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A B S T R A C T

Identification of individual humans from RGB image data is well-established. However, in many domains, such
as in healthcare or applications involving children, ethical issues have been raised around using traditional RGB
image data because individuals can be identified from these data. The widespread availability of reliable depth
data, and the associated human skeleton data derived from these data, presents an opportunity to differentiate
between individuals while potentially avoiding individually identifiable features.

Using skeleton data only, we developed a unique 20-dimensional bone segment length feature vector for
1,761 trials (1,759,980 image frames) of data, captured from 14 participants who engaged in a one-hour
group intervention playing Xbox One Kinect Bowling twice-weekly for 24 weeks. We then evaluated our novel
feature using representative batch processing (k-nearest neighbour) and real-time (multi-layer perceptron)
models, validated against manually-labelled ground-truth data. Our results suggest that our skeleton feature
can differentiate between instances (i.e., individuals) with an accuracy over all participants of 100% for batch
processing and 96.57% in real-time, and deals well with class imbalances. Our results suggest that we can
reliably differentiate between individual persons using only skeleton data derived from depth image data in
medical research.
. Introduction

Human recognition algorithms commonly use cameras to capture
olour images and identify features, such as eigen-face (Gonzalez &
oods, 2006). Recently, deep learning approaches have been widely

sed in related areas, such as face recognition (Khan, Harous, Has-
an, Ghani Khan, Iqbal, & Mumtaz, 2019; Rathgeb, Dantcheva, &
usch, 2019) and action recognition (Wang, Xu, Cheng, Xia, Yin, &
u, 2018). In medical contexts, these recognition technologies (Ding
Tao, 2015; Sun, Liang, Wang, & Tang, 2015) often raise privacy

oncerns, because the collected images are stored and processed by
ultiple computer systems and multiple operators. All data necessarily

nclude patients’ identifiable features, such as faces, and it is difficult
o prevent unauthorised access or duplication. To make things worse,
hese digital images are often connected to patients’ physical health
nd performance data (Parajuli, Tran, Ma, & Sharma, 2012; Saha,
al, Konar, & Janarthanan, 2013). Accordingly, medical evaluations
re traditionally performed one-on-one with physicians and patients,
hich is inefficient and expensive. Still, despite existing challenges,

∗ Corresponding author.
E-mail address: sczarnuch@mun.ca (S. Czarnuch).

the potential benefits of automated recognition of individuals is clear,
motivating significant research into computer vision technologies that
can semi- or fully-automatically identify individuals and perform var-
ious forms of automated evaluation (Hoey et al., 2010; Ng et al.,
2020), intended to enhance clinical outcomes. Most of these existing
technologies use cameras and wearable sensors (Teipel et al., 2018),
but to our knowledge, these technologies can only be used to evaluate
patient clinical performance after explicitly identifying the patient.

In this paper, we address the human recognition problem in clinical
applications by proposing a new framework to identify and differentiate
between humans with privacy in mind. Our approach temporarily
processes paired colour and depth images of patients (e.g., from a com-
mercially available depth camera like the Microsoft Kinect (Microsoft
Kinect Developer, 2017)), and from the images we generate a special
feature that can differentiate and discriminate between individuals
— the 3D skeleton. Skeleton data does not include any traditional
identifiable information. Furthermore, colour and depth images used
to generate the skeleton data are immediately discarded after the
ttps://doi.org/10.1016/j.mlwa.2023.100450
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Fig. 1. Microsoft Kinect software development kit skeleton data features (Sapinski,
aminska, Pelikant, & Anbarjafari, 2019). Original source (https://msdn.microsoft.com)
o longer available.

keleton is generated, allowing us to preserve differentiating knowl-
dge without retaining identifiable information. The drawback of using
hese anonymised skeleton data is that traditional human recognition
lgorithms are no longer applicable. Thus, we respond to the challenge
f recognising individual humans and differentiating between humans
rom this novel and non-traditional skeleton feature. We first design our
ew skeleton feature based on 3D bone-lengths. Then we use statistics
nd machine learning-based approaches to show the discriminative
ature of our novel feature for humans recognition.

. Literature review

Human recognition and segmentation tasks such semantic labelling
f humans (Czarnuch & Mihailidis, 2016; Garcia-Garcia, Orts-Escolano,
prea, Villena-Martinez, & Garcia-Rodriguez, 2017; Zhao, Feng, Wu, &
an, 2017), eye tracking (Krafka et al., 2016), pose estimation (Shotton
t al., 2013; Xiang, Schmidt, Narayanan, & Fox, 2017), facial recog-
ition (Jiang & Learned-Miller, 2017), human segmentation (Liang
t al., 2016; Zhang et al., 2019), gesture recognition (Kim, Lee, & Park,
008), object detection for autonomous driving (Feng et al., 2019), and
uman tracking (Chu et al., 2017; Fan, Xu, Wu, & Gong, 2010) have
een widely researched with good results. However, these technologies
equire direct access to colour (i.e., RGB) images, which pose privacy
oncerns in medical research environments.

The widespread availability of reliable depth and RGB (RGB-D) data
rom sensors such as the Microsoft Kinect (Microsoft Kinect Developer,
017) has seen burgeoning development of 3D vision-based analysis in
esearch, such as gait analysis (e.g., Preis, Kessel, Werner, & Linnhoff-
opien, 2012), posture recognition, pose estimation (e.g., Le, Nguyen,
t al., 2013), and ground plane detection (e.g., Zhang & Czarnuch,
020). Arguably, one of the most significant advantage of RGB-D data
ver RGB data is the ability to reliably generate full 3D skeleton
epresentations of humans visible in the scene. These skeleton data
see Fig. 1) allow real-time human segmentation and subsequent 3D
nalysis of human motion, with most applications focused on pose
stimation and action recognition (Cippitelli, Gasparrini, Gambi, &
pinsante, 2016; Czarnuch & Mihailidis, 2016; Li, Hou, Wang, & Li,
017; Liu, Akhtar and Mian, 2017; Liu, Wang, Duan, Abdiyeva, & Kot,

018).

