. Using a
broad range of model parameters, we find very good agreement between simulation and theoretical results. As a new
application, we also considered Stokes second flow problem for ferrofluids. This benchmark problem considers the
flow induced by an infinite flat plate, harmonically oscillating in its plane. Previous studies showed that the MPC
method is able to simulate the resulting flow for Newtonian fluids [41]. Here, we determine the time-periodic flow
profile for ferrofluids and find very good agreement with the prediction for a Newtonian fluid with the corresponding
effective, field-dependent viscosity. Finally, we use our new hybrid MPC scheme to study ferrofluid shear flow over
a rough surface, where the roughness is idealized as square ridges. Such structures are commonly encountered in
micropatterned surfaces and in microfluidic devices.

The paper is organized as follows. In Section II, we review the equations of ferrofluid hydrodynamics and their
coupling to the stochastic formulation of the chain model. In Section III, we describe the new hybrid MPC model,
where we present the coupling of the angular momentum-conserving MPC algorithm with Brownian Dynamics simu-
lations of the chain model for ferrofluids. Verification of our implementation of this hybrid scheme is shown in Section
IV. Results for Stokes second flow problem are shown in Section V and ferrofluid shear flow over rough surfaces is
presented in Section VI. Finally, some conclusions are offered in Section VII.



3

II. FLUCTUATING FERROFLUID HYDRODYNAMICS

We here summarize the basic hydrodynamic equations for ferrofluid dynamics. For more details the reader is
referred to Ref. [9–12]. We start with the fluid momentum balance equation that can be expressed as

ρ
d

dt
v = −∇p+ ∇ · σhyd + ρfM, (1)

where ρ denotes the fluid density, v the velocity field and d/dt the material derivative. The driving forces are the
gradients of the scalar pressure p and the hydrodynamic stress tensor σhyd, as well as the Kelvin-Helmholtz force
density fM. The latter can be written as

ρfM = (M ·∇)H +
1

2
∇× (M×H), (2)

where H denotes the magnetic field and M the magnetization. The Kelvin-Helmholtz force (2) is responsible for much
of the peculiarities of ferrofluid flow and vanishes when no external field is applied. As we shall later see, Eq. (2) is
the only field-dependent driving force in the case of non-interacting, i.e. ultra-dilute ferrofluids.

Besides the hydrodynamic balance equations, the fluid also needs to satisfy the magnetostatic Maxwell equations

∇ · (H + M) = 0, ∇×H = 0. (3)

Equations (1)–(3) are not closed, as they are missing constitutive equations for the stress tensor σhyd and the
magnetization M. There has been some discussion in the literature about the appropriate form of the stress tensor
σhyd and corresponding magnetization equation for interacting ferrofluids (see e.g. [10–12, 17–20] and references
therein). As discussed in Ref. [11], assuming fast rotational relaxation appropriate for ferrofluids implies that the
hydrodynamic stress tensor σhyd is symmetric.

Here, we employ the so-called chain model of ferrofluids [14, 15]. In this mesoscopic model, it is assumed that dipolar
interactions among the magnetic nanoparticles lead to chain-like aggregates that can be described approximately as
rigid ellipsoids of revolution with axis ratio r. The stronger the dipolar interactions, the larger the value of r. The
special case r = 1 describes spherical particles, corresponding to non-interacting ferrofluids. Within the chain model,
one can use the theory of dilute rigid suspensions to find that the stress tensor can be expressed as σhyd = Tvis +Tpot,
with the viscous contribution [15, 42]

Tvis = 2ηsD + 5ηsφ[2Q1D +Q4(D ·A(2) + A(2) ·D)−Q5D : A(4)], (4)

where φ denotes the volume fraction of the ellipsoidal aggregates, ηs the solvent viscosity and D = (1/2)[(∇v)T +
∇v] the symmetric velocity gradient. The quantities A(n) denote the n-th order alignment tensors of the ellipsoid
orientation and Qj = Qj(r), j = 0, . . . , 5, are geometric coefficients that depend solely on the axis ratio r. More
details on these quantities are given in Appendix A. In the presence of an interaction potential, as is the case for
an externally applied magnetic field H, there is an additional potential contribution to the stress tensor for rigid
suspensions. In the rigid-dipole approximation, where the magnetic moment is assumed to remain fixed within the
particle and aligned parallel to the symmetry axis of the ellipsoid, this contribution is given by [43]

Tpot =
1

2
nkBTB[6A(2) − 2I− (mh + hm) + A(3) · h]. (5)

In Eq. (5) we introduced the number density n of ellipsoidal aggregates and their shape factor B = (r2 − 1)/(r2 + 1).
The absolute temperature is denoted by T and kB is Boltzmann’s constant. Moreover, we defined the dimensionless
magnetic field h = µH/kBT with µ the magnetic moment of the ellipsoidal aggregate and h = |h| the Langevin
parameter. With the help of the saturation magnetization Msat = nµ, the reduced magnetization m is defined by
M = Msatm. Finally, I denotes the three-dimensional unit matrix. For the special case of spherical particles, r = 1
such that Tpot = 0 and Tvis = 2ηs[1 + 5φ/2]D reduces to the well-known expression for a dilute suspension of hard
spheres.

