
Data security storage mechanism based
on blockchain network
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open access

Wang, Jin, Ou, Wei, Wang, Wenhai, Sherratt, R. Simon ORCID
logoORCID: https://orcid.org/0000-0001-7899-4445, Ren,
Yongjun and Yu, Xiaofeng (2023) Data security storage
mechanism based on blockchain network. Computers,
Materials & Continua, 74 (3). pp. 4933-4950. ISSN 1546-2218
doi: https://doi.org/10.32604/cmc.2023.034148 Available at
https://centaur.reading.ac.uk/110303/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

Identification Number/DOI: https://doi.org/10.32604/cmc.2023.034148
<https://doi.org/10.32604/cmc.2023.034148>

Publisher: Tech Science Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.034148

Article

Data Security Storage Mechanism Based on Blockchain Network

Jin Wang1, Wei Ou1, Wenhai Wang2, R. Simon Sherratt3, Yongjun Ren4 and Xiaofeng Yu5,*

1School of Computer & Communication Engineering, Changsha University of Science & Technology,
Changsha, 410004, China

2School of Control Science and Engineering, Zhejiang University, Hangzhou, 310058, China
3School of Systems Engineering, The University of Reading, Reading, RG6 6AY, UK

4School of Computer, Engineering Research Center of Digital Forensics of Ministry of Education, Nanjing University of
Information Science & Technology, Nanjing, 210044, China

5School of Business, Nanjing University, Nanjing, 210093, China
*Corresponding Author: Xiaofeng Yu. Email: xiaofengyu@nju.edu.cn

Received: 07 July 2022; Accepted: 19 August 2022

Abstract: With the rapid development of information technology, the devel-
opment of blockchain technology has also been deeply impacted. When
performing block verification in the blockchain network, if all transactions are
verified on the chain, this will cause the accumulation of data on the chain,
resulting in data storage problems. At the same time, the security of data is
also challenged, which will put enormous pressure on the block, resulting
in extremely low communication efficiency of the block. The traditional
blockchain system uses the Merkle Tree method to store data. While verifying
the integrity and correctness of the data, the amount of proof is large, and
it is impossible to verify the data in batches. A large amount of data proof
will greatly impact the verification efficiency, which will cause end-to-end
communication delays and seriously affect the blockchain system’s stability,
efficiency, and security. In order to solve this problem, this paper proposes to
replace the Merkle tree with polynomial commitments, which take advantage
of the properties of polynomials to reduce the proof size and communication
consumption. By realizing the ingenious use of aggregated proof and smart
contracts, the verification efficiency of blocks is improved, and the pressure of
node communication is reduced.

Keywords: Blockchain; cryptographic commitment; smart contract; data
storage

1 Introduction

With the continuous evolution of blockchain technology, technologies such as distributed
databases, consensus mechanisms, P2P networks, Internet of Things, smart contracts, and cryptogra-
phy have been gradually integrated [1–3]. Blockchain is a distributed ledger, essentially a decentralized
database with decentralization, immutability, traceability, collective maintenance, and openness and
transparency. However, while realizing decentralization and de-trust, blockchain will disclose the entire

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.034148
https://www.techscience.com/doi/10.32604/cmc.2023.034148
mailto:xiaofengyu@nju.edu.cn

4934 CMC, 2023, vol.74, no.3

network’s transaction information to achieve the node’s consensus, and the disclosure of information
will reduce data privacy [4]. At the same time, with the increase in the number of users, the impact of
data expansion is also an urgent problem that blockchain technology needs to solve.

As the supporting technology of digital currency, blockchain essentially uses a chain data
structure to verify and store data. It combines with a distributed consensus mechanism to generate
and update data to ensure the state consistency of honest nodes in the entire network. Blockchain
technology’s basic attributes are decentralization, verifiability, and tamper resistance. The most
representative cryptocurrencies are Bitcoin and Ethereum. However, the openness and transparency of
the blockchain also bring great pressure and challenges to users’ privacy protection. Cryptography is a
powerful tool for constructing and guaranteeing modern information security. Among many modern
cryptography technologies, theories such as cryptographic commitment and zero-knowledge proof
align with people’s perception of information in the online world because of their distinctive features of
reliable proof and high efficiency. The need for authenticity and secrecy has attracted much attention,
so it also stands out in many schemes.

In blockchain technology, valuable information is permanently stored in the form of data, and
these carriers for storing data information constitute blocks. Technically, a block is a data structure
that records a transaction, reflects the flow of funds from the transaction, and cryptographically
guarantees that the record is immutable and unforgeable. The decentralization of the blockchain
enables scalability, robustness, privacy, and load balancing well, avoiding the risk of a single point of
failure in a centralized structure [5]. Therefore, the blockchain has solved some data storage problems
from different aspects at the beginning, but it still has its own data expansion problem, leading to low
block communication efficiency.

As an important part of modern cryptography, cryptographic commitment technology can play
an important role in solving data security, privacy security, regulatory inspection, etc. The perfect
combination of cryptographic commitment and blockchain will solve the current dilemma faced
by blockchain. On the one hand, the openness and transparency of blockchain make it have many
limitations in terms of privacy and data security. On the other hand, how to solve the algorithm
performance problem and improving the system’s throughput and response speed is a difficult problem
faced by the large-scale implementation of the blockchain.

The contributions of this paper are summarized as follows.

1. First, this paper analyzes traditional blockchain systems’ current problems and proposes
replacing Merkle Tree with polynomial commitments. In this way, we can realize the aggre-
gation verification of multiple proofs and reduce the communication cost of data verification.

2. Second, we analyze the correctness of the aggregation algorithm and the update algorithm.
A security model is established for our scheme through the integration with smart contract
technology, and security analysis is performed. Doing so reduces validator storage.

3. Finally, we compare the proposed schemes. The control variable method uses different methods
for comparison in different scenarios. The comparison results show that our scheme can
effectively reduce communication consumption when the amount of verification data is
relatively large, which has obvious advantages over other schemes.

