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Abstract: 

ASHRAE Global Thermal Comfort Database has been extensively used for analyzing 

specific thermal comfort parameters or models, evaluating subjective metrics, and 

integrating with machine learning algorithms. Outlier detection is regarded as an 

essential step in data preprocessing, but current publications related to this database 

paid less attention to the influence of outliers in raw datasets. This study aims to 

investigate the filter performance of different outlier detection methods. Three 

stochastic-based approaches have been performed and analyzed based on the example 

of predicting thermal preference using the Support Vector Machine (SVM) algorithm 

as a case study to compare the predictions before and after outlier removal. Results 

show that all three rules can filter some obvious outliers, and the Boxplot rule produces 

the most moderate filer results, whereas the 3-Sigma rule sometimes fails to detect 

outliers and the Hampel rule may provide an aggressive solution that causes a false 

alarm. It has also been discovered that a small reduction in establishing machine 

learning models can result in less complicated and smoother decision boundaries, which 

has the potential to provide more energy-efficient and conflict-free solutions. 

Keywords: Outlier detection, Thermal preference, ASHRAE global thermal comfort 

database, Machine learning, Support vector machine 
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1. Introduction 

Providing thermally acceptable indoor environments in buildings can positively 

promote occupants’ satisfaction [1], health [2][3], productivity [4][5], and well-being 

[6]. Traditional heat-balance based PMV-PPD index [7] tries to transparently explain 

the interactions between physical environments and human bodies, but it usually 

provides uniform solutions for different scenarios with little space for model updates 

and sometimes present poor predicative performance in real practice [8]. On the other 

hand, the adaptive thermal comfort models focus more on the important adaptive 

response related to occupants’ thermal expectations, physiological acclimation, and 

behavioral patterns in real buildings. The adaptive approach is more sophisticated and 

responsive to environmental control algorithms, increasing the opportunities for 

personalized control and occupant acceptability, reducing energy consumption, and 

encouraging climatically responsive and environmentally responsible building design 

Abbreviations 

 

Af   Tropical rainforest climate in Köppen climate classification 

Am  Tropical monsoon climate in Köppen climate classification 

Aw  Tropical savanna climate with dry-winter characteristics in Köppen climate 

classification 

BSh  Hot semi-arid climate in Köppen climate classification 

BWh Hot desert climate in Köppen climate classification 

Cfa  Humid subtropical climate in Köppen climate classification 

Cfb  Oceanic climate in Köppen climate classification 

Csb  Warm-summer Mediterranean climate in Köppen climate classification 

Cwa Monsoon-influenced humid subtropical climate in Köppen climate 

classification 

Cwb Subtropical highland climate or Monsoon-influenced temperate oceanic 

climate in Köppen climate classification 

IQR  Interquartile Range 

MAD  Median Absolute Deviation 

PMV Predicted Mean Vote 

PPD Predicted Percentage of Dissatisfied 

RBF Radial Basis Function 

SVM Support Vector Machine 



[9].  

Data-driven methods, such as support vector machine (SVM) [10][11], random forest 

[12], decision tree [13], Bayesian approach [14] [15], neural network [16], have been 

extensively used in developing adaptive thermal comfort models based on the datasets. 

They are data-sensitive and capable of providing highly customized solutions for 

specific groups or individuals. During the training process of machine learning 

algorithms, outliers will skew the results of statistical analyses performed on the dataset, 

resulting in less effective and useful models [17]. Therefore, the detection of outliers 

can assist machine learning algorithms in making more rational predictions in buildings. 

1.1 Global Thermal Comfort Database II 

The ASHRAE Global Thermal Comfort Database II (short name: Comfort Database) is 

an online and open-source database that includes approximately 81,846 complete data 

points collected and harmonized from the raw data of 52 field studies from 160 

buildings worldwide [18], in addition to the 22,000 records published in Database I 

under RP-884 project 20 years ago to test the hypothesis of adaptive thermal comfort 

theory [19]. This dataset was organized with a standard spreadsheet format that contains 

basic identifiers, instrumental measurements, subjective evaluations, calculated indices, 

and environmental control. It provides opportunities for scholars to conduct additional 

analyses benefiting from its large sample size and standardised data format. Since the 

release of Comfort Database, many research efforts have already been focused on 1) 

analysis of specific thermal comfort parameters or models, such as testing differences 

in air and radiant temperatures [20] [21], clothing adjustments in naturally ventilated 

buildings [22] or classrooms [23], validating [24] or enhancing [25] PMV predictive 

accuracy, comparing performance of PMV and modified PMV models [26], PMV 

predictions in mixed-mode buildings [27], building modified SET models [28]; 2) 

subjective evaluations, such as potential of extending acceptable temperatures [29], 

influence of demographic and contextual factors on thermal sensation [30], thermal 

sensitivity of occupants from different building types or geographic locations [31] [32], 

identifying key parameters that influence thermal preference [33]; 3) integration with 



machine learning algorithms, such as anomaly detection in SVM [34], extracting 

knowledge for transfer learning[35], comparing predictive accuracies of different 

machine learning algorithms [36], building predictive models based on SVM [37] or 

Bayesian inference approach [38] [39]. 