2

The concurrent availability of depth, skeleton, and RGB data have
allowed the development of new techniques that combine the strengths
of existing 2D image processing techniques with the novelty and power
of more recent advances in 3D movement analysis (Barmpoutis, 2013;
Zhao, Liu, Yang, & Cheng, 2012). Yet, the use of these data in some
domains, such as healthcare, raise ethical issues, including potential
privacy concerns arising from the ability to identify individuals from
RGB images (Ding & Tao, 2015; Sun et al., 2015) and connect phys-
ical health and performance data to those persons (Parajuli et al.,
2012; Saha et al., 2013). Accordingly, reliably discriminating between
different individuals using only data like depth images and skeleton
representations (i.e., without RGB image data) would preserve the
ability to perform tasks such as movement analysis or activity detec-
tion while significantly reducing the likelihood of identifying who an
individual is. To our knowledge, reliably discriminating between indi-
viduals using only skeleton or depth data has not yet been attempted
or accomplished.

Our objective is to utilise only anonymised skeleton data collected
from RGB-D sensors located in indoor public spaces to differentiate
between unique persons engaging in individual or group activities and
label these individuals reliably, even over multiple sessions. In this way,
an individual’s movement and activities can be identified and analysed,
and their performance can be assessed over consecutive visits to the
spaces, without associating their identity to their label.

Various reliable techniques of identifying individuals, including
contact-based approaches such as fingerprint readers and other biomet-
rics (Jain, Ross, & Prabhakar, 2004; Maltoni, Maio, Jain, & Prabhakar,
2009), achieving identification accuracies that approach 100%. Non-
contact techniques, such as retinal scanning and those using images
or video data, are attractive for many applications though, because
people can be unobtrusively identified, ideally in real-time, without
any intentional interaction, though identification accuracy is typically
reduced compared to contact-based approaches. Image processing tech-
niques, such as those using deep learning, achieve high accuracy in
identifying humans from RGB images (Nakajima, Pontil, Heisele, &
Poggio, 2003) when ideal conditions exist (e.g., full human faces are
visible and in focus). For example, Sun et al. (2015) implemented
facial recognition on the LFW face database (Huang, Mattar, Berg, &
Learned-Miller, 2012), achieving an overall classification accuracy of
99.53% (Sun et al., 2015). Similarly, Lawrence et al. used a shallow
CNN and achieved a 3.8% error rate (Lawrence, Giles, Tsoi, & Back,
1997).

Identifying individual humans with partial data or under non-
ideal conditions represented in many practical real-world scenarios
(e.g. blurred images, sub-optimal camera perspective) remains chal-
lenging for many applications, such as real-time security surveillance
systems (Koo, Cho, Baek, Kim, & Park, 2018) and risk situations (Wiec-
zorek, Siłka, Woźniak, Garg, & Hassan, 2022). Under these more
challenging conditions, approaches such as using ResNet to recognise
faces (Lu, Jiang, & Kot, 2018) have achieved classification accuracies of
at least 92% using SCface (Garcia-Garcia et al., 2017) and LFW (Huang
et al., 2012) datasets in reduced-resolution images. These results sug-
gest that approaches of identifying humans from video data in more
challenging conditions have improved significantly in recent years,
particularly those using machine learning and deep learning (Vizilter,
Gorbatsevich, Vorotnikov, & Kostromov, 2016; Xiang, Zhang, Tang,
Zou, & Xu, 2018). However, in some circumstances, collecting video
or RGB data (i.e., image sequences) is not ideal, such as in healthcare
applications, situations involving children, scenarios where people may
be exposed, or in conditions where informed consent is questionable
(e.g., persons with cognitive impairments). Under these circumstances,
it may still be useful to know who individuals are (e.g., to track disease
progression over time), or at a minimum, to be able to discriminate
between different people. If persons could be anonymously labelled
without connecting this label to their real identity, complications
(e.g., ethical and privacy issues) could be reduced while still achieving

the benefits of tracking individuals over time.

https://msdn.microsoft.com
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Skeleton data are widely used in research. However, most research
sing skeleton data focus on recognising pose (e.g., Du, Wang, & Wang,
015) and activities (e.g., Basak et al., 2022; Czarnuch & Mihailidis,
016), rather than identifying or differentiating between individuals.
esearchers use sequences of different types of skeletons to recognise
uman actions (e.g., skeleton by Kinect (Liu, Liu and Chen, 2017), and
tar skeleton (Chen, Chen, Chen, & Lee, 2006)). Machine learning is
nother approach to recognise human actions (Zhang et al., 2017).
ther researchers build their own features out of skeletons, including

oints coordinates (Gaglio, Re, & Morana, 2015; Shan & Akella, 2014),
oints distances (Cippitelli et al., 2016), histogram of joints (Xia, Chen,

Aggarwal, 2012), angles between joints (Zhang & Tian, 2012) and
ombined skeleton with RGB data (Franco, Magnani, & Maio, 2020)
o recognise human actions. Gait recognition is another application of
keletons. By using both static features (e.g., distances between selected
oints) and dynamic feature (e.g., angles of swing limbs) from sequences
f skeletons, researchers have used naive machine learning (k-NN) to
uild walking models (Sun et al., 2018). CNN-based machine learning
pproaches are also used in gait applications (Yao et al., 2021). Individ-
al skeletons can be further used in forensics for recognising human age
nd sex (Mesejo, Martos, Ibanez, Novo, & Ortega, 2020). When using
keleton data for pose and gait recognition, both spatial and temporal
nformation are needed, which means one single frame with a skeleton
s not enough. These recognition approaches instead require a sequence
f skeletons. Research on applying skeletons in human recognition is
imited. For example, Sinha et al. created a handcrafted feature to
ecognise humans from sequences of skeletons (Sinha, Chakravarty,
howmick, et al., 2013). Since our goal is to recognise humans from

ndividual frames, the above approaches cannot be applied directly.
owever, the handcrafted feature defined by Sinha et al. (2013) and the
achine-learning based classifier by Sun et al. (2018) are inspirational

o our research.
Similar to our objective, Wang, Tan, Ning, and Hu (2003) sought

o identify humans using only structural changes and transitions of
n individual’s silhouette while walking using two different classifiers
nd two different similarity measures from three different camera
erspectives, and report individual person classification results that
aried substantially from 63.75% to 93.75%. While the results of Wang
t al. (2003) were encouraging, their approach was sensitive to the
amera perspective and was ineffective at recognising the same person
cross days. Other research on identifying humans with non-RGB data
e.g., only depth images or skeleton data) remain very limited.