Having specified the stress tensor σhyd, a constitutive model for the magnetization dynamics and corresponding
higher-order alignment tensors is still needed to close the system of equations (1)–(5). Within the chain model, this
is done via a stochastic description for the rotational motion d

dtu = ω × u of the orientation u of the ellipsoidal
aggregates. Thanks to the rigid-dipole approximation, u coincides with the direction of the magnetic moment of the
aggregate. Therefore, the magnetization and higher-order moments can be derived as expectation values, m = 〈u〉.
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The angular velocity ω of the ellipsoidal aggregate can be obtained from the balance of hydrodynamic, magnetic and
Brownian torques,

ω = Ω +Bu×D · u +
µ

ξ
u×H + R, (6)

where Ω = (1/2)∇×v denotes the local vorticity of the flow and ξ the rotational friction coefficient of the ellipsoidal
aggregate. The Gaussian random torques R vanish on average, 〈R〉 = 0, and satisfy 〈R(t)R(t′)〉 = 2kBT

ξ δ(t − t′)I
[44].

It should be noted that the original chain model considers a distribution of chain lengths. For simplicity, we here
consider a single aspect ratio only that can be interpreted as representing a typical chain length [43]. Since chains
are assumed to be non-interacting [15], it is straightforward to extend the present work by including a distribution
of aspect ratios. Furthermore, we mention that the chain model in the form presented here disregards flow-induced
changes in chain lengths. Therefore, we consider in the following relatively weak flows and moderate chain lengths
where these effects are known to be weak [22, 38]. This work can be extended by including phenomenological relations
for a reduction of mean chain lengths in flow (see e.g. [16, 39] and references therein).

III. FERROHYDRODYNAMIC MPC MODEL

We now describe the novel hybrid model, combining MPC and Brownian Dynamics to simulate fluctuating ferro-
hydrodynamics of interacting ferrofluids. While the original MPC method was designed for simple liquids [30, 31],
recent years have seen several extensions of the method to complex fluids [32] such as polymer solutions [34] and
nematics [35]. Very recently, we have proposed to model fluctuating ferrohydrodynamics with the help of MPC [29].
In this model, each MPC particle represents a small fluid element, carrying its individual magnetic moment. The par-
ticles’ magnetic moments perform stochastic rotational dynamics in the presence of local magnetic fields and velocity
gradients. The additional Kelvin-Helmholtz force entering the fluid momentum balance equation leads to backflow
effects. This model and its implementation have been validated in Ref. [29] for two dimensions and for a constitu-
tive model that is appropriate for ultra-dilute (non-interacting) ferrofluids only. Here, we want to extend the model
proposed in Ref. [29] to three spatial dimensions and also generalize the constitutive model used there to include also
interacting ferrofluids, which show a richer anisotropic behavior and enhanced viscoelastic effects compared to their
non-interacting counterparts [16].

Within the MPC method, the fluid is represented as a collection of N particles at positions ri with velocities vi and
masses mi = m with i = 1, . . . , N . In a coarse-grained description, each particle represents a small volume of fluid
with magnetic moment µui, where ui is a three-dimensional unit vector and µ the magnitude of the magnetic moment,
assumed to be identical for all particles. The basic idea behind the MPC method is that relatively simple dynamic
rules for these particles are sufficient to reproduce hydrodynamic behavior on slightly larger length and longer time
scales, provided that mass, momentum and energy is conserved locally.

In particular, the MPC method splits the dynamics into a streaming and a collision step that we describe next. In
the streaming step, particle positions and velocities are updated over a time interval ∆t according to [45]

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
∆t2

2m
Fi(t), (7)

v′i(t) = vi(t) +
∆t

m
Fi(t), (8)

with Fi(t) the total force acting on particle i at time t. In view of Eq. (1) and modelling an applied pressure gradient
as external force, fext = −ρ−1∇p, we can identify the force acting on the MPC particles as

Fi = fext + fM(ri) +
1

ρ
∇ · σhyd(ri). (9)

In order to exchange momentum between particles, the streaming step is followed by a collision step. Different
collision rules for MPC algorithms have been proposed that conserve mass and momentum. Here, since we are
interested in the rotational dynamics, we choose the so-called Andersen-AR+a thermostat, which performs collisions
that additional preserve angular momentum [46]. A peculiarity of MPC schemes is that they do not resolve individual
collisions between particles, but perform collisions simultaneously on all particles currently residing in the same
collision cell. To this end, we divide the total system into Nx × Ny × Nz cubic collisions cells of linear size a. We
denote with v′i the velocity of particle i at time t after the streaming step (8). The center-of-mass velocity of cell
Ci to which particle i belongs at this instance is VCi

= N−1
Ci

∑
j∈Ci

v′j . Collisions and thermostatting are done
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simultaneously in the Andersen-AT+a algorithm by assigning new velocities to all particles in the same collision cell
Ci according to

vi(t+ ∆t) = VCi + v̂MB
i + OCi × ri,c, (10)

where v̂MB
i = vMB

i −N−1
Ci

∑
j∈Ci

vMB
j and vMB

i is a random velocity vector drawn from the three-dimensional Maxwell-

Boltzmann distribution with zero mean and standard deviation
√
kBT/m. The last term in Eq (10) removes angular

momentum introduced by the random velocities,

LCi
= m

∑
j∈Ci

rj,c × (v′j − vMB
j ), (11)

with OCi = I−1
Ci
·LCi and ICi the moment of inertia tensor of this collision cell, ICi = m

∑
j∈Ci

[r2
j,cI− rj,crj,c], where

ri,c = ri − rcm the position of particle i relative to the center of mass of its collision cell. Note that the positions ri
in Eqs. (10) and (11) are understood to denote the current positions ri(t + ∆t) after the streaming step Eq (7). In
order to avoid problems due to the violation of Galilean invariance arising from using a fixed grid of collision cells,
we follow common practice [31] and shift the grid by a three-dimensional vector, where each component is randomly
drawn from a uniform distribution in [−a/2, a/2].