2 Related Work

The KZG [6] scheme is a commitment scheme specially designed to deal with polynomials. The
committer outputs a short commitment to the polynomial, which can then be proved or “opened” at

CMC, 2023, vol.74, no.3 4935

any time by a short evaluation to convince the verifier that the evaluation of the submitted polynomial
is correct. Polynomial commitment schemes (PC) have been used to reduce communication and
computational costs in a wide range of applications, including proofs of storage and replication,
anonymous credentials, verifiable secret sharing, and zero-knowledge arguments. The zero-knowledge
proof (ZKP) scheme is a proof system that can solve transaction trust issues, privacy protection
issues, data encryption issues, and interaction issues in the blockchain. ZKP [7] was proposed by
Goldwasser et al. in the early 1980s and is specifically defined as the prover that can convince the
verifier that a certain assertion is correct without providing any useful information to the verifier.
Essentially, a ZKP is an agreement involving two or more parties, a series of steps that two or more
parties need to take to accomplish a task. The prover proves to the verifier and convinces it that it
knows or possesses a certain message, but the proof process cannot reveal any information about the
proved message to the verifier.

There are many types of PC solutions, and polynomials play an important role in building
ZKP algorithms. The definition of promise is: the promiser provides a public value, which is called
commitment, which is bound to the original message and does not expose the Message; The promiser
needs to open the promise and send the message to the verifier to verify the correspondence between
the promise and the message. The polynomial commitment can be regarded as a commitment to a
polynomial. On the premise of not exposing the polynomial, a proof is used to prove the value of the
polynomial at a certain point z, satisfying P(z) = a is established. Different entry points will lead to
different effects. There are many schemes to achieve polynomial commitment. We have compared the
construction of the current polynomial commitment scheme, as shown in Table 1:

Table 1: Construction of polynomial commitment scheme

PC schemes KZG10 IPA FRI DARKS

Low-Level
Tech

Pairing Group Discrete Log Group Hash Function Unknow Order
Group

Setup G1, G2, Group
g1, g2 generators
e pairing function
Sk secret value int F

G elliptic curve
gn independent
elements in G

H hash function
W unity root

N unknown order
G random in N
Q large integer

Proof size 1–500 bytes 1–3 KB 10–200 KB 1–10 KB
Commitment

(
a0s0 + . . . + ansn

)
g1 a0g0 + . . . + angn H

((
w0

)
, . . . , f (wn)

) (
a0q0 + · · · + adqd

)
g

Polynomial commitments can be used to construct ZKP algorithms. Different polynomial com-
mitment schemes will lead to different properties of zero-knowledge proof algorithms, and there are
obvious differences in efficiency and security. For example, the FRI-based zk-STARKs algorithm,
which relies on a few mathematical security assumptions, is quantum-resistant and does not require
any trusted setup. Furthermore, in the Supersonic [8] algorithm based on DARK, if the unknown
order group is an RSA Group, it needs to be set credibly, relying on the assumption of difficulty in
decomposing large numbers. No trusted setting is required if it is a Class Group, depending on the
difficulty of calculating the number of Class Group elements.

4936 CMC, 2023, vol.74, no.3

In Table 2, we compare several mainstream polynomial commitment schemes. Different schemes
have different advantages and efficiencies. In the process of practical application, a comprehensive
evaluation needs to be made according to the application scenario. Whether you need better efficiency
or better security is a question worth weighing.

Table 2: Comparison of polynomial commitment schemes

PC schemes Communication complexity Time complexity

CRS Com Open d = 220 Com Open Verify

KZG10 [6] dG1 1G1 1G1 96b dG1 dG1 1P, G1

Bulletproofs [9] dG1 1G1 log (d) G1 1.3 KB dG1 dG1 dG1

Hyrax [10]
√

dG1

√
dG1 log (d) G1 33 KB dG1

√
dG1

√
dG1

DARKs [8] dGU 1GU log (d) GU 8.6 KB dGU dlog (d) GU log (d) GU

Virgo [11] 1 1H log (d)
2 H 183 KB dlog (d) G1 dlog (d) H log (d)

2 H

Groth11 [12] 3
√

dG2
3
√

dGT
3
√

dG1 25 KB dG1

2
3
√

dG1
3
√

dP
BMMTV [13]

√
dG2 1GT log (d) GT 2.5 KB dG1

√
dP log (d) GT

3 Problem Statement

We understand a “blockchain protocol” as a protocol that allows an indeterminate number of
computer behaviors to be unified into a single computer. Then, its operation will generate two kinds
of data at the computer participating in the relevant protocol: one is block data, which is what we often
call the blockchain, which records everything that happened in the network in the past; the other is
state data, that is, data representing the current state of the entire network [14]. For Ethereum, the
“state” information includes: how much balance the account has, how many transactions there are
(not including the content of the transactions that have been issued, that is, the block data), what
is the code of the contract, the value of the internal storage item What is, and some data related to
the operation of the consensus mechanism. We can refer to Fig. 1 for the transaction process of the
blockchain.

The particularity of state data is that: on the one hand, state data is the result of the execution of
historical blocks (transactions included); on the other hand, it is the premise of executing new blocks.
Therefore, on the current Ethereum blockchain, full nodes must save state data so that they can verify
the legitimacy of newly received blocks by executing them. As you can imagine, because the number
of users and contracts will continue to increase, the size of the state data will continue to grow without
some control. This is the state data bloat problem [15].

The impact of the state bloat problem is certain: it makes block verification more and more
difficult. Because it is also reading and writing a state object when there are 100,000 state objects,
compared to when there are only 1,000 state objects, the overhead resource o increases, it is precise
because of this that state expansion will increase the threshold for running a full node (in unit time,
the resource overhead, mainly the random read and write of the hard disk will continue to rise). It will
also gradually unbalance the proportion of gas overhead of each operation of the Ethereum Virtual
Machine (EVM), resulting in increased demand for nodes.