The joints provided by skeleton representation of a person (e.g.,
ig. 1) are typically derived from only the depth image of a depth
ensor. These approaches provide the locations of anatomical body
arts (e.g., head, feet) and joints (e.g., shoulders, elbows) in 3D space.
e hypothesise, building on the work of Wang et al. (2003), that

he set of bone segment lengths, measured as the Euclidean distance
etween estimated anatomical points in 3D, will remain sufficiently
onstant for an individual regardless of pose, and together these bone
egment lengths will uniquely represent individual humans distinctly
rom others. Furthermore, because the skeleton representation is three-
imensional, our approach is theoretically perspective-independent,
vercoming one of the most significant limitations of previous, albeit
D, approaches. By building bone segment lengths as a vectors, it is
ossible to apply machine learning-based classification algorithms to
niquely model individuals and identify persons over multiple days
sing only their skeletons.

. Privacy-preserved data collection

Our main objective was to set up scenarios where we could use a
icrosoft Kinect RGB-D sensor to collect skeleton data from a group

f diverse and unique participants performing various actions. For the
urposes of our research, we also intended to collect RGB data such
hat we could associate the skeleton data we collected to individual
articipants, strictly for the purpose of evaluating the performance of
ur novel human recognition feature. This research is approved by our

esearch Ethics Board. t

3

Table 1
Participant demographics.

Part.a Sex Age Education MoCA scoreb Walking aid

00 M 80 Unsure 8 Walker
01 M 65 Grade 10 21 Cane
02 M 83 Unsure 18 No
03 F 72 Grade 12 11 No
04 M 60 Grade 12 26 No
05 M 92 Grade 12 15 Cane
06 M 80 Unsure 18 No
07 F 80 Grade 9 19 Walker
08 F 84 Grade 10 19 No
09 F 78 Grade 12 5 Wheelchair
10 F 77 Elementary 8 No
11 M 58 Grade 12 17 No
12 F 93 Grade 10 11 Walker

aNo data for participant 13.
bMontreal Cognitive Assessment (MoCA) score (out of 30).

3.1. Participants and intervention

Our participants were older adults (many with dementia, mild
cognitive impairment or physical impairment) who utilised the recre-
ational activities, wellness clinics, continuing education, or other ser-
vices provided by senior citizens centres in Ontario, Canada. The
demographics of our participants are shown in Table 1. As part of the
activities offered by one centre in Ontario, we organised 24 one-hour
group bowling sessions using Kinect Sports and the Microsoft Xbox
One system twice per week for 12 weeks in a large activity room. The
main purpose of the intervention was to quantify whether people with
dementia or MCI could learn to use the technology and improve over
time (Dove & Astell, 2019). Each session was facilitated by a member of
the research team, though participants were encouraged to participate
in the activity as independently as possible. We configured the room
so that a half-circle of chairs (of varying number depending on the
number of participants during each session; diameter of 5 m) faced a
large-screen TV used for the bowling intervention. We taped a line on
the floor at 2 m from the TV so that the entire body of the primary
participant using the Kinect was clearly and fully visible to the system.
Participants generally remained seated on a chair in the half-circle, and
the facilitator instructed participants to stand up and walk to the line at
the centre of the scene for each trial one at a time, then return to a seat
after their turn. Participants who were not currently in a trial generally
remained seated, but were allowed to switch seats and engage socially
with other members of the group at their discretion or leave the circle
for other reasons (e.g., bathroom breaks).

We placed a second Kinect 2 sensor directly beside the gaming
system sensor, and we connected the second sensor to a computer
running the Microsoft Kinect SDK (Microsoft Kinect Developer, 2017).
Using the SDK, we collected skeleton data from up to six participants
at a time at 30 frames per second (FPS), as well as depth images at
one FPS for help with video annotation. We set up two additional video
recorders to capture video data that were used to assist with annotation.
Only one participant was generally in the centre of the scene at any
point in time. However, at times multiple people could be in the centre
of the scene (e.g., the facilitator helping a participant, a participant
crossing through the centre of the room to change seats). Additionally,
the Kinect SDK periodically captured skeleton data from participants
who were near the edges of the sensor field of view. SDK tracking data
from the first session were lost because of a technical issue with our
sensor.

3.2. Participant data collection

The number of trials completed by each participant at each session
are shown in Table 2. Fourteen1 participants completed a total of 1761

1 Data from one participant were excluded from our study because of the
his participant’s limited participation during the period of our data collection.
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Table 2
Number of trials by participant by session.

Session Participant Total

00 01 02 03 04 05 06 07 08 09 10 11 12 13

1 – – – – – – – – – – – – – – 0
2 6 6 0 6 6 6 6 6 6 6 0 0 0 6 10
3 7 7 0 7 7 7 7 7 0 7 6 7 0 0 10
4 7 7 0 0 0 7 6 7 7 6 0 0 0 0 7
5 8 0 0 8 0 8 8 8 8 0 5 8 8 0 9
6 7 7 0 7 7 7 7 7 7 7 0 0 0 0 9
7 7 7 0 6.5a 0 6 7 7 7 0 7 7 7 0 10
8 12 0 0 12 12 12 12 12 12 0 0 0 0 0 7
9 9 0 1 0 7 8 9 9 9 0 9 9 9 0 10
10 10 9.5a 0 10 10 10 10 9 9 0 0 0 0 0 8
11 9 10 0 10 10 10 10 9 10 0 0 0 0 0 8
12 10 10 0 10 10 10 10 0 10 0 10 10 0 0 9
13 14 14 0 14 14 0 14 14 0 0 0 0 0 0 6
14 8 8 0 8 8 8 8 8 8 0 8 8 8 0 11
15 12 9 0 12 0 12 12 12 12 0 0 0 0 0 7
16 11 0 0 10 0 11 11 11 11 0 11 11 0 0 8
17 13 0 0 13 13 13 13 7 13 0 0 0 0 0 7
18 10 10 0 10 10 10 10 10 10 0 10 0 0 0 9
19 11 11 0 0 11 11 11 10 11 0 0 0 0 0 7
20 8 8 0 8 8 8 8 8 8 0 8 0 4 0 10
21 12 12 0 12 12 12 12 12 0 0 0 0 0 0 7
22 10 0 0 10 0 10 10 10 0 0 0 0 0 0 5
23 9 9 0 10 9 9 7 8 0 0 8 8 8 0 10
24 13 0 0 13 13 0 13 13 0 0 12 13 0 0 7
Average trialsb 9.7 9.0 1 9.8 9.8 9.3 9.61 9.3 9.3 6.5 8.6 9 7.3 6 9.1
Total sessions 23 16 1 20 17 21 23 22 17 4 11 9 6 1 13.6