In addition to the translational motion (7), (8), (10), we also need to specify the rotational motion associated with
the magnetic moment of the particles. As mentioned in Sec. II, we here employ the so-called chain model of ferrofluids
[15], where interactions between magnetic nanoparticles are assumed to lead to rigid, chain-like aggregates that can be
represented as rigid ellipsoids of revolution with axis ratio r. Assuming furthermore that the magnetic moments are
rigidly fixed within the particles, the magnetization dynamics is slaved to the rotational dynamics of the aggregate.
For the latter, a weak first-order scheme to integrate Eq. (6) reads ∆ui = ∆ωi × ui(t) with

∆ωi =

[
ΩCi

+Bui ×DCi
· ui +

1

2τB
uCi
× hi

]
∆tBD + ∆Wi, (12)

where ∆Wi denotes a three-dimensional Wiener increment over the time interval ∆tBD, while ΩCi
, DCi

and hCi

denote the vorticity Ω, the symmetric velocity gradient D, and the dimensionless local field h, respectively, evaluated
at the center of the collision cell to which particle i belongs to. In Eq. (12) we have also introduced the Brownian
rotational relaxation time τB = ξ/(2kBT ).

The time step ∆tBD for the Brownian Dynamics scheme (12) does not need to be identical to the time step ∆t of
the MPC steps (7)-(10). In MPC, the time step ∆t can typically be chosen rather large, while stochastic algorithms
such as Eq. (12) require ∆tBD/τB to be small. Here, we use ∆tBD = ∆t/nBD and perform nBD steps of Brownian
Dynamics simulations (12) for fixed values of ΩCi

,DCi
and hCi

for every step of MPC. In practice, we use a second-
order stochastic Heun scheme with (12) as predictor step, which allows us to use larger time steps ∆tBD, leading to
moderate values of nBD and consequently a rather efficient scheme.

The velocity gradients needed to calculate ΩCi
and DCi

we compute from finite-difference schemes of the velocity

field v(r, t). The latter we obtain from the particles’ velocities vi via kernel smoothing, v(r, t) = K̄−1
∑N
i=1 vi(t)K(|r−

ri(t)|) with K̄ =
∑N
j=1K(|r−rj(t)|) andK the Epanechnikov kernel. More details can be found in Ref. [29]. Finally, we

need to calculate the additional magnetic driving forces in the momentum balance, i.e. the Kelvin-Helmholtz force (2)
and the divergence of the extra stress tensor, Eqs. (4), (5). Also for these quantities, we use kernel smoothing methods
to compute the fields m, h, A(k) and finite-difference schemes to calculate their spatial gradients. The simulations
discussed below employ periodic as well as no-slip boundary conditions. In the flow- and vorticity direction, we use
periodic boundary conditions, while no-slip conditions are employed at channel and obstacle walls. In MPC, no-slip
boundary conditions are conveniently implemented by the bounce-back rule for particle’s positions and velocities.
We also add temporary ghost particles for the collisions in underpopulated cells [45]. An overview of the resulting
algorithm is given in Appendix B.

IV. VALIDATION AND RESULTS FOR CHANNEL FLOW

We have implemented and tested the ferrohydrodynamic MPC model described in Sec. III for systems of different
sizes Lx×Ly×Lz, ranging from 20× 20× 20 to 50× 50× 10 and 100× 25× 5. Following common practice, we choose
the linear size a of the collision cell as unit length, a = 1. Therefore, the lengths Lx, Ly, Lz are equal to the number
of collision cells in these directions, Nx, Ny, Nz, respectively. With Q = 〈NCi

〉 the average number of particles per
collision cell, each simulation contains a total number of N = QNxNyNz MPC particles.
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FIG. 1. Transport coefficients of the pure MPC fluid (n = 0). (a): Self-diffusion coefficient Ds as a function of mean number
of particles per collision cell Q. Lower data correspond to ∆t = 0.1, upper to ∆t = 1.0. Symbols denote the results of MPC
simulations, while dashed lines show the theoretical result mentioned in the text. (b): Kinematic viscosity ν∗s as a function of
time step ∆t for Q = 20 and T = 0.1 (lower) and T = 0.5 (upper) for the MPC fluid. Dashed lines show the theoretical result
Eq. (14).

First, we check the correct implementation of the Andersen-AT+a thermostat. We verified that the angular mo-
mentum is indeed conserved in each collision cell. Next, using a system of size 203 and applying periodic boundary
conditions in all three dimensions, we study the self-diffusion coefficient Ds of the pure MPC fluid. The pure MPC
fluid is obtained in this scheme for the special case of setting the number density n = 0, thereby switching off mag-
netic contributions to hydrodynamics since in this case Tpot = fM = 0 and Tvis = 2ηsD. Analysing the particles’
mean-squared displacements 〈∆r2

i (t)〉, we find a linear relation 〈r2
i (t)〉 = 6Dst from which we determine Ds. Good

agreement of our simulation results with the theoretical prediction Ds = (kBT∆t/m)[Q/(Q− 2)− 1/2] is seen in Fig.
1(a) for large enough Q, for which the theoretical result was derived [46].