CMC, 2023, vol.74, no.3 4937

2.Simulate the execution of
the transaction proposal

and sign

5.Transactions are sorted
and agglomerated

9.Save blocks, update
world state

7.Save blocks, update
world state

client

Sort node

Endorsing Node Accounting node

master node

6.Broadcast block

8.Sync block

9.Save blocks, update

world state

8.Sync block

Figure 1: Blockchain transaction process

Merkle Tree is the storage method or verification scheme used by the vast majority of cryptocur-
rencies in blockchain technology [16]. Each block in the blockchain is mainly composed of two parts:
the block header and the block body. The block body contains complete transaction information, and
the data information contained in a block body may be hundreds or thousands, so this will consume a
lot of storage space for users [17,18]. To solve this problem, Satoshi Nakamoto proposed the concept
of SPV (Simple Payment Verification), which only saves the block header of each block. SPV can verify
payments without running a full node, and users only need to save all block headers. Although users
cannot verify transactions by themselves, if they can find a matching transaction from somewhere in
the blockchain, they can know that the transaction has been confirmed by the network and can also
confirm how many times the network has confirmed the transaction. The data verification process of
the Merkle tree is shown in Fig. 2.

It should be noted here that SPV emphasizes verifying payments, not transactions, and the two
concepts are different.

1) Verification of payment: It is only necessary to determine whether the transaction used for
payment has been verified and how many times the network has confirmed it. (i.e., how many
blocks are superimposed).

2) Verification of transactions: It is necessary to verify whether the account balance is sufficient
for expenditure, whether there is double payment, whether the transaction script is passed,
etc. Generally, this operation is completed by the miners of the full node. Full node: includes
functions of wallet (payment verification), miner, complete blockchain database, and network
routing node.

Assuming that numbers 1–8 represent transactions, to verify whether the transaction is fraudu-
lent, we need to know the hash value of the leaf node and the intermediate node that we want to prove,
and so on, to get the hash value of the root node finally. In this way, we can verify that the transaction
is not fraudulent. In Fig. 2, we can clearly understand that the verification of each transaction needs to
calculate the hash from bottom to top, and the existence of intermediate nodes also leads to additional
space overhead.

4938 CMC, 2023, vol.74, no.3

Root Hash

Hash 1-8

Hash 1-4

Hash 1-2 Hash 3-4

Hash 1 Hash 2 Hash 3 Hash 4 Hash 5 Hash 6 Hash 7 Hash 8

Hash 5-6 Hash 7-8

Hash 5-8

Tx 1 Tx 2 Tx 3 Tx 4 Tx 5 Tx 6 Tx 7 Tx 8

Trading
Information

Version
Message

Timestamp

Pre Hash

Nonce Block N

Block N Nonce

Root
Hash

…

Block
N+1

Nonce

Root
Hash

…

Block Header

Block Body

Figure 2: Merkle tree verification process

Over time, blocks will continue to increase, and with it comes the issue of block capacity and
efficiency. When there are more and more blocks, the data will also accumulate, and more space will be
consumed, which will affect the information transmission rate of the entire blockchain. From the user’s
point of view, this is unacceptable. We can shorten the verification time, improve the throughput of
the system, and improve the overall efficiency by optimizing the consensus mechanism and using new
technologies such as cryptography and smart contracts [19,20]. The introduction of smart contracts
has brought greater research value to the blockchain. The smart contract itself has the advantages of
trustlessness, security, efficiency, and no need for third-party arbitration, and it is just right to combine
with blockchain technology. However, if the design is unreasonable, it will not only fail to provide
safe and effective technical results but also may be attacked. The operating mechanism of the smart
contract is shown in Fig. 3. Therefore, how to design an effective mechanism to improve the efficiency
of the blockchain system under the premise of protecting privacy and security is an urgent problem to
be solved.

4 Efficient Storage Verification Mechanism for Data in Blockchain

In traditional blockchains, it is difficult to provide proofs for all intermediate nodes using Merkle
trees of width d to store data. Merkle trees are hard to do if all proofs are provided to the verifier,
which we solve using an efficient multi-validation technique with polynomial commitments. However,
we want to replace proofs for the entire Merkle tree with only a small, constant number of polynomial
proofs. We aim to provide proof of commitment to intermediate nodes as efficiently as possible.
Improve verification time and communication efficiency by generating proofs using proof aggregation
and then putting them into smart contracts for verification. For specific algorithm schemes, see
Sections 4.2, 4.3, and 4.4. Our overall design is shown in Fig. 4.

CMC, 2023, vol.74, no.3 4939

Block N - i

Block N - i

Local Database

Block N Block N + i

Generate Blocks

consensus
algorithm

Oracles

Incentive
mechanismtrusted data

source

Deploy/Invoke TransactionMiner

EVM/Docker container

Smart Contract

Code
If...then...
What...if...

Vaule

State

Censor/Update

world state

Blockchain

... ...

Off-chain Control

Figure 3: Smart contract operating mechanism

Figure 4: Efficient storage verification mechanism for data in the blockchain

4940 CMC, 2023, vol.74, no.3

4.1 Preliminary Knowledge

Cryptographic commitments are an important class of cryptographic primitives, and hash com-
mitments are the simplest implementation among many technologies. The cryptographic commitment
scheme is a two-phase interactive protocol involving two parties; the two parties are the promiser and
the receiver, respectively. The first stage is the commitment-level stage. The promiser selects a message
m and sends it to the receiver in the form of ciphertext, which means that it will not change m. The
second stage is the opening stage. The committer discloses the message m and the blinding factor
(equivalent to the secret key), and the receiver uses this to verify whether it is consistent with the
message received in the commitment stage. The secrecy and binding of cryptographic commitments
are key features commonly used in the design of privacy protection schemes. While ensuring the
confidentiality of private data, it also ensures the uniqueness of interpretation of private data in
the ciphertext. Cryptography promises to provide another efficient ciphertext representation for
private data.

4.1.1 Pedersen Commitment

Pederson promises, used in conjunction with elliptic curves in cryptography, is a form of ciphertext
with strong binding and homomorphic addition properties based on discrete logarithmic hard prob-
lems. There are generally two parties involved. We can define the public parameter ck = {G, q, g, h},
where g is the generator of the group G, q is the prime order of the group G, h is the element in G, and
the discrete logarithm is unknown.

Definition 1. Comck (a, r) := grha is a Pederson commitment to a, where r is a random number and
is not public.

