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Abstract 

Forest fire frequency has increased in South Asia in recent decades, with a growing impact on forest 

ecosystems. Nepal's Terai Arc Landscape (TAL) is one of the most ecologically important 

landscapes in Asia, hosting a great diversity of endangered flora and fauna. To better predict the 

threat of fire to forest ecosystems in the TAL, we identified fire-prone areas using fuzzy AHP 

methods. We produced a fire risk map by applying the weighted linear combination method using 

topographic (slope, aspect, and elevation), climatic (temperature, precipitation, and wind speed), 

biophysical (normalised difference vegetation index and landcover classes), and anthropogenic 

variables (distance to road and proximity to settlements). We then validated the map with records 

of past fires by applying a confusion matrix. The accuracy of our technique of fire location 

prediction was above 95%, with a kappa coefficient of 0.93. Locations of medium to very high 

forest fire risk were found in around 51% of the study area, usually in the vicinity of areas affected 

by anthropogenic factors. This landscape-level study shows the potential of multicriteria prediction 

models to inform the preparation of national and regional forest fire management strategies and 

plans.  

 

Key Words: Forest fire,  risk identification, multicriteria decision analysis,  fuzzy AHP  
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Introduction 

Forests provide a variety of ecosystem services and are a renewable resource critical to the 

sustainable development of many countries, including Nepal. Forest ecosystems are increasingly 

under the pressure of several anthropogenic and natural challenges, such as climate change, land 

use change, biodiversity loss, biological invasions, and forest fires. Although they are a natural part 

of the forest renewal cycle, forest fires cause inestimable loss to forest ecosystems due to the 

reduction of ecosystem service provision (Xiao et al., 2015). In Canada, about 10,000 forest fires 

are reported each year, affecting nearly 2.5 million hectares of forest (Guo et al., 2015). In North 

America, more than 130,000 forest fires burned 4.2 million hectares of forests yearly, while in 

China, an average of 12,000 forest fires between 1950 and 2010 destroyed 670,000 hectares of 

forests each year (L. Su et al., 2015). Similarly in Europe, forest fires burned around 26,800 hectares 

per year between 2009 and 2018 (San-Miguel-Ayanz et al., 2019). Forest fires affect plant 

composition and species richness, increase non-native species presence (Laughlin & Fulé, 2008) 

and release a substantial amount of carbon into the atmosphere. Fire may trigger land use change 

with secondary effects on the hydrological cycle and imbalances the water budget (Soulis, 2018), 

escalates air pollution by generating aerosols (Yin et al., 2019) and declines crop yield (Hinojosa et 

al., 2021). In addition, forest fire is directly harmful to human health. In the catastrophic forest fire 

in Australia in 2019/2020, around 437,000 people were exposed to poor to hazardous air quality, 

with hundreds of deaths (Graham et al., 2021).  

 

The Terai Arc Landscape (TAL), which is located in the Terai and Churia region of Nepal, has six 

protected areas and is one of the most ecologically important landscapes in the country. Increased 

fire events in this landscape threaten the destruction of many valuable forest ecosystems 

(Williamson et al., 2005). Forest fires occur annually in all the physiographic/climatic regions of 

Nepal, but fire is more severe in Terai and Churia range (Sharma, 1996), aggravated by land-use 

change (Kunwar & Khaling, 2006). Nepal lacks sufficient statistical data on fire-related forest loss 

despite its importance for the country's landscape function. In the 2009 fire season alone, 

uncontrolled forest fires caused 41 fatalities (civilians and firefighters) and destroyed hundreds of 

thousands of hectares of national forests (Bhujel et al., 2017). Despite the increasing frequency of 

forest fires frequency and the size of burned areas, the government and stakeholders do not possess 

sufficient resources or capacity to develop early warning or planning tools (Sibanda et al., 2011). 

Nepal is one of the countries most vulnerable to climate change due to the large proportion of people 

primarily dependent on forest and agricultural production (Bhatta & Aggarwal, 2016). In developing 
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countries, forest fire management and information systems are often poorly developed (Dube, 

2013), which is also the case in Nepal.  

 

Recently, there has been rapid development and deployment of remote sensing and GIS tools to 

predict forest fire risk at global to local scales. Remotely sensed data has become one of the 

fundamental elements in risk mapping, especially in regions with limited physical access or 

historical records (Meena et al., 2019; Pourghasemi, 2016). Various researchers have used different 

techniques to identify fire risk, such as logistic regression (Rasyid et al., 2016), multiple linear 

regression (Liu & Zhang, 2015), frequency ratio method (Tiwari et al., 2021), Analytical 

Hierarchical Process (Lamat et al., 2021; Krishna Prasad Vadrevu et al., 2010), Fuzzy AHP 

(Güngöroğlu, 2017; Tiwari et al., 2021), analytical neural networks (Talukdar et al., 2020). The 

combination of Multi-Criteria Decision Analysis (MCDA) and GIS has been shown to be effective 

in predicting fire risk and identifying areas at risk. Analytical Hierarchical Process (AHP) has been 

used in the GIS-MCDA process in different decision-making systems (Akbulak et al., 2018; 