We also checked the viscosity coefficients of the pure MPC fluid. In order to extract viscosity coefficients, we
simulate Poiseuille flow in a three-dimensional planar channel for given constant external force fext driving the flow.
No-slip boundary conditions on the channel wall and periodic boundary conditions in the flow and vorticity direction
are employed. From the resulting parabolic velocity profile,

vx(y) =
fext

2ν
y(Ly − y), (13)

where Ly denotes the channel height, we determine the kinematic viscosity ν. We perform simulations for a range
of different parameter values. Typically, for each of the chosen set of parameters, we employ 105 MPC time steps
and use the second half to extract average quantities such as the mean velocity profile vx(y). We fit the numerically
determined flow profiles to Eq. (13) to determine the kinematic viscosity ν. Some results for the kinematic viscosity
obtained from these fits are shown in Fig. 1(b) versus the time step ∆t for two different temperatures T . Different
channel geometries were found to lead to the same results within numerical accuracy. The average number of MPC
particles per collision cell was chosen as Q = 20, which is large enough so that the theoretical result [46]

νs =
kBT∆t

m

(
Q

Q− 5/4
− 1

2

)
+

a2

24∆t

Q− 7/5

Q
(14)

should apply. Indeed, we find from Fig. 1(b) a good agreement of Eq. (14) with our numerical results. The dimen-
sionless kinematic viscosity is defined as ν∗s = (∆t/a2)νs. Furthermore, we observe that our numerical results for νs

are independent of the value fext of the driving force up to fext = 0.005. For values fext = 0.005 and larger, we find
that the kinematic temperature is slightly higher than the one imposed by the thermostat. Therefore, if not stated
explicitly otherwise, we use the value fext = 0.002, for which this problem is remedied.

Having tested the pure MPC fluid, we now consider finite concentrations of magnetic nanoparticles, modelled by
non-zero values of the number density n. In the absence of an external magnetic field, we expect a viscosity increase
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FIG. 2. Kinematic zero-field viscosity ν∗0 as a function of reduced number density n∗. Black, blue and green symbols correspond
to simulation results for axis ratios r = 1.0, 2.0, and 5.0, respectively. Dashed lines show the theoretical result (15).

known from the theory of rigid suspensions, η0 = (1 + crφ)ηs, where ηs denotes the viscosity of the solvent fluid, φ the
volume fraction, and cr a geometric coefficient given by cr = 5Q1 + 2Q3 −Q2 [42]. The corresponding dimensionless
zero-field kinematic viscosity ν∗0 = ∆t/(ρa2)η0 can be expressed as

ν∗0 = ν∗s + n∗τ∗B
cr

3ϕr
, (15)

where ν∗s denotes the dimensionless kinematic viscosity of the pure MPC fluid, given by Eq. (14). In Eq. (15), we
introduced the quantity ϕr = 5Q0/(3B), which equals 1 for spheres. For spherical particles, r = 1, the expression
for η0 reduces to Einstein’s famous result with c1 = 5/2. Figure 2 shows the kinematic viscosity in the absence of
external fields, obtained from fits of the velocity profile in Poiseuille flow to Eq. (13) for Q = 30, τ∗B = 10, ∆t = 0.2.
Very good agreement with the theoretical expression Eq. (15) is found.

Having checked that we find the correct model behavior in the absence of externally applied magnetic fields, we now
investigate the magnetoviscous effect, i.e. the field-induced changes of the effective viscosity due to external magnetic
fields [16]. We consider dimensionless external fields h0 = µH0/kBT that are oriented either in flow (x), gradient
(y), or vorticity (z) direction. We first disregard demagnetization effects such that the internal field H is identical to
H0 and thus h = h0. Since we consider planar channel geometries, we expect spatially uniform behavior in flow and
vorticity direction and therefore report flow, magnetization and stress profiles in gradient direction only.

Figure 3 shows flow and stress profiles for Poiseuille flow with uniform external force fext = 0.002 and applied
magnetic fields with strengths h = 0, 2, 5, respectively, applied in the gradient direction. The axis ratio was chosen
as r = 2 and the remaining model parameters are Q = 30, T = 0.1, n∗ = 0.01, and τ∗B = 10. Error bars are no larger
than the symbol size. Data are shown for a channel with dimensions 50 × 50 × 10, but results for other dimensions
were found identical within statistical uncertainties. For all parameter values investigated, we find nicely parabolic
velocity profiles without wall slip. For the parameters used here, the maximum shear rate is around 0.1, corresponding
to Peclet numbers of order 1, so that shear thinning effects should be weak. The hydrodynamic stress σhyd

yx shows a
linear variation across the channel, as expected for laminar flow. We note some deviation from the linear profile very
close to the wall.

Fitting again the velocity profiles to Eq. (13) we determine effective, field-dependent viscosity coefficient ν∗i (h).
For h→ 0, we recover the zero-field viscosity ν∗0 obtained earlier. We observe that the effective viscosity coefficients
change as the strength and orientation of the applied field changes. This phenomenon is known as the magnetoviscous
effect [9]. Figure 4 shows the result of the simulations, where we find ν2 > ν1 > ν3, the expected ordering for elongated
particle suspensions [44]. For convenience, we show the viscosity changes ∆ν∗i = ν∗i (h)− ν∗0 relative to their zero-field
value.