Multivariate Pederson commitment is an extension of Pederson commitment, that is, given public
parameters ck = (G, q, g, h1, . . . , hn), where g is the generator of group G, (h1, . . . , hn) ∈ Gn, the
discrete logarithms of these points are unknown; given a message (m1, . . . , mn) ∈ Zn

q, the corresponding
Pederson commitment is: C = Comck (m1, . . . , mn, r) = gr

∏n

i=1h
mi
i . Pederson promises are divided into

a promise commit phase and a promise open phase, as follows:

1) Commitment submission stage: Assuming that there is a multiplicative group G, g0, g1 ∈ G
of prime order q as the generator, r ∈ zq is a random number, for message m, it’s Pederson
promises C = gr

0g
m
1 , and then the promiser sends (m, r, g0, g1) to the receiver.

2) Commitment opening stage: After the receiver receives the promised message, it verifies
whether the equation c = gr

0g
m
1 holds if so, choose to accept, otherwise choose to reject.

Pederson promises to satisfy Hiding and Binding:

Hiddenness: Commitment values and random numbers are computationally indistinguishable.
Since r is a random number, C0 = grha0 and C1 = grha1 are computationally indistinguishable, thus
hiding the content.

Binding: After a promise is made, the content of the promise cannot be modified. Assuming that

there are r′ and a′ �= a such that grha = C = gr′ha′ , then there is h = g(r−r′)(a′−a)
−1

, which shows that the
discrete logarithm problem of h has been solved, which contradicts the assumption of the difficulty of
the discrete logarithm, so the binding property is satisfied.

CMC, 2023, vol.74, no.3 4941

4.1.2 Polynomial Commitment

Polynomial expressions include coefficient notation and point value notation, both of which can
uniquely determine a polynomial. The two representation methods have their application scenarios.
For example, the coefficient representation method is efficient in the case of calculation and addition,
while the point value representation method is efficient in the case of calculation and multiplication.
Both are essentially expressing the same polynomial, so they can be transformed into each other. The
fast Fourier transform (FFT) algorithm is to realize the conversion method of coefficient expression
to point value expression, and inverse fast Fourier transform (IFFT) algorithm is just the opposite.

Assuming that the prover has the polynomial P (x) = a0 + a1 · x + a2 · x2 + . . . + ad−1 · xd−1, we
commit the polynomial P (x) Go out, the specific process is as follows:

1) The prover calculates C ← PloyCommit (P (x)) through the commitment algorithm, that is,
a commitment to each coefficient of the polynomial P (x). C = (c1, c2, . . . , cd), where ci =
Comck (ai, ri) = gri hai , i = 0, 1, . . . , d − 1. Here ck = {G, q, g, h}, which are public parameters,
and then send C to the verifier.

2) The verifier chooses x at random and sends it to the prover.
3) The prover computes the evaluation and generates the proof π ← PolyEval (x, P (x)), where

π = (v, ρ), v = P (x), ρ = ∑d−1

i=0 rixi; and send π to the validator.

4) The verifier calculates v ← PolyVerify (C, π , x), where v =
{

1, Comck (v, ρ) = ∑d

i=1c
xi

i

0, Comck (v, ρ) �= ∑d

i=1c
xi

i

,

1 means the verification passed, and 0 means the verification failed.

Using the well-known Fiat-Shamir [21] method, the interactive commitment protocol can be
transformed into a non-interactive one, where x = H (π , ck). The prover publishes the commitment
value (π , v, ρ), and the verifier calculates x and calls PolyVerify (C, π , x) to verify whether the
commitment is legal.

4.2 Construction of Polynomial Commitment Schemes

Inspired by the Kate et al. [6] scheme and the Bootle et al. [22] scheme, based on the polynomial
commitment scheme proposed by them, we use the Same-Commitment Aggregation scheme in the
Pointproofs [23] scheme to join the UpdataCommit algorithm and the Aggregate algorithm. We can
construct a polynomial of degree d: P (x) = a0 + a1 · x + a2 · x2 + . . . + ad−1 · xd−1. The coefficients of
the polynomial P (x) are the leaf nodes of the Merkle tree, respectively. The specific algorithm thought
steps are as follows:

1) The information stored in the leaf nodes of the Merkle tree is replaced by the subterms of the
polynomial P (x).

2) The prover commits the polynomial P (x) and sends it to the verifier.
3) The verifier sends an evaluation point s, requesting the value P (s) of the evaluation point s.

And send a random challenge x.
4) The prover sends the evaluation result z = P (s) and the corresponding proof information.
5) The verifier opens the promise and verifies the proof against the corresponding information,

outputting either acceptance or rejection.
6) Using Fiat-Shamir transformation to achieve non-interactive zero-knowledge.
7) Implement Aggregate Validation.

4942 CMC, 2023, vol.74, no.3

4.2.1 Implementation of Polynomial Commitment Scheme

Polynomial P (x) = a0 + a1 · x + a2 · x2 + . . . + ad−1 · xd−1, let
→
a = (a0, a1, . . . , ad−1),

→
G =

(G0, G1, · · · , Gd−1). a0, a1, . . . , ad−1 are the coefficients of the polynomial P (x), and G0, G1, · · · , Gd−1 are
independent generators based on discrete logarithmic relationships. We follow the following protocol:

1) The prover generates a commitment value C to the polynomial P (x) as a commitment to
→
a,

where C = 〈→
a,

→
G〉.

2) The verifier sends an evaluation point s and a random challenge x, and requests to evaluate

P (s). We let
→
b = (b1, b2, . . . , bd) = (

1, S, S2, . . . , Sd−1
)
. s is the location of the evaluation point.

3) The prover sends the evaluation result z = 〈→
a,

→
b〉 in the computation, and the corresponding

proof π .
4) The verifier accepts or rejects the output by verifying the proof.