Vadrevu et al., 2010; Faramarzi et al., 2021). However, this method is criticised for lack of precision 

as it uses real non-scaled values, also known as crisp numbers (Zhang et al., 2011). Fuzzy Analytical 

Hierarchical Process (FAHP) can be used to tackle this problem, as the integration of fuzzy values 

improves the precision and accuracy of the assessment and subsequent decision-making process 

(Feizizadeh et al., 2014). Furthermore, this method has many advantages over conventional AHP 

and is a widely used technique in combination with GIS capability (Abedi Gheshlaghi et al., 2021; 

Burgess, 2011; Feizizadeh et al., 2015). This method has been widely used in environmental and 

risk modelling, becoming a powerful and important method for predicting risk or hazards (Abedi 

Gheshlaghi et al., 2021; Mehta et al., 2018; Nyimbili & Erden, 2020; Tiwari et al., 2021). 

 

Understanding fire behaviour, predicting burnt areas, calculating emission scenarios, and preparing 

short, medium, and long-term management plans is a challenge for policymakers, stakeholders, and 

forest managers, at the best of times (Sibanda et al., 2011). Although the government of Nepal has 

identified forest fire as one of the significant drivers of forest degradation and deforestation, it lacks 

sufficient data to construct a reliable predictive capacity for forest fires (Parajuli et al., 2020). 

Reflecting the current need to prevent and mitigate forest fires at the landscape level, this study 

identifies forest fire hotspots in the TAL landscape using the fuzzy AHP method and freely available 

remote sensing data. In addition to being beneficial to regional and national policymakers, land 

planners, fire managers, social networks, and other related stakeholders, this study also helps local 
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REDD+ projects to plan activities to mitigate carbon emissions and reduce ongoing biodiversity 

loss.  

 

METHODOLOGY 

Study Area 

The TAL in Nepal covers about 2.4 million ha or 15% of the country's total land area. It stretches 

along the southern foothills of the Himalayas, with two physiographic zones named Terai (Sanskrit 

for "lowlands") and the Churia hills (the youngest mountain range in Nepal). Forest covers more 

than half of the area of the TAL region (1.3 million ha), with an average growth stock of 135 m3/ha 

and 115 m3/ha, respectively, for the Terai and Churia regions (MOFSC, 2015). TAL forests are 

dominated by broad-leaved Sal (Shorea robusta) forest, a commercially valuable tree species used 

primarily in construction. Agriculture is the main occupation in the area, producing mainly maise, 

wheat and paddy rice, along with various horticultural crops. Most of the population uses fuelwood 

for cooking purposes (Pandey et al., 2021). Thus, livelihoods and forests are inextricably linked in 

the TAL (see Figure 1 for a study area map).  

 

In the last 15 years, only one study has been conducted in this area to identify the cause of forest 

fires. A study by Kunwar & Khaling (2006) reported that 58.06% of forest fires are started 

deliberately, followed by negligence (22%) and accidents (20%). The research also mentioned that 

the dry season shedding of leaves in these deciduous forests leads to the accumulation of a 

considerable amount of dry leaves and litter acting as fuel for the forest fire. In recent years, forest 

fires in the study area are increasing as major fire incidents were recorded in the years 2009, 2012, 

2016, 2019 and 2021, especially in the month of March to May (Bhujel et al., 2017; Matin et al., 

2017; Parajuli et al., 2020; Qadir et al., 2021). Qadir et al., (2021) predicted that the areas have the 

highest risk of forest fire incidents in the coming year.  
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Figure 1 Study Area 

Data Acquisition  

Visible Infrared Imaging Radiometer Suite (VIIRS) with 375m spatial resolution thermal anomalies 

was used to extract the fire points (Schroeder, 2017). All fire incidents observed between 2012 and 

2021 were downloaded from http://earthdata.nasa.gov/data/nrt-data/firms. The detection confidence 

of VIIRS data varies; confidence above 30% is considered sufficient, while higher confidence is 

recommended to reduce false alarm incidents (Giglio et al., 2020). In this study, forest fire incidents 

with a confidence level below 30% were discarded, alongside all fires detected outside forested 

areas, such as grassland or shrublands. Based on the literature review (see Appendix A), ten 

variables that affect forest fires were considered when creating the forest fire risk map (Table 1). 