aTrial was started but not completed.
bAverage values are reported only for days when participants participated in sessions.
trials, with the average participant completing 9.1 trials per session
attended (𝑆𝐷 = 2.40). Participants completed at least one trial in an
average of 13.6 (𝑆𝐷 = 8.17) of the group sessions. The average trial

as 33.1 s (992 frames) long (𝑆𝐷 = 10.84 s), and we captured a total
f 16 h 17 m 43 s or 1,759,890 frames of data. Since many frames had
ultiple tracked skeletons, we tracked a total 5,164,400 skeletons and
anually labelled 1,447,559 frames where a participant was actively

n the centre of the scene. We left skeletons belonging to participants
ther than the active participant unlabelled since they were either not
roperly tracked (e.g., too close to the range of the sensor) or were
ackground participants sitting in the waiting area. We captured an
verage of 33 frames of depth data per trial, and a total of 58,663
rames of depth data across all sessions.

. Human recognition with anonymised skeleton data

Traditional human recognition algorithms do not work on skeleton
ata. Rather, most modern approaches directly utilise RGB images.
rom our collected skeleton data we developed two datasets: (1) a
round-truth labelled dataset; and (2) a bone segment feature space
ataset. Then, we built two separate classifiers, k-Nearest Neighbour
k-NN) and a Multi-layer Perceptron (MLP) model (see Azarloo &
arokhi, 2012; García, Mollineda, & Sánchez, 2008; Kayikcioglu &
ydemir, 2010; Pacheco & López, 2019) to demonstrate the discrim-

nation of our new feature and to evaluate our feature’s performance
sing representative batch processing and real-time classifiers.

.1. Datasets

.1.1. Ground-truth dataset
Using the data captured from the two video recorders, we manually

dentified the approximate start and stop times of each trial for each
articipant. Data from all sessions were merged to form a single dataset
ile. We then labelled each of the participants with a unique participant
D (i.e., 𝑃𝑛, where 𝑛 = {0...12}), and we associated this ID with the start
nd end time of each trial. For this manual labelling, we defined an

ctive participant as a participant who was performing, getting ready

4

to perform or leaving after performing the action (i.e., throwing the
virtual bowling ball). We defined the start time as the timestamp of the
frame when the active participant was visible in the scene and began
moving toward the centre of the half-circle. We defined the stop time
for each participant as the timestamp of the frame where the participant
returned to their seat or left the scene, or the timestamp of the frame
where the next participant’s trial started. This ensured that there was
only ever one active participant. We used the manually labelled times
to associate the skeleton to participant IDs. This allowed us to connect
multiple skeletons that were assigned to the same participant during a
trial to a single participant ID.

We created a tool (Chen, 2020) to visualise the captured skeleton
data and assist with the manual labelling process. A sample of the tool
visualising a skeleton is in Fig. 2. With our tool, we viewed the ground-
truth dataset second by second by aggregating all skeletons in one
second, ensuring that each manually labelled participant ID was correct,
and assigning the missing participant ID to any unlabelled skeleton by
tracking the active participant forward or backward in time until the
participant ID was found. Further, we used a majority voting method
to fix mislabelled skeletons in a tracking ID. The resulting ground-truth
dataset was comprised of 1,447,559 frames with the spatial coordinates
of all 25 Tracked parts, a known participant ID, and a timestamp.
Unlabelled data were removed from this dataset. A process to fix
obviously mislabelled data by majority voting (i.e, skeleton with same
Tracking Id but different labels) was used to correct 165,573 mislabelled
data frames. Table 3 shows the number of Tracking Ids and tracked
frames per participant.

4.1.2. Bone segment feature space dataset
Our hypothesis is that humans can be characterised, or more specif-

ically, that humans can be differentiated by the unique combina-
tion of their bone segment lengths. From this hypothesis, we de-
rive two assumptions: (1) that bone segment feature vectors from the
same individual will remain reasonably consistent over multiple frames
(i.e., bone segment lengths will always reasonably cluster); and (2) that
bone segment feature vectors from different individuals will be distinct

(i.e., the feature vector of bone lengths will be distinct) in feature space.
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Fig. 2. Sample of a visualised skeleton.

Table 3
Tracking Ids and frames per participant.

Label Number of tracking Id Number of frames

0 99 115,530
1 112 196,509
2 80 85,035
3 152 159,295
4 164 153,615
5 172 230,803
6 19 43,206
7 30 39,875
8 67 84,326
9 125 190,311
10 59 48,391
11 6 8727
12 118 91,936
Total 1203 1,447,559

We further created a bone segment feature space dataset using the
D length of each bone segment, defined by connecting anatomically
elated joints. Using the spatial coordinates of the 25 joints for each
articipant in each frame of the ground-truth dataset, we calculated the
D lengths of 20 bone segments (Table 4). Our final bone segments and
ssociated lengths replace the spatial coordinate data in each frame of
he ground-truth dataset (Section 4.1.1), comprising our bone segment
eature space dataset.

The ideal input to our classifier would be perfect skeletons. How-
ver, due to sensor error and skeleton estimation, the data are not
erfect. To show the variation in our bone length estimation, we ran
statistical analysis on the feature space. The mean and standard

eviation of bone lengths, grouped by participant, are shown in Table 5.