The Bulletproofs scheme in the case of Jonathan Bootle et al. utilizes a polynomial halving
operation to achieve a performance improvement. For convenience, we assume that the constant term
is zero and that the polynomial degree is highest d. The random number x sent by the validator can
be used to implement the halving operation, which can be used to reduce the size of the proof, see
Eqs. (1)–(3):

→′
a = x−1

⎛
⎜⎜⎝

a1

a2

:
a d

2

⎞
⎟⎟⎠ + x

⎛
⎜⎜⎝

a d
2 +1

a d
2 +2

:
ad

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x−1a1 + xa d
2 +1

x−1a2 + xa d
2 +2

:
x−1a d

2
+ xad

⎞
⎟⎟⎠ (1)

→′
b = x

⎛
⎜⎜⎝

b1

b2

:
b d

2

⎞
⎟⎟⎠ + x−1

⎛
⎜⎜⎝

b d
2 +1

b d
2 +2

:
bd

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

xb1 + x−1b d
2 +1

xb2 + x−1b d
2 +2

:
xb d

2
+ x−1bd

⎞
⎟⎟⎠ (2)

→′
G = x

⎛
⎜⎜⎝

G1

G2

:
G d

2

⎞
⎟⎟⎠ + x−1

⎛
⎜⎜⎝

G d
2 +1

G d
2 +2

:
Gd

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

xG1 + x−1G d
2 +1

xG2 + x−1G d
2 +2

:
xG d

2
+ x−1Gd

⎞
⎟⎟⎠ (3)

Now the problem to be proved is simplified by z = 〈→
a,

→
b〉 to prove z′ = 〈→′

a ,
→′
b 〉, the prover will

→′
a ,

→′
b , z′ Sent to the verifier, the verifier only needs to verify whether z′ = 〈→′

a ,
→′
b 〉 and C ′ = 〈→′

a ,
→′
G〉 are

established.

From Eqs. (1) and (2) we can calculate z′, See Eq. (4):

z′ = 〈→′
a ,

→′
b 〉

=
〈⎛
⎜⎜⎝

x−1a1 + xa d
2 +1

x−1a2 + xa d
2 +2

:
x−1a d

2
+ xad

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

xb1 + x−1b d
2 +1

xb2 + x−1b d
2 +2

:
xb d

2
+ x−1bd

⎞
⎟⎟⎠

〉

CMC, 2023, vol.74, no.3 4943

=
(

x−1a1 + xa d
2 +1

) (
xb1 + x−1b d

2 +1

)
+ . . . +

(
x−1a d

2
+ xad

) (
xb d

2
+ x−1bd

)

= (a1b1 + a2b2 + . . . + adbd) + x−2
(

a1b d
2 +1 + a2b d

2 +2 + . . . + a d
2
bd

)
+ x2

(
b1a d

2 +1 + b2a d
2 +2 + . . . + b d

2
ad

)
= z + x−2Lz + x2Rz (4)

From Eqs. (1) and (3) we can calculate C ′, See Eq. (5):

C ′ = 〈→′
a ,

→′
G〉

=
〈⎛
⎜⎜⎝

x−1a1 + xa d
2 +1

x−1a2 + xa d
2 +2

:
x−1a d

2
+ xad

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

xG1 + x−1G d
2 +1

xG2 + x−1G d
2 +2

:
xG d

2
+ x−1Gd

⎞
⎟⎟⎠

〉

=
(

x−1a1 + xa d
2 +1

) (
xG1 + x−1G d

2 +1

)
+ . . . +

(
x−1a d

2
+ xad

) (
xG d

2
+ x−1Gd

)

= (a1G1 + a2G2 + . . . + adGd) + x−2
(

a1G d
2 +1 + a2G d

2 +2 + . . . + a d
2
Gd

)
+ x2

(
G1a d

2 +1 + G2a d
2 +2 + . . . + G d

2
ad

)
= C + x−2La + x2Ra (5)

The information contained in the proof sent by the final prover is: vector
→′
a (half the size of

→
a),

points La, Ra on the elliptic curve, and scalar values Lz, Rz. The Fiat-Shamir method utilized can
transform the above protocol into a non-interactive one.

4.2.2 Zero-Knowledge Proof Scheme

The Bulletproofs algorithm is optimized in the Halo [24] article, and the problem C = 〈→
a,

→
G〉

and z = 〈→
a,

→
b〉 is transformed into the problem M = C + zU = 〈→

a,
→
G〉 + 〈→

a,
→
b〉U , where U is the

introduced public generator. Similarly, the problem M can be halved, and we can convert the proof

into: M ′ = C ′ + z′U = 〈→′
a ,

→′
G〉 + 〈→′

a ,
→′
b 〉U . Similarly, we can obtain the calculation method of M ′ as

follows, See Eq. (6):

M ′ = 〈→′
a ,

→′
G〉 + 〈→′

a ,
→′
b 〉U

= [
C + x−2La + x2Ra

] + [
z + x−2Lz + x2Rz

]
U

= M + x−2(La + LzU) + x2 (Ra + RzU)

= M + x−2L + x2R (6)

4944 CMC, 2023, vol.74, no.3

L = La + LzU , R = Ra + RzU are all points on the elliptic curve, the verifier only needs to verify

M ′ = M +x−2L+x2R = 〈→′
a ,

→′
G〉+〈→′

a ,
→′
b 〉U can be established. But the information of

→′
a will be leaked,

→′
a is a linear combination of the original vector

→′
a . In order to realize zero-knowledge, a generator H

needs to be introduced to realize the binding, and the original proof becomes: M = C + zU + rH =
〈→
a,

→
G〉 + 〈→

a,
→
b〉U + rH, where r is generated by the prover and known only by the prover. In the same

way, there will also be information about
→′
a in L and R. In order to prevent leakage, it is necessary

to introduce random values rL, rR in each round for binding. At this time, L = La + LzU + rLH,
R = Ra + RzU + rRH. The final promise we get is: M ′ = M + x−2L + x2R. The prover only needs
to send

→′
a and the final bound value r′ (r′ is composed of r, rL, rR in each round), and the verifier

can open the commitment M ′ = 〈→′
a ,

→′
G〉 + 〈→′

a ,
→′
b 〉U + r′H. In this way, we can hide information. In

order to achieve a more general zero-knowledge proof, we can refer to a more general Schnorr protocol
proposed in the Halo article. In the case of not needing to send

→′
a , only need to send r′ Zero-knowledge

verification can also be achieved.