Within the so-called effective-field approximation (EFA), the viscosity coefficients νi, i = 1, 2, 3 can be calculated
analytically [43]. Their explicit expressions are given in Eqs. (A3) – (A5) in Appendix A and are shown in Fig. 4
as dashed lines for the corresponding parameters. We find very good agreement between the numerically determined
viscosities and the theoretical results based on the EFA approximation. The agreement is of similar quality as found
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FIG. 3. Profiles of the scaled flow velocity vx/vmax in panel (a) and the hydrodynamic stress σhyd
yx in panel (b) across the

channel height y. A magnetic field was applied in gradient direction of the flow. Square, circles and diamonds correspond to a
magnitude h = 0, 2, 5 of the field, respectively.
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FIG. 4. Dimensionless viscosity change ∆ν∗i as function of magnetic field strength h for r = 2.0. From top to bottom the
ordering is i = 2, 1, 3, i.e. the field is oriented in gradient, flow, and vorticity direction, respectively. The same parameters as
in Fig. 3 are chosen.

in planar shear flow [43], once again verifying the implementation and indicating negligible wall slip in the Poiseuille
flow considered here.

We now revisit the study of the magnetoviscous effect, this time taking into account demagnetization effects. We
apply a spatially homogeneous external magnetic field H0 outside the channel. Inside the channel, the magnetostatic
Maxwell equations (3) require that the internal field H satisfies ∇ ·H = −∇ ·M. Due to translational invariance
of the channel geometry in x and z-direction, this relation simplifies to ∂Hy/∂y = −∂My/∂y. Using in addition
the continuity conditions of the fields at the channel walls, we find that the internal field is given by Hx = H0,x,
Hy = H0,y −My, and Hz = H0,z. In terms of the dimensionless magnetic field h, this relation can be written as
hy = h0,y − 3χLmy, where χL = nµ2/(3kBT ) denotes the Langevin susceptibility. Disregarding demagnetization
effects is therefore justified for small χL. In principle, χL is not an additional model parameter. If we interpret the
axis ratio r of the ellipsoidal aggregate as a proxy for the mean number 〈nch〉 of MNPs in a chain-like aggregate, χL

can approximately be inferred for given r and concentration n (or volume fraction φ) via theoretical estimates or from
detailed, particle-based computer simulations [16]. Since these estimates come with considerable uncertainties, we
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FIG. 5. Dimensionless viscosity change ∆ν∗i as function of externally applied magnetic field of strength h0 oriented in flow
(panel (a), i = 1) and gradient (panel (b), i = 2) direction, respectively. The square symbols correspond to the conditions in
Fig. 4 with h = h0, whereas circles and diamonds show the results when demagnetization effects are taken into account using
χL = 1 and χL = 2, respectively.

here choose values of χL = 1 and χL = 2 to illustrate demagnetization effects for moderate chain-forming ferrofluids
with r = 2. As can be seen from Fig. 5, demagnetization effects do significantly alter the values of the effective
viscosities. In particular at intermediate field strengths, we find that the value of ν2 is significantly reduced. Note
that the result shown in Fig. 4 still holds in this case, since results are shown as a function of the internal field h, not
the externally applied field h0. We note that the simulation results obtained here are also in qualitative agreement
with recent experiments on a magnetite-based commercial ferrofluid in parallel-plate and capillary viscosimeter [39].
Although the model parameters used here are not adequate for the ferrofluid used in these experiments, qualitatively
similar behavior is found, such as ∆ν∗2 being much larger than ∆ν∗1 and increasing over a range of moderate field
strengths, whereas ∆ν∗1 was found to level off.

V. STOKES SECOND PROBLEM FOR FERROFLUIDS

We now investigate the new MPC method for ferrofluids subject to an unsteady, periodic flow. Here, the flow
is driven by an infinite planar plate that oscillates harmonically with angular frequency ω in its plane (defined by
y = 0). Determining the resulting flow profile vx(y, t) of the unbounded fluid above the plate is known as Stokes
second problem [41].

The momentum balance equation (1) for the one-dimensional velocity profile reads

∂vx
∂t

=
1

ρ

∂σhyd
yx

∂y
+ fM,x (16)

with the hydrodynamic stress tensor σhyd
yx = T vis

yx + T pot
yx . Explicit expressions for these quantities are provided in

Appendix C. In the absence of an external magnetic field, Eq. (16) can be rewritten in the familiar form

∂vx
∂t

= νeff
∂2vx
∂y2

, (17)

with an effective kinematic viscosity coefficient νeff . When external magnetic fields are applied, additional spatial
gradient terms appear, see Appendix C. For the special case of spatially homogeneous magnetic fields and resulting
homogeneous magnetization, Eq. (16) can again be written in the form (17), this time with an effective, frequency- and
field-dependent viscosity coefficient νeff . For zero frequency, explicit expressions for the viscosity coefficients for the
chain model are given in Appendix A. Approximate expressions for the corresponding frequency-dependent viscosity
coefficients can be found in Ref. [43].
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FIG. 6. (a): Flow profile vx(y, t) for second Stokes problem at times t = nTω (black) and t = (n + 1/4)Tω (blue symbols) for
an applied field in the vertical direction of strength h = 0 (filled) and h = 5 (open symbols). Dashed lines show the analytical
solution (18), where the damping parameter k is calculated with the corresponding viscosities (A5) for the chain model. (b):
Effective damping parameter k as a function of applied field strength h for the same conditions as in (a). Symbols denote
results of fits of the profiles from simulations to Eq. (18), dashed line shows the analytical result within the EFA for the chain
model.