 

 

http://earthdata.nasa.gov/data/nrt-data/firms
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Table 1 General information on predictor variables used in this study  

Classes Variables Spatial 

Resolution 

Data 

Period 

Data Type Source  

 Elevation 30 m 2000-2013 Raster Aster DEM 

Aster DEM 

Aster DEM 

Topographical Aspect 30m 2000-2013 Raster 

 Slope 30m 2000-2013 Raster 

Biophysical Land Cover 30m 2010 Raster ICIMOD 

 NDVI 30m 2021 Raster Sentinel 2 

Climatic Temperature 4.5km 2000-2018 Raster Worldclim 

 Precipitation 4.5km 2000-2018 Raster Worldclim 

 Wind 250 m 2020 Raster Global wind 

Atlas 

Anthropogenic Distance 

from Road 

1:25000 2015 Vector 

(Polyline) 

Department 

of Survey 

 Proximity to 

settlement 

1:25000 2015 Vector 

(Points) 

Department 

of Survey 

Past Forest fire points  375m  2012-2021 Vector 

(Polygon)  

VIIRS 

 

Data Processing  

Aster global DEM (30m spatial resolution) was downloaded from the USGS website 

(https://earthexplorer.usgs.gov/) to describe the topography. For further classification of DEM, 

slope and aspect were derived using the Spatial Analyst tool in ArcGIS 10.5. Temperature and 

precipitation data were downloaded from Worldclim for 2000-2018 (Fick & Hijmans, 2017), the 

mean monthly temperature and precipitation of the pre-monsoon season (March-May) of each year 

was averaged, and a separate layer was generated. Wind speed was downloaded from the Global 

Wind Atlas (https://globalwindatlas.info/). The Sentinel- 2A NDVI data were downloaded from the 

Copernicus Open Access Website in Level 1c format for the period from 2021/01/01 to 2021/02/06. 

Data describing land use type were provided by ICIMOD Nepal 

(https://rds.icimod.org/Home/DataDetail?metadataId=9224 ) with a spatial resolution of 30m. The 

road and settlement location were acquired from the Department of Survey 

https://opendatanepal.com/dataset?q=settlement&sort=score+desc%2C+metadata_modified+desc; 

the vector polyline and points shapefile were rasterised using the Euclidean distance method in the 

https://earthexplorer.usgs.gov/
https://globalwindatlas.info/
https://rds.icimod.org/Home/DataDetail?metadataId=9224
https://opendatanepal.com/dataset?q=settlement&sort=score+desc%2C+metadata_modified+desc
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ArcGIS spatial analyst tool. The variables were converted into raster images of 3030 m resolution 

(Error! Reference source not found.). See Appendix B for the images of each variable used.   

Figure 2 Methodological framework for the identification of fire risk zones 

 

Multi-Criteria Decision Analysis  

   Buckley (1985) fuzzy extend method analysis was applied, using triangular fuzzy numbers to 

obtain the fuzzy pairwise comparison matrix proposed by Saaty (1980), see Appendix C. This 

method has been extensively used by (Chen et al., 2011; Tiwari et al., 2021) to assess the forest fire 

risk map and offers an appropriate solution to the reciprocal comparison matrix (Demirel et al., 

2018). In this study, the consistency ratio was less than 0.04 (Ymax 10.65, CI 0.07 and RI 1.49), 

suggesting that the assigned weights are consistent. Verbal variables were applied with the triangular 

membership function, and crisp numbers were converted to three real numbers (l, m, u) (Tiwari et 

al., 2021), where l stands for min (lower possible bound), m for medium, and u for max (upper 

possible bound), see Appendix D. Later, defuzzification was also applied to change the weights into 

the crisp value proposed by (Chou & Chang, 2008). 

 

 To perform the fuzzy membership function in ArcGIS, the value of each input raster was 

transformed and a scale between 0 to 1 (see Appendix E). Values near 1 represent a higher chance 

of forest fire risk, and values near 0 indicate a very low risk (see Appendix F for images). The aspect 

and land cover layer had to be reclassified from 1 to 5 as it does not possess the desired minimum 

or maximum value. This constraint was also applied to the land cover classes layer for agriculture, 
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water bodies, built-up areas, and barren lands, as suggested by (Malczewski, 2000). After obtaining 

the value between 0 and 1, the priority weight derived from fuzzy AHP logic was multiplied with 

each of the ten variables using 𝐹𝐹𝑅𝑀 =  ∑ ∑ (𝑁𝐹𝑊𝑡 ∗ 𝐹𝐶𝑓)𝑛
𝑓=1

𝑚
𝑡=1 . . . . . . . . . . . . . . . . ..Equation 1 

(Tiwari et al., 2021).  

 

𝐹𝐹𝑅𝑀 =  ∑ ∑ (𝑁𝐹𝑊𝑡 ∗ 𝐹𝐶𝑓)𝑛
𝑓=1

𝑚
𝑡=1 . . . . . . . . . . . . . . . . ..Equation 1 

 

where FFRM is the Forest Fire Risk Map, NFWt means the normalised fuzzy weight, FCf stands for 

the normalised score of every class, m is the number of criteria, while n represents the number of 

classes. For the weighted linear combination method, different weight values of each variable based 

on their risk potential were used (Equation 2).  

 

FFRM = 𝐿𝐶 ∗ 0.20 +  𝐷𝑅 ∗ 0.15 + 𝑃𝑆 ∗ 0.13 + 𝑁𝐷𝑉𝐼 ∗ 0.11 + 𝑇 ∗ 0.10 + 𝐴 ∗ 0.08 + 𝐸 ∗

0.06 + 𝑆 ∗ 0.06 + 𝑃 ∗ 0.06 + 𝑊𝑆 ∗ 0.05................................Equation 2 

 

where FFRM is forest fire risk map, LC is the landcover, DR stands for the distance from the road, 

PS is the proximity to the settlement, NDVI means normalised difference vegetation index, T is the 

temperature, A is an aspect, E is the elevation, S means slope, R stands for precipitation and WS is 

the wind speed.  