.2. Automated human recognition

We demonstrate the effectiveness of our novel human recognition
eature as a discriminative feature able to differentiate between individ-
als without humanly-recognisable data (i.e., colour images) using two
ommon approaches: batch processing with the k-nearest neighbour
k-NN) algorithm and real-time processing with a multi-layer percep-
ron (MLP) model. While a plethora of classification algorithms exist
e.g., SVM Cortes & Vapnik, 1995, decision tree and random forest Ho,
995) for these classification tasks, k-NN and MLP are highly prevalent
n the literature and are suitable representatives for the evaluation
5

of our new feature. We use k-fold (𝑘 = 5) to randomly split our
dataset into training and validation sets. All experiments are run on the
Compute Canada Graham cluster (2 CPUs, 16 GB memory and Tesla T4
GPU) (Compute Canada, 2022). On the cluster, our maximum runtime
was limited to six hours, and the following modules (and dependencies)
were used for the experiments: StdEnv/2020, gcc/9.3.0, cuda/11.0,
OpenCV/4.4.0, and cudnn.

4.2.1. Batch processing human recognition: k-nearest neighbour
Several statistical classification approaches currently exist that have

been shown to be effective with datasets like ours. Building on the work
of Azarloo and Farokhi (2012), García et al. (2008), Kayikcioglu and
Aydemir (2010) and Pacheco and López (2019), we consider the k-NN
algorithm (Altman, 1992); a non-parametric method which is arguably
the most naive and commonly used method for classification and re-
gression (Altman, 1992). The k-NN algorithm has been directly applied
to images in a broad range of applications such as handwriting recog-
nition (Wu & Zhang, 2010) and medical image classification (Warfield,
1996). The k-NN algorithm is also effective as a classifier after data
have been processed by other feature-extracting algorithms (Hodge,
Lees, & Austin, 2004; Tico, Immonen, Ramo, Kuosmanen, & Saarinen,
2001). One of the most significant advantages of k-NN is that it is a
relatively simple and straight-forward algorithm, but the classification
accuracy is often comparable to more sophisticated approaches (Roli
& Fumera, 2001). The speed of k-NN, however, worsens exponentially
when the size of the training dataset increases (Hodge et al., 2004).

Our 20-dimensional bone segment feature vector is theoretically
suitable for classification of individuals using k-NN (Pestov, 2013).
Described in Algorithm 1, we classify an individual in a frame by
finding the closest cluster the body segment feature vector belongs to.

Algorithm 1 Pseudo code for k-NN classification
procedure k-NN(training data, input)

𝑑𝑚𝑖𝑛 ← ∞
𝑙𝑎𝑏𝑒𝑙 ← 0
𝑏𝑜𝑛𝑒𝑠𝑖𝑛𝑝𝑢𝑡 ← extract_bone_lengths(input)
for frame in training data do

𝑏𝑜𝑛𝑒𝑠 ← extract_bone_lengths(frame)
𝑑 ← euclidean_distance(𝑏𝑜𝑛𝑒𝑠𝑖𝑛𝑝𝑢𝑡, 𝑏𝑜𝑛𝑒𝑠)
if 𝑑 < 𝑑𝑚𝑖𝑛 then

𝑑𝑚𝑖𝑛 ← 𝑑
𝑙𝑎𝑏𝑒𝑙 ← 𝑓𝑟𝑎𝑚𝑒.𝑙𝑎𝑏𝑒𝑙

end if
end for
return label

end procedure

Using the entire bone segment feature space dataset, we built a k-NN
model, setting 𝑘 = 5, determined using the Elbow method (Thorndike,
1953). Since k-NN does not involve a formal training step, and instead
the training data are stored as the model, we evaluated the k-NN
model accuracy by running k-fold cross-validation with a common
choice of 𝑘 = 5 (Anguita, Ghelardoni, Ghio, Oneto, & Ridella, 2012)
on the training data, resulting in a model score of 0.96, found by
taking the mean of the k-fold model scores. We then evaluated the
performance of our model against the validation dataset individually
for each participant per frame, as well as the overall performance of
our classifier, which achieved an overall error rate of 3.37% across
1,447,560 frames (see Table 6). This error rate is for frame-by-frame,
or per-skeleton classification across all participants.

Our initial frame-by-frame skeleton recognition is performed on
each new frame of skeleton data without recognition of the temporal
relationship between frames. The Microsoft Kinect SDK has a built-in
feature that tracks instances of individuals across consecutive frames,
assigning a globally unique, short-term tracking ID to each frame of
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e

Fig. 3. Flowchart for k-NN-based batch processing instance-based human recognition.
Fig. 4. Multilayer perceptron model for human recognition.

Table 4
Bone segment definition using joints provided by the Kinect SDK. Left- and right-side
segments are denoted with _L and _R suffixes. SHOULDER is abbreviated SHLDR.

Bone Segment label SDK start joint SDK end joint

0 SPINE SPINE_BASE SPINE_MID
1 SHLDR SPINE_MID SPINE_SHLDR
2 NECK SPINE_SHLDR NECK
3 HEAD NECK HEAD
4 SHLDR_L SPINE_SHLDR SPINE_SHLDR_L
5 ELBOW_L SPINE_SHLDR_L ELBOW_L
6 WRIST_L ELBOW_L WRIST_L
7 HAND_L WRIST_L HAND_L
8 SHLDR_R SPINE_SHLDR SPINE_SHLDR_R
9 ELBOW_R SPINE_SHLDR_R ELBOW_R
10 WRIST_R ELBOW_R WRIST_R
11 HAND_R WRIST_R HAND_R
12 HIP_L SPINE_BASE HIP_L
13 KNEE_L HIP_L KNEE_L
14 ANKLE_l KNEE_L ANKLE_L
15 FOOT_L ANKLE_L FOOT_L
16 HIP_R SPINE_BASE HIP_R
17 KNEE_R HIP_R KNEE_R
18 ANKLE_R KNEE_R ANKLE_R
19 FOOT_R ANKLE_R FOOT_R

skeleton data. Each instance of a tracked skeleton is assigned a new
tracking ID when a skeleton’s tracking is lost (e.g. an individual walks
out of the field-of-view of the sensor and then back in, or an individual’s
physical shape deforms or is occluded beyond recognition as a human
and then returns to a condition that can be tracked). As a result, a
single person is generally assigned multiple tracking IDs throughout
ach single activity, and our use case prevents us from knowing a priori

which unique tracking IDs belong to the same real person. That is to
say, one real person will certainly be assigned different tracking IDs
over an entire hour, and in general will be assigned multiple different
tracking IDs even within a single activity. To improve on the limited
instance tracking ID method performed by the SDK, we implemented
a majority vote on each set of consecutive predicted participant IDs.
6

Our overall human participant batch-processing pipeline is illustrated
in Fig. 3. Using this simple majority vote across consecutive frame-by-
frame predictions, we observed that our k-NN model achieved 100%
instance-based participant prediction accuracy across all participants.