4.3 Aggregate Authentication Scheme

The basic algorithms of this program include Setup, Commit, UpdataCommit, Open, Aggregate,
and VerifyOpen. We mainly add the UpdataCommit algorithm and Aggregate algorithm. Setup is
used to generate public parameters, the Commit algorithm generates commitments to polynomials,
the UpdataCommit algorithm is used to update commitments, the Open algorithm is used to
open commitments, the Aggregate algorithm implements the aggregation of commitments, and the
VerifyOpen algorithm provides verification operations. Now we integrate all the schemes, and the
specific algorithm scheme is as follows:

1) ck ← Setup (1λ, d): Given a security parameter λ and a polynomial degree constraint d, output

the public parameter ck =
(

G, Fp,
→
G, H

)
. G is a group of prime order p, Fp is a finite field,

→
G is

a linear combination of group element vectors, and H is a generator.

2) C ← Commit
(

ck,
→
a, r

)
: Input public parameters ck, vector

→
a and binding factor r,

→
a is a

linear combination of coefficients of polynomial p (x), p (x) degree is at most d−1, and output
commitment is C.

3) C ′ ← UpdataCommit
(

C, S,
→
a [S] ,

→′
a [S]

)
: Enter the promise C, the location set to be updated

S, and after updating the data in the location set to be updated from
→
a [S] to

→′
a [S], the

corresponding update promise is C ′.

4) πi ← Open
(

i,
→
a, r

)
: Open the proof πi corresponding to position i, input the position i and(→

a, r
)

of the polynomial p (x) to be opened, and output the proof πi.

5) π ′ ← Aggregate
(

C, S,
→
a [S] , {πi : i ∈ S}

)
: Input commitment C, open position set S, the

corresponding proof for each position is {πi : i ∈ S}, and the output is aggregate proof π ′.

6) 0/1 ← VerifyOpen
(

C, S,
→
a [S] , π ′

)
: The input is promise c, the open position set s, open

information
→
a [S], aggregate proof π ′. Output 0 or 1 for “reject” or “accept”.

CMC, 2023, vol.74, no.3 4945

4.4 Implementation of Smart Contract Design

In the smart contract, we need to verify two issues: the first is the ownership issue. The account
operated by the user must be his own when a transaction occurs; this is to prevent malicious users
from operating other people’s accounts to conduct transactions. The second is the legal issue. After
converting the state information of each account into a polynomial commitment, it needs to be verified
in the smart contract. The user account is verified in the smart contract. Only the verified user account
will be accepted. Otherwise, the verification will fail.

When the Merkle tree in the blockchain verifies the transaction, it starts from the leaf node, and
each layer needs an intermediate node to assist in the verification, which will cause a waste of space
and an increase in time overhead. If a smart contract is used to store the leaf nodes or proofs of the
Merkle tree, the space consumption is huge, and the space and time overhead cannot be borne. After
replacing the Merkle tree with polynomial commitments, we only need to store the commitments in
the smart contract. When verification is required, we can directly open the commitment in the smart
contract for verification. In the blockchain system, as long as the conditions are met, the contract will
be triggered to verify the contract, which can prevent third parties from tampering with the generated
commitment information. To a certain extent, the security is strengthened, and at the same time, the
introduction of smart contracts can also save our time overhead. The specific contract design is shown
in Fig. 5.

5 Theoretical Analysis of Scheme
5.1 Preliminaries

Knowledge of bilinear mappings is required in our solution. The following briefly reviews the
basic concepts of bilinear maps and groups of bilinear maps. We adopt the notation definition of
Boneh et al. [25]:

1) G1 and G2 are two (multiplicative) cyclic groups of prime order p.
2) g1 is a generator of G1 and g2 is a generator of G2;
3) ϕ is an isomorphism from G2 to G1, with ϕ (g2) = g1; and
4) e is a bilinear map e: G1 × G2 → GT .

For simplicity, we can set G1 = G2. The proofs of security require an efficiently computable
isomorphism ϕ : G2 → G1. When G1 = G2 and g1 = g2 one could take ϕ as the identity map. On
elliptic curves, we can use the trace map as ϕ.

Let G1 and G2 be two groups as above, with an additional group GT such that |G1| = |G2| = |GT |.
A bilinear map is a map e: G1 × G2 → GT with the following properties:

1) Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e
(
ua, vb

) = e (u, v)ab.
2) Non-degenerate: e (g1, g2) �= 1.

We say that (G1, G2) are bilinear groups if there exists a group GT , an isomorphism ϕ : G2 → G1,
and a bilinear map e: G1 × G2 → GT as above, and e, ϕ, and the group action in G1, G2, and GT can
be computed efficiently.

4946 CMC, 2023, vol.74, no.3

Figure 5: Smart contract design

5.2 Correctness Analysis

Take a random value β ← ZP,
→
n = (

β, β2, . . . , βD
)
, g

→
n

1 =
(

gβ

1 , . . . , gβD

1

)
, gβD→

n [−1]
1 =(

gβD+2

1 , . . . , gβ2D

1

)
, g

→
n

2 =
(

gβ

2 , . . . , gβN

2

)
, gβD+1

T = e
(

gβ

1 , gβD

2

)
. Now let’s introduce the meaning expressed

by the symbol. [D] represents the set of polynomial coefficient vector subscripts.
→
a represents a vector

of coefficients of the polynomial, ai represents the coefficient of the polynomial.
→
n represents a vector

of random numbers, consisting of β. S represents the set of positions. The correctness analysis of the
UpdataCommit algorithm and Aggregate algorithm is as follows.