The analytical solution to Stokes second flow problem (17) for the boundary condition vx(0, t) = U0 cos(ωt) reads

vx(y, t) = U0e
−ky cos(ωt− ky), (18)

with the effective damping parameter k =
√
ω/2νeff . For Newtonian fluids, it has been verified [41] that the MPC

method recovers the exact solution (18) rather well for not too high frequencies (ω . 0.1).
Here, we use the new MPC method proposed above to study Stokes second flow problem for ferrofluids. Although

the flow is two-dimensional, we have solved the problem in a three-dimensional domain of size 30×30×5 with periodic
boundary conditions applied in x- and z-direction. For computational convenience, we use a fixed height Ly = 30a
with reflecting boundary conditions rather than an infinite size in the perpendicular direction. At the moving plate
(i.e. for y = 0), we use no-slip boundary conditions via the bounce-back rule as described in Section III. To remain
within the weak perturbation regime, we follow Ref. [41] and choose the velocity amplitude U0 = 0.1. Further model
parameters are chosen as Q = 30, T = 0.1, n∗ = 0.05, τ∗B = 10, r = 5 and ∆t = 0.2. With an applied frequency of
ω = 0.0209 and kinematic viscosities in the range νeff ≈ 0.4 . . . 0.8, this translates to Ly ≈ 3.5 . . . 5k−1. To investigate
possible finite-size effects, we additionally performed several simulations with Ly = 50a. Only minor differences were
found. The frequency ω of the oscillating plate is small enough for the MPC method to reproduce the hydrodynamic
solution [41]. The velocity profile is averaged over times tj = (n+ j/4)Tω with j = 0, 1, 2 fixed, where the oscillation
period is given by Tω = 2π/ω ≈ 300.6. Averages are accumulated only after t > 3Tω to ensure that initial transients
have decayed. To reduce statistical uncertainties, we average the profiles over more than 100 oscillation periods.

Figure 6(a) shows the resulting velocity profile vx(y, tj), decaying as the distance to the oscillating plate increases.
A magnetic field of strength h was applied perpendicular to the oscillating plate. Two time points tj within the
oscillating period, j = 0 and j = 1, are shown. Also shown in Fig. 6(a) are the analytical profiles (18), where the
effective damping parameter k is calculated using the expression (A5) for the steady-state viscosity of the chain model.
Very good agreement between MPC simulations and the theoretical results is found.

The pronounced viscosity increase when a magnetic field of dimensionless strength h = 5 is applied in gradient
direction compared to the field-free case that we saw in Fig. 4 is mirrored here in a decrease of the effective damping
parameter k. We determine the damping parameter k from fits of the simulated velocity profile in Fig. 6(a) to the
analytical expression (18). In Fig. 6(b), we show the resulting damping parameter versus the strength of the applied
field h in the perpendicular direction. As expected, the effective damping parameter k decreases with increasing field
strength h. We also plot the theoretical prediction for k calculated with the result (A5) for the chain model. Again,
we find very good agreement between the numerical results and the prediction based on the EFA of the chain model.

In the presence of an applied field perpendicular to the plate, the periodic shearing motion induces a nonequilibrium
magnetization component in flow direction. Figure 7 shows the profiles of the magnetization component in flow
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FIG. 7. The relative magnetization component in flow direction is shown as a function of distance to the oscillating plate. A
magnetic field of strength h = 5 was applied perpendicular to the wall. Other parameters are chosen identically as in Fig. 6,
as are symbols and color codes.

direction, Mx, normalized with the saturation magnetization Msat. The same conditions as in Fig. 6 are chosen. Since
the induced velocity decays strongly with the distance to the oscillating plate, also the nonequilibrium magnetization
component Mx quickly decays to zero for large enough distances. We can rationalize the nonequilibrium magnetization
profiles using again the EFA for the chain model. Since the oscillating frequency ω is low, we can use the result for
the steady-state nonequilibrium magnetization (C6) and evaluate the expression for the instantaneous local shear rate
∂vx/∂y. Dashed lines in Fig. 7 show that these assumptions give a good approximation to the numerical data. We
note that numerical errors for Mx are more pronounced than for the velocity field, probably due to the smallness
of the nonequilibrium magnetization component and numerical uncertainties due the moderate number Q = 30 of
particles per cell.

VI. SHEAR FLOW OVER ROUGH WALLS

As a last application of the new MPC model for ferrofluids, we consider shear flow over rough surfaces. Considering
a planar channel geometry, shear flow is induced by the top plate moving in x-direction with a constant, prescribed
velocity Vwall. On the resting bottom plate, a rectangular ridge of width `x, height `y, and depth Lz is placed that
acts as an obstacle to fluid flow, where we apply the same (no-slip) bounce back conditions on the surface of the
ridge as we do on the top and bottom plate. We consider the full three-dimensional flow problem and apply periodic
boundary conditions in flow (x) and neutral (z) direction. This geometry resembles patterned surfaces that are used
e.g. in microfluidic devices [47].