Notably, batch processing models like k-NN commonly suffer from
long processing times relative to real-time classifiers, albeit with higher
classification accuracies in well-clustered datasets. Our batch process-
ing k-NN implementation, for example, required 3010 s (50 m:10 s)
to finish the k-fold evaluation. On average, it processes 975.1 samples
per second. The processing speed reduced when the number of samples
increased. Accordingly, the computational resource requirements of
k-NN make it impractical for real-time human recognition. Still, the
literal perfect classification results strongly support the discriminative
nature of our novel skeleton feature, which makes k-NN ideal for
accuracy-sensitive batch processing analysis.

4.2.2. Real-time human recognition
To evaluate the effectiveness of our skeleton feature in differenti-

ating between individuals in real time, we implemented the popular
multi-layer perceptron (MLP) model (Hastie, Tibshirani, & Friedman,
2009). In particular, considering the limitation of the k-NN for real-
time applications we selected the MLP, which is a widely used artificial
neural network for classification tasks that is capable of approximating
arbitrarily complex functions (Csáji et al., 2001). MLP uses a training
process to build an abstract model for the training data, and unlike
k-NN, classification is much faster since the input sample is only
computed with the (relatively) small model.

The structure of our three-layer MLP is described in Fig. 4. We
use the Tensorflow framework (Abadi et al., 2016) to build, train and
classify the bone segment dataset. The full structure of the network is
described in Table 7.

We first evaluated the frame-by-frame performance of our MLP
model before implementing the majority voting across consecutive
frames to evaluate the model’s instance-based human recognition per-
formance. Our overall human participant real-time processing pipeline
is illustrated in Fig. 5

Our MLP network, described in Fig. 4, had 1024 neurons in the
hidden layer, with each hidden layer neuron fully connected to the
input and output layers. We used the ReLu (Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung, 2000) activation function for the hidden
layer because of it’s fast convergence and sparsity (Qiu, Jiang, Pei,
Lu, et al., 2017). Again, we used k-fold cross-validation with 𝑘 = 5
on each frame with our MLP network which resulted in an average
classification error rate of 0.1418 per skeleton. K-fold cross-validation
took 9535 s (158 min and 55 s), including training and prediction.
On average, prediction took 13.53 s, and the MLP model processed
289,511 samples per second. We evaluated the trained MLP model on
the validation dataset, and we show the classification performance in
Table 8. Following the same approach described in Section 4.2.1, we
evaluated the instance-based classification accuracy (i.e., per tracking
ID) of our MLP model. The averaged instance-based error rate over
the 1203 independent instances was 0.034 (i.e., 96.57% accuracy),
distributed relatively evenly across all participants.

In real-time recognition models we do not have access to all data at
once. Instead, we collect a small amount of data for each participant,

then apply the learned model to new data collected over the entire
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11 12 13
1 (0.98) 9.51 (2.39) 8.88 (0.96) 18.49 (0.51)
(0.5) 5.05 (1.29) 4.85 (9.51) 9.86 (0.15)
(0.05) 0.53 (0.14) 0.51 (0.06) 1.04 (0.01)
20) 1.31 (0.25) 2.27 (0.22) 2.55 (0.01)
(0.59) 3.07 (0.89) 2.88 (17.15) 2.09 (0)
(0.81) 5.41 (1.25) 4.38 (0.97) 7.97 (0.01)
(0.78) 4.93 (1.47) 5.1 (1.08) 6.48 (0)
(0.23) 0.67 (1.02) 0.46 (5.85) 0.78 (0)
(0.46) 3 (0.59) 2.97 (12.24) 1.02 (0.06)
(1.22) 5.63 (1.03) 5.07 (0.95) 8.16 (0.01)
(0.99) 4.37 (1.31) 4.38 (0.95) 3.55 (0.04)
(0.52) 0.49 (0.8) 0.56 (9.81) 0.58 (0.11)
(0.16) 0.84 (0.45) 0.58 (0.3) 0.31 (0.01)

9 (3.2) 11.19 (2.02) 11.97 (8.44) 29.35 (0.83)
9 (2.32) 8.63 (2.01) 9.21 (5.86) 12.54 (0)
(0.3) 1.24 (0.44) 1.33 (0.33) 0.68 (0.05)
(0.24) 0.94 (0.43) 0.63 (0.26) 0.27 (0.02)

9 (3.65) 11.39 (1.89) 11.96 (2.57) 33.33 (0.39)
2 (2.47) 10.25 (2.76) 9.59 (4.21) 16.37 (0)
(0.32) 1.49 (0.41) 1.23 (0.35) 2.21 (0.06)

7

Table 5
Mean (Standard deviation) of feature space for each participant (×10−2).