 

Validation 

Three validation methods were used in this study. The first method overlaid forest fire points of 

2021 on the FFRM. The second method calculated the confusion matrix using a support vector 

machine to identify the user's accuracy, producer's accuracy, kappa coefficient, and overall accuracy 

(Jensen, 1996). At first, 100 random points were generated automatically by the ArcGIS tool 

representing all classifications from very low to very high-risk categories. Each of the 100 random 

points was overlaid on the ground base map in ArcGIS, and the points were then manually verified 

to ascertain if the autogenerated points fell on the five classifications of the predicted risk map. For 

each point, we manually verified the density of the forest, distance to settlement, and road nearby to 

ascertain that the point represents the same category as the prediction. Later, a confusion table was 

created, incorporating correct and incorrect points/classifications. Finally, producer accuracy, 

overall accuracy, and Kappa coefficient were calculated using equations 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
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𝐶𝑎𝑎

𝐶.𝑎
 * 100% ....... Equation 3, Overall accuracy =  

∑ 𝐶𝑎𝑎
𝑢
𝑎=1

𝑄
 * 100% ......... Equation 4 and Kappa 

coefficient = 
∑

𝐶𝑎𝑎
𝑄

𝑢
𝑎=1   − ∑

𝐶𝑎.𝐶.𝑎
𝑄2

𝑢
𝑎=1

1 − ∑
𝐶𝑎.𝐶.𝑎

𝑄2
𝑢
𝑎=1

........Equation 5, respectively (Bahari et al., 2014):  

1. 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑎𝑎

𝐶.𝑎
 * 100% ....... Equation 3 

where, 𝐶𝑎𝑎 is an element at the position of the row and column  

𝐶𝑎𝑎 is the sum of the column  

2. Overall accuracy =  
∑ 𝐶𝑎𝑎

𝑢
𝑎=1

𝑄
 * 100% ......... Equation 4 

where U is the total number of classes and Q is the total number of pixels  

3. Kappa coefficient = 
∑

𝐶𝑎𝑎
𝑄

𝑢
𝑎=1   − ∑

𝐶𝑎.𝐶.𝑎
𝑄2

𝑢
𝑎=1

1 − ∑
𝐶𝑎.𝐶.𝑎

𝑄2
𝑢
𝑎=1

........Equation 5 

       where 𝐶𝑎. is the sum of the row 

 

As for the third method of cross-validation, the receiver operating characteristic (ROC) curve 

method was applied to predict the forest fire risk model. This was based on true-positive rate 

(sensitivity) and false-positive rate (1-specificity) corresponding to the area under the curve (AUC). 

The ROC-AUC was established using ArcSDM in the ArcGIS software, the step required forest fire 

points, non-fire points and the final layer of risk (Mabdeh et al., 2022; Mitra & Das, 2022; Z. Su et 

al., 2018). ArcSDM is an effective tool for categorical map analysis (George et al., 2022), in here 

267 past fire points were randomly selected using the sub-set feature in ArcGIS and a corresponding 

267 non-fire points were created using spatially balanced points under ArcGIS. Finally, under the 

ArcSDM tool, the ROC-AUC tool was used to generate the ROC-AUC curve. 

 

Results  
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Fire Incident Record 

Together, 1,07,443 fire points in the TAL were identified in TAL 

between 2012 and 2021. Most fire incidents were recorded in the 

pre-monsoon season, i.e., March-May (83.55%). From January 

to May, a slightly extended period accounts for almost 99% of 

fire incidents and represents the fire season in this area. On 

average, 10,742 forest fires have occurred annually (Error! 

Reference source not found.), with the highest number of forest 

fires recorded in 2016 (21,166), followed by 2021 (18,544) and 

2019 (13,825). Approximately 65% of all recorded forest fires 

occurred between 2016 and 2021, suggesting an increasing trend of 

forest fires.  

 

Fire incidence and predictor variables  

We categorised the values of each of the 10 variables into five sub-categories based on indicative 

fire risk potential: from very low (1) to very high (5). For example, a high fire risk potential score 

was given to high NDVI values (>0.5), while NDVI values less than 0.1 were considered low fire 

risk due to low fuel load. Fire incidents were overlaid on each of the variables in ArcGIS, most fire 

points were found in the very high risk rating category (see Appendix G), apart from settlement 

proximity. This predictor variable was slightly different, as the relationship with fire occurrence was 

not directly proportional. We found that the number of fires near settlements or roads (>1000m) was 

smaller (26182) than in the following distance category 1000-2000 m (32630).   

 

Fire risk map 

The final map was produced after applying all fuzzy weights based on their risk of influence (Figure 

3). Around 24% of the study area was found to be at very high risk of fire, followed by 18.56% 

under high risk. About 47% of the TAL region is covered by agriculture, and these areas typically 

fall under the very low risk.  