We simulated different channel geometries, but results will be shown for channels of size Lx = 100, Ly = 25, Lz = 5.
The dimension of the obstacle are `x = 20, `y = 5. For wall velocity Vwall = 0.01 and time step ∆t = 0.1, we run
the simulations for 1000 integration steps to reach steady state and collect averages over the subsequent 5 × 104

steps. White arrows in Fig. 8 show the time-averaged flow field in the xy-plane. For this simulation, parameters
were chosen as Q = 100, τ∗B = 10, T = 0.02, n∗ = 0.005 and χL = 2. An external magnetic field of strength h0 = 2
was applied in gradient and flow direction, respectively. Far above the obstacle, we observe a linear flow profile that
is characteristic of planar Couette flow. Distortions of the flow field remain located near the obstacle and do not
propagate significantly into the upper half of the channel. Such laminar flow is expected since the Reynolds number
for this flow is low, Re = VwallLy/ν ≈ 0.8.

Although the flow fields are very similar when the external field is oriented in flow and gradient direction, the
local non-equilibrium magnetization components are rather different, as can be seen from Fig. 8. Note that in the
non-equilibrium steady-state for planar shear flow, the perpendicular magnetization component is proportional to the
shear rate. It is interesting to note that the presence of obstacles and fluctuations lead to non-uniform and fluctuating
perpendicular magnetization components, that are typically stronger when the field is oriented in gradient- compared
to the flow-direction.
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FIG. 8. Shear flow over obstacle with white arrows indicating the flow field. Color codes (in units 10−3) indicate the local
non-equilibrium magnetization component Mx/Msat and My/Msat when an external field of strength h0 = 2 is applied in
gradient (left panel) and flow-direction (right panel), respectively.

VII. CONCLUSIONS

We here present a novel implementation of fluctuating ferrohydrodynamics in terms of a hybrid simulation scheme,
combining angular momentum-conserving MPC algorithm and Brownian Dynamics simulations of the chain model
of ferrofluids. Thereby, we model ferrofluids on a coarse-grained level, where each MPC particle corresponds to a
small volume of fluid containing several MNPs. While previous studies [29] were restricted to the ultra-dilute regime,
the present work is more general and applies also to real, interacting ferrofluids with a finite concentration of MNPs.
Similar to the CONNFFESSIT approach, no closed-form constitutive equations are needed here, since the Brownian
Dynamics simulations directly solve the stochastic magnetization dynamics, thereby avoiding closure approximations.
Due to the finite ensemble size, the numerical scheme naturally includes fluctuations in the magnetization and resulting
stresses. Gradients of the stress tensor act as additional forcing terms in the hydrodynamic momentum balance,
whereas gradients in the velocity fields enter the magnetization dynamics. This two-way coupling of both methods
ensures backflow effects are fully accounted for.

We tested and verified the implementation in several ways, successfully comparing the numerical results with
theoretical predictions. The shear viscosity inferred from Poiseuille flow is very well described by the effective field
approximation for the chain model for different strengths and directions of the applied field. As a novel application
involving non-steady flows, we study Stokes second flow problem for ferrofluids. For weak amplitudes of oscillation and
low enough frequencies, the resulting oscillating flow profile is well described by the theoretical result for Newtonian
fluids when evaluated with the corresponding, field-dependent viscosity. We also find that the profiles of the flow-
induced nonequilibrium magnetization component can be predicted rather accurately by the nonequilibrium steady-
state values, when evaluated with the instantaneous local velocity gradient.

The simulation method for ferrofluids proposed here benefits from all the advantages of the MPC approach as a
flexible, mesoscale simulation scheme that includes thermal fluctuations. Therefore, it is very natural to combine MPC
with Brownian Dynamics simulations of ferrofluid dynamics, which also includes fluctuations in the local magnetization
and resulting stresses. As a solver for fluctuating ferrohydrodynamics, the hybrid scheme scheme can be applied to
a wide range of flow problems. As a mesoscale method, the proposed hybrid scheme is particularly promising to
study nano- and microfluidic flow problems. Similarly, small-scale boundary layer effects can be investigated with this
method that are found to be relevant in blood flow [48] and presumably also in a range of biomedical applications.
This approach might also be extended to explicitly include the fluid spin angular momentum balance, which would
allow to study the spin-up flow in rotating magnetic fields.
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Hybrid MPC–Brownian Dynamics algorithm

1: Cell-level calculation of the magnetization mCi and local magnetic field hCi as well as A
(k)
Ci

for k = 2, 3, 4.

2: Use finite-difference approximations to calculate the force (9) from (2) and the divergence of (4) and (5).

3: Streaming step: Update particle positions and velocities according to Eqs (7) and (8) for a time step ∆t.

4: Apply (periodic or bounce-back) boundary conditions.

5: Use finite-difference approximation to calculate the cell-level vorticity ΩCi and symmetric velocity gradient DCi .

6: Perform nBD time steps Brownian Dynamics simulation of Eq. (12) with time step ∆t/nBD.

7: Collisions: apply the Andersen-AT+a thermostat (10).

TABLE I. Algorithm to implement the hybrid MPC–Brownian Dynamics algorithm for fluctuating ferrohydrodynamics.

Appendix A: Chain model

The n-th order alignment tensors are defined as the expectation value of the n-fold dyadic product of the three-
dimensional unit vector u representing the orientation of the magnetic moment. Thus, the lowest order tensor are
given by A(2) = 〈uu〉, A(3) = 〈uuu〉, A(4) = 〈uuuu〉 with A(1) = 〈u〉 = m the reduced magnetization.