00 01 02 03 04 05 06 07 08 09 10
Bone 00 8.74 (0.79) 12.1 (2.21) 10.5 (1.35) 9.54 (1.45) 9.88 (1.15) 7.13 (2.39) 8.96 (1.04) 9.58 (1.15) 9.77 (1.14) 10.6
Bone 01 4.65 (0.42) 6.42 (3.37) 5.57 (0.71) 5.19 (9.3) 5.29 (7.12) 3.84 (1.29) 4.81 (0.54) 5.16 (5.24) 5.19 (2.26) 5.73
Bone 02 0.49 (0.04) 0.67 (0.12) 0.59 (0.08) 0.54 (0.08) 0.56 (0.06) 0.41 (0.14) 0.51 (0.06) 0.54 (0.07) 0.55 (0.07) 0.61
Bone 03 1.86 (0.16) 2.21 (0.43) 2.04 (0.24) 1.88 (0.27) 1.5 (0.22) 1.61 (0.26) 1.88 (0.23) 2.08 (0.2) 2.04 (0.26) 2 (0.
Bone 04 3.35 (0.65) 4.51 (8.48) 3.76 (0.58) 3.7 (16.72) 3.59 (9.6) 2.99 (0.74) 2.83 (1.92) 3.19 (7.74) 3.22 (2.7) 3.51
Bone 05 6.23 (0.76) 7.26 (1.36) 7.88 (1.16) 8.15 (1.04) 5.8 (1.33) 4.06 (0.97) 6.19 (0.88) 7.12 (1.26) 6.9 (1.22) 6.53
Bone 06 4.64 (0.65) 7.29 (1.55) 5.82 (0.84) 5.66 (0.65) 4.1 (0.97) 4.01 (1.26) 4.43 (0.81) 4.97 (0.91) 5.72 (1.35) 5.59
Bone 07 0.21 (0.37) 0.53 (5.96) 0.49 (0.35) 0.31 (12.51) 0.2 (0.23) 0.75 (2.11) 0.16 (0.42) 0.17 (0.83) 0.52 (0.87) 0.49
Bone 08 3.15 (0.45) 4.96 (11.34) 3.61 (0.56) 3.85 (18.36) 3.32 (8.46) 2.78 (1.34) 3.1 (0.84) 3.13 (5.06) 3.11 (7.15) 3.33
Bone 09 5.94 (0.94) 8.26 (1.78) 7.95 (1.48) 7.28 (1.29) 5.47 (1.02) 4.87 (0.87) 6.17 (1.05) 6.35 (1.11) 6.63 (1.4) 6.85
Bone 10 4.82 (0.8) 6.62 (1.29) 6.15 (1.3) 5.86 (1.01) 4.29 (0.69) 4.19 (1.13) 4.47 (0.74) 4.92 (0.89) 5.79 (1.23) 5.51
Bone 11 0.39 (0.32) 0.77 (8.13) 0.56 (0.42) 0.57 (5.5) 0.22 (0.18) 0.76 (1.18) 0.31 (0.41) 0.29 (0.53) 0.7 (1.62) 0.67
Bone 12 0.71 (0.16) 0.98 (0.27) 0.74 (0.18) 0.78 (2.46) 0.56 (0.17) 0.59 (0.24) 0.54 (0.14) 0.59 (0.24) 0.59 (0.24) 0.81
Bone 13 11.37 (1.89) 14.52 (3.25) 19.66 (2.61) 17.21 (1.99) 10.31 (8.95) 12.37 (7.14) 12.04 (1.81) 13.28 (2.34) 15.88 (6.1) 14.9
Bone 14 7.46 (2.1) 12.30 (6.6) 10.51 (2.66) 10.9 (3.01) 5.28 (3.06) 8.11 (5.4) 7.49 (2.23) 7.46 (2.92) 9.36 (1.89) 10.2
Bone 15 1.33 (0.27) 1.80 (0.43) 1.51 (0.3) 1.32 (0.38) 1.17 (0.32) 1.36 (0.45) 1.37 (0.33) 1.51 (0.38) 1.51 (0.43) 1.46
Bone 16 0.73 (0.16) 0.96 (0.34) 0.88 (0.27) 0.86 (2.22) 0.77 (0.18) 0.68 (0.22) 0.71 (0.15) 0.77 (0.2) 0.78 (0.27) 0.79
Bone 17 11.06 (1.81) 15.02 (3.27) 19.99 (3.03) 17.69 (2.68) 10.06 (2.09) 11.03 (6.8) 12.79 (1.95) 13.17 (2.36) 16.48 (3.26) 14.6
Bone 18 7.94 (1.99) 13.36 (6.79) 10.63 (2.81) 10.96 (2.15) 5.52 (4.56) 8.38 (4.38) 7.25 (2.24) 7.37 (2.5) 9.14 (5.95) 10.5
Bone 19 1.29 (0.31) 1.46 (0.40) 1.48 (0.32) 1.60 (0.45) 1.23 (0.28) 1.52 (0.47) 1.31 (0.29) 1.45 (0.33) 1.53 (0.49) 1.30
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Fig. 5. Flowchart real-time human recognition.
Table 6
Results of k-NN model, averaged k-fold cross-validation.

Label Frames Error per
frame voted

Rate per frame
voted

Error per
frame raw

Rate per frame
raw

# tracking ids Error per
tracking id

Rate per
tracking id

0 23 106 0 0 1084.8 0.046943607 99 0 0
1 39 301.8 0 0 1700.6 0.04326892 112 0 0
2 17 007 0 0 393.8 0.023151692 80 0 0
3 31 859 0 0 835 0.026209868 152 0 0
4 30 723 0 0 683.6 0.022249917 164 0 0
5 46 160.6 0 0 708.8 0.015354919 172 0 0
6 8641.2 0 0 142.6 0.016485888 19 0 0
7 7975 0 0 321.6 0.040317674 30 0 0
8 16 865.2 0 0 684.6 0.040592983 67 0 0
9 38 062.2 0 0 1517.6 0.039870432 125 0 0
10 9678.2 0 0 341.8 0.03529461 59 0 0
11 1745.4 0 0 108.2 0.062009302 6 0 0
12 18 387.2 0 0 501.6 0.027284115 118 0 0
Average 22 270.13846 0 0 694.2 0.033771841 92.53846154 0 0
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Table 7
MLP structure.

Layer Type Number of neurons Activation function

Input Dense 20 ReLU
Hidden Dense 1024 ReLU
Dropout Dropout N/A N/A
Output Dense 13 Softmax

session. The practical implication of this is that the quality of the
training data may impact the overall classification accuracy. In order
to evaluate the robustness of our skeleton as a feature for training our
model, we created a simulated process where we randomly chose 𝑁
rames from each participant that would comprise the training dataset,
nd then used these randomly sampled datasets to train MLP models.
inally, we evaluated the trained models against our full dataset. The
esults, visualised in Fig. 6, show that the MLP classification error rate
ignificantly increases once 𝑁 < 29. We chose 𝑁 empirically, initially
etting 𝑁 = 213 and dividing our sample in half, ultimately evaluating
raining sample sizes where 𝑁 = (213, 212 ... 25, 24) (see Fig. 5).