For all i ∈ [D], we have πi = Prove
(

i,
→
a
)

= gβD+1−i→a [−i]
→
n [−i]

1 satisfying Eq. (7):

e
(

C, gβD+1−i

2

)
= e (πi, g2) · gβD+1ai

T (7)

Multiply both sides of the equation
→

a

→
n = →

a [−i]

→
n [−i] + β iai by βD+1−i to get Eq. (8):(→

a
→
n
)

βD+1−i = βD+1−i→a [−i]

→
n [−i] + βD+1ai (8)

Converted to pairing operation, we can get Eq. (9):

e
(

g
→

a
→
n

1 , gβD+1−i

2

)
= e

(
gβD+1−i→a [−i]
→

n [−i]
1 , g2

)
· gβD+1ai

T (9)

To prove the correctness of the aggregation algorithm Aggregate, multiply the exponents on both

sides of Eq. (7) by ti = H
(

i, C, S,
→
a [S]

)
to get Eq. (10):

e
(

C, gβD+1−i ti
2

)
= e

(
π

ti
i , g2

) · gβD+1aiti
T (10)

CMC, 2023, vol.74, no.3 4947

Multiplying the above equation by all i ∈ S gives Eq. (11):

e
(

C, g�iεsβ
D+1−i ti

2

)
= e

(∏
i∈s

π
ti
i , g2

)
· gβD+1�iεsaiti

T (11)

The correctness of the UpdataCommit algorithm is easily derived from Eq. (12):

→′

a

→
n =

(→′
a [S] − →

a [S]
)
 →

n [S] + →

a

→
n (12)

5.3 Security Analysis

Under the assumption of l − wBDHE, the scheme satisfies the binding based on the same
commitment aggregation in the Algebraic Group Model (AGM) + Random Oracle Model (ROM)
model. The protocol is secure if the binding is secure and the adversary cannot forge an attack.

Suppose the adversary can compute C = g
→

z
→
a

1 and provide a proof for
(

S,
→
a [S]

)
that π ′ can be

accepted by the verifier, where
→
a [s] �= →

z [S]. We have Eq. (13):

e
(

g
→

z
→
a

1 , g�iεsβ
D+1−i ti

2

)
= e (π ′, g2) · gβD+1�iεsziti

T = e (π ′, g2) · gβD+1�iεsaiti
T (13)

The parameter gβD+1

1 opponent is unknown, that is, the coefficient corresponding to the βD+1

term in logg1
π ′ is 0. Comparing �iεsaiti ≡P �iεsziti in Eq. (13), expressed as a vector, should satisfy:

→
z [S]

→
t ≡P

→
a [S]

→
t , where

→
t =

(
H

(
i, C, S,

→
a [s]

)
, i ∈ S

)
. Assuming that

(
S,

→
z [S] ,

→
a [S]

)
is fixed, we

make a uniform choice for
→
t ← Z

[S]
P , then we have Eq. (14):

Pr→
t

(→
z [S] ≡P

→
a [S] and

→
z [S]

→
t ≡P

→
a [S]

→
t
)

= 1
p

(14)

It indicates that the corresponding probability can be ignored. Note that the commitment C is

generated in the AGM and determines
→
z ,C, S,

→
a [s] as the input H

(
i, C, S,

→
a [s]

)
in the ROM, and the

output is ti. If the opponent can find the corresponding ai �= zi value such that �iεsaiti ≡P �iεsziti holds,
the binding property does not hold.

5.4 Program Comparison Analysis

The commitment scheme proposed in this paper is asymptotically compared with other commit-
ment schemes in Table 3. We assume each account memory contains N = 1000 variables, each storing
a 32-byte value. The schemes we compare include Merkle Tree, pairing-based LM19 [26], and Class
Group and RSA-based BBF19 [27]. ck represents public parameters, com represents the size of the
promise, open represents the size of the open promise, group represents the group assumption used,
and agg represents the aggregate of promises. − Indicates that the function or setting is not available,
and

√
indicates that the function is available. The complexity in this table is asymptotic in the number

of exponential, pairing, and field operations. For class groups, we use a 2048-bit group. For pairing
groups, we use BLS12-381. For Merkle Trees, we assume paths of length 10 and 256-bit hashes.

The size of a Merkle proof is affected by the depth of the Merkle tree, so the proof size also grows
with the number of transactions stored per block. However, the proof size of a single block of data in
a polynomial commitment scheme is not affected by the number of transactions stored in each block.

4948 CMC, 2023, vol.74, no.3

Since the Merkle Tree scheme and the LM19 scheme have no aggregation algorithm, the proof size
is not fixed. Both our scheme and the BBF19 scheme have aggregation algorithms. They have fixed-
size proofs as traffic increases. However, the scheme in this paper is a bilinear group scheme. It has a
smaller proof size at the same level of security.

Table 3: Performance comparison of schemes

Scheme ck com open group agg

Merkle tree − 32 B 320 B − −
LM19 O

(
N2

)
48 B 48 B Bilinear −

BBF19 O (1) 256 B 1312 B Class group
√

This work O (N) 48 B 48 B Bilinear
√

This scheme, combined with the use of smart contracts, can improve efficiency faster. Opening
the proof at a certain point can minimize the overhead because the proofs across transactions can
be aggregated into a single proof. This solution is specially designed for smart contracts. When the
communication volume is larger, the aggregation solution’s efficiency advantage is more obvious.

6 Conclusion

With the rapid development of blockchain technology, more and more problems are encountered
in terms of privacy protection, system stability, data storage, and communication efficiency. We use the
scheme of polynomial commitment to improve the blockchain system and use the improved scheme
to protect the data security of the blockchain system. The traditional blockchain system uses the
Merkle tree to store and verify data. Compared with the traditional Merkle tree, the scheme in this
paper has been improved in space and time, which improves the efficiency of block transactions in the
blockchain. In this paper, we can better optimize the blockchain system, reduce the time overhead
required for verification, and improve communication efficiency by realizing the combined use of
proof aggregation verification and smart contracts. However, how to use more advanced technology
in blockchain research to ensure efficient data verification and storage while protecting privacy and
security is still an issue worth studying in the future.

Funding Statement: This work is supported by the Fundamental Research Funds for the central
Universities (Zhejiang University NGICS Platform), Xiaofeng Yu receives the grant and the URLs
to sponsors’ websites are https://www.zju.edu.cn/. And the work are supported by China’s National
Natural Science Foundation (No. 62072249, 62072056). Jin Wang and Yongjun Ren receive the grant
and the URLs to sponsors’ websites are https://www.nsfc.gov.cn/. This work is also funded by the
National Science Foundation of Hunan Province (2020JJ2029). Jin Wang receives the grant and the
URLs to sponsors’ websites are http://kjt.hunan.gov.cn/.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Jeon, K. Lee and H. Kim, “Distributed join processing between streaming and stored big data under the

micro-batch model,” IEEE Access, vol. 7, pp. 34583–34598, 2019.

https://www.zju.edu.cn/
https://www.nsfc.gov.cn/
http://kjt.hunan.gov.cn/

CMC, 2023, vol.74, no.3 4949

[2] J. Wang, Y. Gao, W. Liu, W. Wu and S. J. Lim, “An asynchronous clustering and mobile data gathering
schema based on timer mechanism in wireless sensor networks,” Computers, Materials & Continua, vol. 58,
no. 3, pp. 711–725, 2019.