Figure 2  Forest fire incidents 

recorded from 2012 to 2021 
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Figure 3 Forest fire risk map of TAL  including the percentage of risk areas 

Validation of the risk map  

We tested the accuracy of our prediction map by applying two methods. First, the 2021 fire incidents 

were overlaid over the fire risk map (Kanga & Singh, 2017; R S et al., 2016). In this validation step, 

98.15% of fire incidents in 2021 occurred at medium to very high risk areas (Figure 4). 
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Figure 4 Fire incidents of 2021 overlaid on the produced map 

The confusion matrix was applied by using a support vector machine in ArcGIS Pro (Avinash et al., 

2019). Table 2 shows that very low-risk area identification has 100% user accuracy, while very 

high-risk areas are identified with 96% accuracy. The minimum accuracy was 0.84% in the high-

risk zone. In this study, the kappa coefficient was 0.93.  

 

Table 2 Results obtained from the confusion matrix 

Class Value 

Number of autogenerated points 

obtained under fire risk category 

Total 

User 

Accuracy 

Kappa 

cofficient 

Very 

Low  Low Medium High 

Very 

High 

Very Low 48.00 0.00 0.00 0.00 0.00 48.00 1.00 0.00 

Low 0.00 9.00 1.00 0.00 0.00 10.00 0.90 0.00 

Medium 0.00 1.00 9.00 0.00 0.00 10.00 0.90 0.00 
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High 0.00 0.00 3.00 16.00 0.00 19.00 0.84 0.00 

Very High 0.00 0.00 0.00 1.00 23.00 24.00 0.96 0.00 

Total 48.00 10.00 13.00 17.00 23.00 111.00 0.00 0.00 

P_Accuracy 1.00 0.90 0.69 0.94 1.00 0.00 0.95 0.00 

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 

 

Lastly, the ROC curve for the forest fire risk map was calculated and is shown In Figure 6. The 

overall ROC value of the fire risk map was 0.81, indicating very high accuracy.  

 

Figure 5: ROC curve for fuzzy-AHP model, where x axis represents false positive rate and y axis 

represents true positive rate. 

 

Discussion  

In this research, we integrate fuzzy logic and a hierarchical analytical process to examine the forest 

fire risk of the TAL, one of Nepal's most important landscapes. We constructed a spatially explicit 

analysis, considering several parameters likely to influence fire frequency and severity. The forest 

fire in TAL seems to be increasing over the years, suggesting that current management practices 
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and methods are inadequate to address forest fire risk. Matin et al., (2017) and Parajuli et al., (2020) 

concluded that increasing forest fire occurrence is due to anthropogenic activities; however, various 

variables may be at play. Whatever the reason, forest fires will profoundly impact the TAL 

ecosystem unless there is a change in the management approach. Analysing forest fire risk can play 

an important role in designing and implementing effective early detection systems, ideally in 

collaboration with local stakeholders. Fire avoidance and management in the fire-prone landscape 

can free resources for other development priorities (Doerr & Santín, 2016) and, unlike other natural 

hazards, fire risk can be reduced by effective planning (Donovan & Brown, 2007). The goal is to 

preserve the functioning of existing socio-ecological systems in the TAL by enhancing 

management's adaptive capacity (Robinne et al., 2018).  

 

We used VIIRS-derived fire incidents to validate our risk map, offering a verification mode 

completely independent of the set of predictor variables used in its construction. However, the 

annual variation in fire frequency and location can present a challenge to this methodology. Here, 

the highest fire counts were recorded in 2016, a finding confirmed by several other studies (Bhujel 

et al., 2017; Matin et al., 2017; Parajuli et al., 2020). The oft-cited reason for this peak is the 

precipitation deficit recorded in that year (Hamal et al., 2022) and Bhattarai et al., (2022) also 

documented the worrying trend of increasing fire frequency. In South Asia, forest fires usually occur 

in the period from February to May (Reddy et al., 2019; Sahu et al., 2015; Upadhyay et al., 2022); 

we found that 83.55% of forest fires in the TAL were recorded in the pre-monsoon season (March 

to May). Resource-limited assessment and prediction of forest fires in this region should focus on 

the fire season only and achieve reasonable accuracy. However, the assessment methodology may 

be sensitive to the variation between fire seasons; the number of forest fire incidents in 2021 

increased by 250% in the pre-monsoon season compared to 2010 (Bhattarai et al., 2022).  

 

Amongst the variables potentially explaining fire risk tested in this study, land cover classes and 

anthropogenic factors represented approximately 48% of the fuzzy weight. Other studies also show 

that land cover and anthropogenic factors drive forest fire occurrence (Bhujel et al., 2017; Jaiswal 

et al., 2002; Matin et al., 2017; Parajuli et al., 2020; Qadir et al., 2021; Sari, 2021). Unsurprisingly, 

land cover class was the main factor describing forest fire in our study as it determines several 

variables critical to the probability and severity of a fire (Carmenta et al., 2011; Sam et al., 2022; 

Vadrevu et al., 2006). Specifically,  broadleaved forest was identified as the land cover class most 

prone to fire, its heavy annual leaf fall results in a substantial accumulation of fuel load on the forest 

floor (Qadir et al., 2021; Sharma, 1996). Sharma (1996) observed in 1995 that about 90 % of the 
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Terai forests experienced between one and three fires each year in the pre-monsoon season. As fuel 

load plays a vital role in sustaining and spreading fire, the spatial distribution of broadleaved forests 

and fuel within them is critical for predicting areas at risk (Krishna P Vadrevu et al., 2006).  