The geometry factors Qi used in Sec. II depend only on the axis ratio r of the ellipsoidal aggregate Their explicit
expressions can be found in Ref. [43, 44]. For ease of notation, we additionally defined the combinations

Q4 = 2Q3 −BQ0, (A1)

Q5 = Q23 − 2BQ0. (A2)

Define the change of the dimensionless kinematic viscosity due to an applied field as ∆ν∗i (h) = ν∗i (h)− ν∗0 . When
the magnetic field is oriented in z-direction, the viscosity change can be expressed as [43]

∆ν∗3 (h) = ν∗sφ

{
Q2[1− 15

L2(h)

h2
] + 2Q3[5

L1(h)

h
− 10

L2(h)

h2
− 1]

}
. (A3)

It is easily verified that ∆ν∗3 (h = 0) = 0. If the magnetic field is oriented in flow direction, we get

∆ν∗1 (h) = ∆ν∗3 (h) + 5ν∗sφ

{
Q3[L2(h)− 4

L3(h)

h
]− 3Q2

L2(h)

h2
− 1

2
Q0L2(h)

}
+

3

2
ν∗sφ

hL2
1(h)

h− L1(h)
(1−Bα(h)), (A4)

while for the case that the field is oriented in the gradient (y) direction

∆ν∗2 (h) = ∆ν∗3 (h) + 5ν∗sφ

{
Q3[L2(h)− 4

L3(h)

h
]− 3Q2

L2(h)

h2
+

1

2
Q0L2(h)

}
+

3

2
ν∗sφ

hL2
1(h)

h− L1(h)
(1 +Bα(h)), (A5)

where α(h) = 1− 2L2(h)/[hL1(h)]. These expressions can also be inferred from Ref. [44].
In the limit of spherical particles, r = 1 leading to B = Q0 = Q2 = Q3 = 0, and we recover ν1 = ν2 and ∆ν3 = 0

valid for non-interacting ferrofluids. The difference between ν1 and ν2 as well as the field-dependence of the viscosity
coefficient ν3 are hallmarks of interacting ferrofluids that are captured by the chain model (r 6= 1).

Appendix B: Ferrohydrodynamic MPC Algorithm

Here, we summarize the algorithm to implement the hybrid ferrohydrodynamic MPC model described in Sec. III.
Integrating this model over the time interval ∆t involves the steps 1–7 shown in table I.

Appendix C: Stokes second flow problem for ferrofluids

Using the ansatz v = (vx(y, t), 0, 0) for the laminar velocity profile, the momentum balance equation (1) becomes

∂vx
∂t

=
1

ρ

∂σhyd
yx

∂y
+ fM,x. (C1)
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The stress contributions (4) and (5) to σhyd
yx become

T vis
yx =

(
1 +

5

2
φ
[
2Q1 +Q4(A(2)

xx +A(2)
yy )− 2Q5A

(4)
xxyy

])
ηs
∂vx
∂y

(C2)

and

T pot
yx =

1

2
nkBTB

[
6A(2)

xy − (mxhy +myhx) +A(3)
xxyhx +A(3)

xyyhy

]
. (C3)

In the last term, we assumed hz = 0, i.e. the magnetic field has no component in the z-direction. Finally, for the
Kelvin-Helmholtz force density (2) we find

ρfM,x =
1

2
nkBT

(
hy
∂mx

∂y
− hx

∂my

∂y
+mx

∂hy
∂y

)
. (C4)

In first order perturbation for weak velocity gradients, the coefficients A(2) and A(4) in (C2) can be replaced by their
equilibrium values,

A(2)
xx,eq = 〈u2

x〉eq = L2(h)ĥ2
x +

L1(h)

h
, (C5)

where ĥ denotes the unit vector in the direction of the magnetic field and L2(h) = 1− 3L1(h)/h. The corresponding
expression for A(4) can e.g. be found in Ref. [44].

In the absence of an external field, we find A
(2)
xx,eq = A

(2)
xx,eq = 1/3 and A

(4)
xxyy,eq = 1/15. In this case, the contribution

(C4) vanishes and (C3) simplifies to 3nkBTBA
(2)
xy . Calculating this quantity to first order in the velocity gradient

[43], we find from (C2) the resulting zero-field viscosity η0 = (1 + crφ)ηs with cr = 5Q1 + 2Q3 − Q2 given in Sec.
IV. Evaluating the expressions (C2)–(C4) in the presence of an external field is more involved. The corresponding
calculations within the effective field approximation can be found in Refs. [43, 44]. In the special case of spatially
homogeneous magnetic field and magnetization, we find that Eq. (16) reduces to (17) with the viscosity coefficients
(A3)–(A5).

Within the EFA, the magnetization component in flow direction for a field applied in the gradient direction was
obtained in Ref. [43] as

Mx/Msat = τBγ̇
L2

1(h)

h− L1(h)
(1 +Bα(h)), (C6)

where α(h) is defined in Appendix A.
Assuming that the amplitude U0 of the oscillating plate is small enough to remain in the linear flow regime and the

frequency ω to the low enough to be considered as quasi-static, we can approximate the profile Mx(y, t) by Eq. (C6)
with the instantaneous local shear rate γ̇ = γ̇(y, t),

γ̇(y, t) =
∂vx(y, t)

∂y
= −
√

2 kU0e
−ky cos(ωt− ky + π/4). (C7)
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[43] P. Ilg, M. Kröger, S. Hess, and A. Y. Zubarev, Phys. Rev. E 67, 061401 (2003).
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