[3] Y. J. Ren, F. J. Zhu, P. K. Sharma, T. Wang, J. Wang et al., “Data query mechanism based on hash computing
power of blockchain in internet of things,” Sensors, vol. 20, no. 1, pp. 1–22, 2020.

[4] X. R. Zhang, X. Sun, X. M. Sun, W. Sun and S. K. Jha, “Robust reversible audio watermarking scheme
for telemedicine and privacy protection,” Computers, Materials & Continua, vol. 71, no. 2, pp. 3035–3050,
2022.

[5] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based
on wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp.
1043–1056, 2022.

[6] A. Kate, G. M. Zaverucha and I. Goldberg, “Constant-size commitments to polynomials and their
applications,” in ASIACRYPT , Singapore: Springer, pp. 177–194, 2010.

[7] G. Shafi, S. Micali and C. Rackoff, “The knowledge complexity of interactive proof-systems (extended
abstract),” in Proc. of the 17th Annual ACM Symp. on Theory of Computing, Rhode Island, USA,
Providence, pp. 6–8, 1985.

[8] B. Bünz, B. Fisch and A. Szepieniec, “Transparent SNARKs from DARK compilers,” in Proc. EURO-
CRYPT , Zagreb, Croatia, Springer, pp. 677–706, 2020.

[9] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille et al., “Bulletproofs: Short proofs for confidential
transactions and more,” in Proc. IEEE Symp. on Security and Privacy (SP), California, CA, USA, pp.
315–334, 2018.

[10] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler and M. Walfish, “Doubly-efficient zkSNARKs without trusted
setup,” in Proc. IEEE Symp. on Security and Privacy (SP), San Francisco, CA, USA, pp. 926–943, 2018.

[11] J. Zhang, T. Xie, Y. Zhang and D. Song, “Transparent polynomial delegation and its applications to zero
knowledge proof,” in Proc. IEEE Symp. on Security and Privacy (SP), San Francisco, CA, USA, pp. 859–
876, 2020.

[12] J. Groth, “Efficient zero-knowledge arguments from two-tiered homomorphic commitments,” in Proc.
ASIACRYPT , Seoul, South Korea, pp. 431–448, 2011.

[13] B. Bünz, M. Maller, P. Mishra, N. Tyagi and P. Vesely, “Proofs for inner pairing products and applications,”
in Proc. ASIACRYPT , Singapore, pp. 65–97, 2021.

[14] T. Wang, C. Zhao, Q. Yang, S. Zhang and S. C. Liew, “Ethna: Analyzing the underlying peer-to-peer
network of ethereum blockchain,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 3,
pp. 2131–2146, 2021.

[15] J. Wang, Y. Yang, T. Wang, R. S. Sherratt and J. Zhang, “Big data service architecture: A survey,” Journal
of Internet Technology, vol. 21, no. 2, pp. 393–405, 2020.

[16] M. Muneeb, Z. Raza, I. U. Haq and O. Shafiq, “SmartCon: A blockchain-based framework for smart
contracts and transaction management,” IEEE Access, vol. 10, pp. 23687–23699, 2022.

[17] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski et al., “Secure keyword search and data sharing mechanism
for cloud computing,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp. 2787–
2800, 2021.

[18] C. Ge, Z. Liu, J. Xia and L. Fang, “Revocable identity-based broadcast proxy re-encryption for data sharing
in clouds,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp. 1214–1226, 2021.

[19] Y. J. Ren, Y. Leng, J. Qi, P. K. Sharma, J. Wang et al., “Multiple cloud storage mechanism based on
blockchain in smart homes,” Future Generation Computer Systems, vol. 115, no. 2, pp. 304–313, 2021.

[20] Y. J. Ren, Y. Leng, Y. P. Cheng ang J. Wang, “Secure data storage based on blockchain and coding in edge
computing,” Mathematical Biosciences and Engineering, vol. 16, no. 4, pp. 1874–1892, 2019.

[21] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems,” in Proc. Advces Cryptology (Lecture Notes in Computer Science), Santa Barbara, CA, USA,
pp. 186–194, 1986.

4950 CMC, 2023, vol.74, no.3

[22] J. Bootle, A. Cerulli, P. Chaidos, J. Groth and C. Petit, “Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting,” in Proc. EUROCRYPT , Vienna, Austria, pp. 327–357, 2016.

[23] S. Gorbunov, L. Reyzin, H. Wee and Z. Zhang, “Pointproofs: Aggregating proofs for multiple vector
commitments,” in Proc. ACM SIGSAC Conf. on Computer and Communications Security, Virtual Event,
USA, pp. 2007–2023, 2020.

[24] S. Bowe, J. Grigg and D. Hopwood, “Halo: Recursive proof composition without a trusted setup,” IACR
Cryptol., ePrint Arch, Report 2019/1021, 2019.

[25] D. Boneh and X. Boyen, “Short signatures without random oracles,” in Proc. EUROCRYPT , Interlaken,
Switzerland, Springer, pp. 56–73, 2004.

[26] R. W. F. Lai and G. Malavolta, “Subvector commitments with application to succinct arguments,” in Proc.
CRYPTO, Santa Barbara, CA, USA, pp. 530–560, 2019.

[27] D. Boneh, B. Bünz and B. Fisch, “Batching techniques for accumulators with applications to IOPs and
stateless blockchains,” in Proc. CRYPTO, Santa Barbara, CA, USA, pp. 561–586, 2019.

	Data Security Storage Mechanism Based on Blockchain Network
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Efficient Storage Verification Mechanism for Data in Blockchain
	5 Theoretical Analysis of Scheme
	6 Conclusion