 

The second and third most important variables determining forest fire were distance from the road 

(0.15) and proximity to settlement (0.13). Together, these two variables represent the anthropogenic 

factor, previously shown as a key determinant of fire frequency (Bhujel et al., 2022; Kunwar & 

Khaling, 2006; Matin et al., 2017; Parajuli et al., 2020; Sibanda et al., 2011). Proximity to road had 

higher fuzzy weight than proximity to settlement, probably reflecting the kind of human activity 

undertaken in either setting. Romero-Calcerrada et al. (2008) found that among all the 

anthropogenic factors, the highest fire risk was associated with proximity to roads. Tiwari et al. 

(2021) argued that distance to road and settlement might have a lower impact on risk in specific 

locations, an effect largely driven by human behaviour and habits. Parajuli et al., (2022) state that 

most forest fires in the Terai region are due to human negligence and lack of awareness, indicating 

that human population density during critical periods may be the underlying driver. In this light, 

selecting the variables influencing forest fire and considering them in the right context is critically 

important when conducting multicriteria analysis. For example, studies typically consider steep 

slopes as a factor contributing to fire risk, but most forests in the TAL are on gentler slopes; a 

relatively modest slope of 15% is considered a very high-risk zone in this study. Burgess (2011) and 

Matin et al., (2017) arrived at similar conclusion while analysing the fire risk zone in one of the 

districts in this study area; slopes considered at low risk elsewhere were elevated to the highest risk 

category. Qadir et al., (2021) found significantly higher fire incidence (55%) on the lower steep 

slope (<15%) in Nepal and UğurBaltacı (2020) found that the risk of fire decreases as the slope 

increases in some specific locations. We think this atypical finding is due to strong confounding 

with settlement proximity, humans typically settle the flat or shallow slope terrain first. Our study 

shows that proximity to roads and settlements is a strong fire predictor, potentially confounding 

slope steepness. 

 

Validation of fire risk maps is one of the most important aspects of their communication, users must 

be confident in the presented data in order to act on it (Feizizadeh et al., 2014; Pourghasemi et al., 

2016). We overlaid 2021 fire points over the final risk map, Figure 4 shows that around 82% of 

recorded incidents occurred within the very high and high-risk zones as identified by our map. Matin 

et al. (2017) carried out a similar exercise for forest fire counts derived from MODIS hotspots in 

Nepal and found that 80% of forest fires were in very high to high-risk zones. To date, most of the 
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research identifying forest fire risk areas in Nepal found that the TAL region is the very high-risk 

zone in the country (Parajuli et al., 2015; Qadir et al., 2021; Ranabhat et al., 2022). A recent study 

carried out by Bhujel et al., (2022) also found that the country's central and western regions have 

high fire-prone areas, similar to the risk identified in this study. Conversely, and supporting the 

methodology applied to fire risk map creation in this study, there were only limited fire counts in 

the very low and low regions (1.58%). Eskandari (2017) obtained a similar result (3% under low 

and very low and 80% for high and very high) when calculating the accuracy assessment of the fire 

risk using fuzzy AHP method. We also assessed our map's accuracy by computing the confusion 

matrix's kappa coefficient describing the overall accuracy among the classified fire risk map from 

very low risk to very-high risk. In our study, the overall accuracy was 95%, the kappa coefficient 

was 0.93 and the AUC value was 0.81, suggesting the map is accurate and fit for purpose. The AUC 

value above 0.80 is considered highly accurate and well-accepted (Jafarzadeh et al., 2017). Tiwari 

et al., (2021) report similar results from India when comparing the AUC values under fuzzy-AHP, 

AHP and frequency methods of forest fire risk map where the highest AUC value was under fuzzy-

AHP method (0.83). 

 

Many scholars use expert opinion to identify fuzzy weights of different variables (Fu et al., 2020; 

Krishna Prasad Vadrevu et al., 2010). Nguyen et al. (2009) argue that fuzzy methods may be 

successful without the use of any expert knowledge. In this study, fuzzy weights were assigned 

based on information found in the literature (shown in Appendix A). There are many examples in 

which expert opinions were not considered when applying fuzzy theory logic, but still leading to a 

realistic and reliable outcome (Langarizadeh & Orooji, 2018; Liyi et al., 2010; Zhang et al., 2020). 