. Discussion and conclusions

We hypothesised that our novel 3D skeleton feature, comprised of
one segment lengths identified as the Euclidean distance between
natomical body parts found through semantic labelling, can be used
o uniquely discriminate between different individual humans. Specif-
cally, using these novel features, we implemented the common k-
earest neighbours (k-NN) and multi-layer perceptron (MLP) classifiers
oth on individual frames of 3D skeleton data (per-frame), and then im-
lemented a simple majority vote (instance-based) aggregation across
onsecutive frames of data.

Overall, our k-NN classifier achieved a very high (3.37% error
ate) per-frame accuracy and perfect instance-based classification with
ajority vote, at the cost of significant processing time (3010 s). This
8

low processing time severely restricts the use of k-NN in real-time ap-
lications. However, the high classification accuracy strongly supports
ur original hypothesis; that our novel 3D bone length features can
ffectively discriminate between different individuals over our labelled
alidation dataset of 1,447,559 frames of skeleton data (see Table 6).
ur frame-by-frame MLP model also achieved a high classification
ccuracy of 85.81%, and instance-based accuracy of 96.57%. While
ower than our k-NN model, these results are still objectively quite high
nd support the discriminative nature of our novel feature with real
ime processing. Compared to the results of Wang et al. (2003) which
aried from 63.75% to 93.75%, our results are more reliable across
lasses, which varied from 79.70% to 97.40%. Notably, our approach
f using 3D skeleton data is also theoretically independent of sensor
erspective, compared to the 2D silhouette approach of Wang et al.
2003) which will be highly reliant on perspectives parallel to the
round plane.

Our approach, regardless of classifier, is entirely dependent on the
uccessful acquisition of skeleton data. While our approach is robust
o the noise inherent in both the depth data captured by the sensor
nd the joint inference performed by the Kinect SDK, we only included
rames of data that had all 25 joints tracked. Furthermore, in some cases
e.g., where participants were seated on a chair or in a wheelchair)
e may not be able to extract a full skeleton at any point in time.

n the future, we will evaluate the performance of our classifier in
onditions where only partial or unreliable skeleton data are available.
dditionally, while our dataset was very large in terms of the number of

mage frames and the number of trials contributed by our participants,
n the future we will evaluate our approach on a larger number of
nique individuals.

Overall our results suggest that by using only depth data captured
y an RGB-D sensor, we can accurately discriminate between individ-
als in group settings, including across multiple sessions (e.g., over
ultiple days). By only using depth data, we arguably help preserve an

ndividual’s identity, which supports the use of unobtrusive computer
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Table 8
Results MLP model, averaged k-Fold cross-validation.

Label Frames Error per
frame
(voted)

Rate per
frame
(voted)

Confidence
interval
(voted)

Error per
frame (raw)

Rate per
frame (raw)

Confidence
interval
(raw)

# tracking
ids

Error per
tracking id

Rate per
tracking id

0 23 106 3212.8 0.138929 0.00446 6754.4 0.292228 0.005864 99 5.6 0.056566
1 39 301.8 5195.4 0.132146 0.003348 11 742.6 0.298742 0.004525 112 7.2 0.064286
2 17 007 88.2 0.005178 0.001079 2031.2 0.119425 0.004874 80 0 0
3 31 859 642.4 0.020194 0.001545 3773.8 0.118518 0.003549 152 0.8 0.005263
4 30 723 789.6 0.025693 0.001769 3086 0.100432 0.003361 164 2.2 0.013415
5 46 160.6 1321.2 0.028616 0.001521 5224.4 0.113183 0.00289 172 2.2 0.012791
6 8641.2 0 0 0 856.2 0.09907 0.006299 19 0 0
7 7975 991.4 0.124159 0.007238 2930.8 0.367533 0.010582 30 1 0.033333
8 16 865.2 2020.6 0.119787 0.004901 4521.6 0.268094 0.006685 67 1.2 0.01791
9 38 062.2 2299.8 0.060451 0.002394 7134.4 0.18745 0.003921 125 3.6 0.0288
10 9678.2 637 0.065961 0.004945 2140.2 0.221203 0.008269 59 0.4 0.00678
11 1745.4 44.6 0.026659 0.007557 497.2 0.285224 0.021183 6 0 0
12 18 387.2 380.4 0.020731 0.002059 1701.6 0.092635 0.004191 118 3 0.025424
Average 22 270.13 1355.64 0.059115 4030.3384 0.197210 92.53 2.0923 0.0203
Fig. 6. Average error rate per tracking ID per participant, iteratively halving our
raining set size 𝑁 from our initial value (213).

vision data in domains that are more sensitive, such as in applica-
tions involving children, nudity or private locations like bathrooms,
potentially avoiding ethical issues and privacy concerns.

6. Limitations and future works

Our approach requires skeleton data as input, which is typically gen-
erated from depth images. This limits the applicability of our method
to existing medical images, as the hardware required to collect depth
images is not commonly available in most medical research settings,
and depth data cannot be retroactively collected from existing images.
Additionally, the bone-length feature we developed for frame-by-frame
classification is purely spatial in nature, meaning that certain informa-
tion (e.g., colour image data) may be lost during the de-identification
process which could affect the future utility of the data. Additionally,
temporal features such as the movements and gait of the skeleton
between frames could be useful for improving the performance of the
classification. Exploring the use of temporal features in future work
could potentially enhance the performance of our method.

The batch processing approach we proposed has near perfect recog-
nition accuracy, but can only be used in ‘offline’ scenarios where all

of the data is available at the time of training. This makes it more

9

suitable for ‘proof-of-concept’ demonstrations rather than real-world
applications. Also, this approach can be useful for generating ground
truth datasets that can be used to evaluate the performance of other
methods.

It is also worth noting that although the skeletons we collected are
anonymised and difficult for humans to recognise, certain physiological
or soft-biometric features such as the behaviour of a series of skeletons
could potentially be used to de-anonymise the participants.
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