However, the methodology is not foolproof; uncertainty might propagate through the model if 

spatially explicit variables with different resolutions are present in the predictor dataset 

(Malczewski, 2006), necessitating rescaling where possible (Feizizadeh & Blaschke, 2014). New 

technology and satellite products arriving in near future may alleviate this issue to some extent; 

using high-resolution imagery supported by drone-based short-distance surveys may significantly 

improve the accuracy of the result (Afghah et al., 2019).  

 

Conclusion  

The study identifies fire hotspot areas in one of Nepal's ecologically most important landscapes. 

Most forest fires occur in the pre-monsoon season (83.55%), as the heavy leaf fall in broadleve 

woodlands leads to a substantial fuel load on the forest floor. The fuzzy AHP method applied here 

shows that land cover classes and anthropogenic factors accounted for 48% of fuzzy weight, 
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indicating that areas with high forest and human population density are at the highest fire risk. The 

resulting high-resolution risk map may serve as a useful tool for preventing, managing, and 

controlling forest fires in the TAL. It can also be used to set up early warning processes or 

emergency response plans at the landscape level. Further research incorporating different MCDA-

based expert opinion or additional variables could potentially increase the accuracy of this 

methodology. 
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Supplementary  

 

Appendix A: Variables used in different literatures 

Sources Slope Aspect Elev Temp Precip 

Wind 

Speed 

Land 

Cover NDVI 

Dinstance 

from 

Road 

Proximity 

to the 

settlement 

Jaiswal et 

al., (2002) * 
       

* * 

Vadrevu 

et al., 

(2010) * * * * * 
 

* 
   

Jung et al., 

(2013) * * 
    

* 
 

* * 

Sivrikaya 

et al., 

(2014) * 
       

* * 

Pourghase

mi et al., 

(2016) * * * * * * * * * * 

Eugenio et 

al., (2016) * * * * * 
   

* 
 

You et al., 

(2017) * * * * * 
   

* * 

Matin et 

al., (2017) * * * * 
  

* 
 

* * 

Eskandari, 

(2017) * * * * * * * 
 

* * 

Jafarzadeh 

et al., 

(2017) * * * * * 
 

* 
 

* * 

Akbulak 

et al., 

(2018) * * * 
    

* * * 

Ghorbanza

deh et al., 

(2020) * * * * * * * * * * 

Zeleke 

(2020) * * * * * * * 
 

* * 
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Abedi et 

al., (2021) * * * * * * * * * * 

Faramarzi 

et al., 

(2021) * * * * * * * * * * 

Sari (2021) * * * * * * * * * * 

Tiwari et 

al., (2021) * * * * * * * * * * 
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Appendix B: Map of different variables used 
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Appendix C :  Fuzzy AHP Pairwise ComparisionMatrix 

 

  

Variables Landuse 

Distance 

from Road 

Distance 

from 

Settlement NDVI Aspect Elevation Slope Temperature Rainfall Wind 

Landuse 1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 2.0 3.0 4.0 3.0 4.0 5.0 3.0 4.0 5.0 1.0 2.0 3.0 2.0 3.0 4.0 2.0 3.0 4.0 

Distance 

from Road       1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 2.0 3.0 4.0 2.0 3.0 4.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 

Distance 

from 

Settlement             1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 2.0 3.0 4.0 2.0 3.0 4.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 

NDVI                   1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 

Aspect                         1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 0.3 0.5 1.0 1.0 2.0 3.0 1.0 2.0 3.0 

Elevation                               1.0 1.0 1.0 1.0 2.0 3.0 0.3 0.5 1.0 1.0 2.0 3.0 1.0 2.0 3.0 

Slope                                     1.0 1.0 1.0 0.3 0.5 1.0 1.0 2.0 3.0 1.0 2.0 3.0 

Temperature                                           1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 

Rainfall                                                 1.0 1.0 1.0 1.0 2.0 3.0 

Wind                                                       1.0 1.0 1.0 
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Appendix D: Linguistic variables and their respective numbers 

Linguistic Variables  

Triangular fuzzy 

numbers  

Reciprocal Triangular 

Fuzzy Numbers  

Extremely strong (9,9,9) (1/9, 1/9, 1/9) 

Very strong (6,7,8) (1/8, 1/7, 1/6) 

Strong (4,5,6) (1/6, 1/5, 1/4) 

Moderately strong (2,3,4) (1/4, 1/3, 1/2) 

Equally strong (1,1,1) (1,1,1) 

Intermediate  

(7,8,9) (5,6,7) 

(3,4,5), (1,2,3)  

(1/9, 1/8, 1/7), (1/7, 

1/6,1/5), (1/5, 1/4, 1/3), 

(1/3, 1/2,1)  
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Appendix E : Assigning maximum and minimum value in the membership function 

Factor Criteria Risk Rating Rating  
Linear 

Thresholds 

Min Max 

Aspect 
Southern, east and western 

Aspect more vulnerable  

South/Southwest 5 

1 5 
Southeast 4 

East/West 3 

Northeast/Northwest 2 

Flat/North 1 

Slope 
Slope in TAL areas less 

than <15% is at higher risk   high value to higher risk  
 45 0 

Elevation 

Increase in elevation also 

increases the higher 

precipitation high value to higher risk 

2200 0 

Temperature 
Higher temperatures 

increase the fire risk  high value to higher risk 
25 40 

Precipitation 
Less precipitation higher 

risk of fire high value to higher risk 
433 33 

Wind Speed 
High wind speed increases 

the rate of spread high value to higher risk 
0.6 7.2 

Landcover  

Broadleaved forest has 

higher risk of fire than other 

types 

Broadleaved closed 

forest 5 

0 5 

Needle leaved closed 

forest/Broadleaved 

open forest 4 

Needle leaved open 

forest 3 

Shrubland/Grassland 2 

Agriculture 0 

Bare area/Built-up 

area/River/Lake 0 

NDVI 
Higher NDVI, higher 

chance to fire risk high value to higher risk 
0 0.8 

Distance from 

Road 

Frequent movement near 

roads has higher chance of 

fire ignition high value to higher risk 

10000 0 

Distance from 

Settlement 

Settlement near to the forest 

has greater chance for fire 

ignition high value to higher risk 

10000 0 
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 Appendix F: Fuzzification of each layer between 0 and 1.Values near 1 is high risk areas  
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Appendix G : Rating of variables and their relation with the fire counts 

Variables Rating 

Pixel 

Counts  

% of 

pixel 

counts 

No of 

Fire 

Incidents 

% of fire 

incidents 

Fuzzy 

Weight 

Slope (%)            

>15 5 17860928 65.38% 31442 29.26%  

 

0.06 

15-25 4 2334543 8.55% 13911 12.95% 

25-335 3 2351230 8.61% 16505 15.36% 

35-4545 2 1958751 7.17% 16910 15.74% 

>45 1 2811343 10.29% 28674 26.69% 

Elevation (m)            

57-500 5 20939725 76.50% 61123 56.89%  

 

0.06 

500-1000 4 5184445 18.94% 39369 36.64% 

1000-1500 3 1147990 4.19% 6416 5.97% 

1500-2000 2 99178 0.36% 519 0.48% 

>2000 1 1204 0.00% 15 0.01% 

Aspect            

South/South West 5 9024541 33.04% 37552 34.95%  

 

0.08 

South East 4 4198746 15.37% 15640 14.56% 

East/West 3 7054757 25.83% 26952 25.09% 

North East/North West 2 5642563 20.66% 21566 20.07% 

Flat/North 1 1396188 5.11% 5732 5.33% 

Precipiation (mm)            

<100 5 15414759 55.62% 59449 55.33%  

 

0.06 

100-200 4 5551398 20.05% 19483 18.13% 

200-300 3 6023239 9.90% 24843 23.12% 

300-400 2 788458 13.91% 3430 3.19% 

>400 1 142002 0.52% 237 0.22% 

Temperature (Celcuis)            

>39 5 3759237 14.61% 5928 5.52%  

 

0.10 

36-39 4 8512136 32.38% 30245 28.15% 

33-36 3 11408146 41.11% 57185 53.22% 

30-33 2 2723943 10.83% 13616 12.67% 

<30 1 193179 1.06% 468 0.44% 

Wind Speed (m/s)            

>4 5 3886342 14.20% 9613 8.95%  

 

0.05 

3-4 4 10836903 39.59% 41759 38.87% 

2-3 3 10145045 37.06% 46307 43.10% 

1-2 2 2490673 9.10% 9755 9.08% 

0.6-1 1 13966 0.05% 8 0.01% 

NDVI            

>0.5 5 2072700 35.24% 65317 60.80% 

0.4-0.5 4 7609566 16.53% 17531 41.62% 
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0.3-0.4 3 8903516 15.88% 13110 11.82%  

 

0.11 

0.2-0.3 2 5324415 12.00% 6508 5.52% 

<0.2 1 3563442 20.35% 4971 4.46% 

Land cover classes             

Broadleaved closed forest 5 11813853 43.27% 86339 80.36%  

 

 

 

0.20 

Needleleaved closed 

forest/Broadleaved open forest 4 2329217 8.53% 20007 18.62% 

Needleleaved open forest 3 22288 0.08% 116 0.11% 

Shrubland/Grassland 2 164720 0.60% 980 0.91% 

Agriculture 1 11116014 40.72% 0 0.00% 

Bare area/Builtup 

area/River/Lake 0 1854736 6.79% 0 0.00% 

Distance from the road (m)             

<1000 5 23722608 86.66% 77549 72.18%  

 

0.15 

1000-2000 4 1701440 6.22% 14020 13.05% 

2000-3000 3 630493 2.30% 5371 5.00% 

3000-4000 2 390840 1.43% 3368 3.13% 

>4000 1 927548 3.39% 7134 6.64% 

Proximity to the settlement 

(m)           

 

<1000 5 15753551 57.55% 26182 24.37%  

 

0.13 

1000-2000 4 5762782 21.05% 32630 30.37% 

2000-3000 3 2487175 9.09% 19059 17.74% 

3000-4000 2 1253403 4.58% 10727 9.98% 

>4000 1 2115815 7.73% 18844 17.54% 
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