For a better understanding of Comfort Database related studies, Appendix A 

summarized their environmental inputs, subjective metrics, contextual factors, data sum, 

algorithm, and outlier preprocessing methods. The following points are noteworthy. 

· Algorithms: in most studies, regression-based methods were used concerning the 

classical adaptive thermal comfort theories. They typically provide linear models 

for indoor environmental design, but thermal comfort is a complex nonlinear 

interaction process between the human body and physical environments, and these 

linear models may fall short of providing an understanding of this process. Thanks 

to the large data size and better diversity of Comfort Database, many scholars have 

conducted research using machine learning methods, which often demonstrate 

higher prediction accuracy than traditional models. 

· Subjective metrics: thermal sensation vote is the most popular indicator due to its 

popularity in standards and PMV theory, but other metrics, such as thermal 

preference or thermal acceptability, have received less attention and can describe 

occupants’ thermal states from different perspectives. When conducting thermal 

comfort studies in laboratories or real buildings, four subjective thermal comfort 

metrics are commonly used include thermal sensation, thermal acceptability, 

thermal satisfaction, and thermal preference: 1) thermal sensation is considered to 

be the most objective as it associates with physical measurement and PMV index; 

2) thermal acceptability turns to be more subjective as people can accept the 

environments even when they feel uncomfortable; 3) thermal satisfaction usually 

measures overall assessment during Post Occupancy Evaluation (POE) process; 4) 

thermal preference direct indicates the preferred adjustment to thermal 

environments [40]. Among these four metrics, thermal preference is perhaps the 

most important and direct metric in ambient control because it can indicate to the 



HVAC system what type of control action should be taken [12], but the metric of 

thermal preference has received insufficient attention in Comfort Database related 

research. 

· Data sum: In the released ASHRAE dataset [18], the original csv file contains 

comprehensive information on environmental parameters as well as subjective 

evaluations of investigated locations in 70 columns. However, some monitoring 

parameters, such as air velocity at different heights, were rarely collected in practice, 

and some columns repeated the same information, such as Fahrenheit and Celsius 

degrees for the same value. Therefore, 42 columns with sufficient data collection 

and non-overlapping information have been depicted in Fig. 1 to provide a general 

overview of the ASHRAE dataset while reducing redundancy. The black colour 

indicates that there is a data point at that specific location, while the white colour 

indicates that data is missing. Overall, the first few columns of data are fairly 

complete because the majority of them are basic information, such as publication 

date, research location, climate, etc. However, many columns to the left have a wide 

range of blanks. This is due to the different research aims or objectives, contributors 

to the database gathered various contextual factors to fulfill the adaptive thermal 

comfort theory. However, combining them into a single format resulted in many 

irregular missing data points. When other scholars conduct secondary analyses from 

specific perspectives, the sample size will differ significantly. 

· Outlier processing: it is reported that the results of regression analysis can be 

seriously affected by just one or two erroneous data points [41], and an outlier-free 

dataset also benefits machine learning algorithms by allowing them to train more 

accurate models [42]. Although outlier detection is a broad topic with numerous 

technologies and real-world applications, such as fraud detection/diagnosis, loan 

application, unauthorized access in a computer network, activity monitoring, 

image/text analysis, motion segmentation, and medical condition monitoring [43], 

most studies on the Comfort Database did not pay much attention or provide 

detailed descriptions of outlier processing. To avoid outliers, research [25] and [44] 



set a minimum sample size for each analyzed group, but extreme values in normal 

groups were not addressed. The method of inspection was used in research [45] to 

filter out unexpected values, but it would require too much labor when the sample 

size is large. The Boxplot rule was used in research [38] and [26] to select outliers, 

but a more systematic view of different outlier removal approaches in the thermal 

comfort domain has yet to be discovered. 

 

Fig. 1 Visualisation of missing data in Comfort Database (The sparkline at right 

summarizes the general completeness of the data. The horizontal position of a specific 

point in this sparkline indicates the number of data points in this row, with the left 

being less and the right being more. In this case, the minimum and maximum sums 

are 10 and 37, respectively.) 

1.2 Brief review of outlier detection techniques 

Outlier detection is defined as the task of identifying patterns in data that differ in some 

respect from expected behavior. These unexpected patterns are also known as 

anomalies, discordant observations, exceptions, aberrations, surprises, peculiarities, or 

contaminants depending on the application domains [46]. The common outlier 

detection approaches can be categorized as [47]: 

· Stochastic-based: it calculates the generative probability density function of data. 

A new observation will be marked as an outlier if its probability density is low in 



comparison to the statistical distribution fitted to previous data [48]. This approach 

is mathematically well-grounded as a “transparent” method, but its performance is 

limited when the sample size is very small. 

· Distance-based: it assumes that the normal data points have close neighbours, 

whereas outliers are located far away from those points [49]. Unlike the Stochastic-

based approach, it does not require prior knowledge of data distribution, but it 

suffers from selecting the appropriate distance metrics or cluster width to establish 

the similarity between data points. 

· Reconstruction-based: it trains the underlying data using neural networks or 

principal components analysis (PCA). When new test data is added, the 

reconstruction error (the distance between it and its representation) will be related to 

the outlier score [50]. This approach allows for model training flexibility, but its 

performance is highly dependent on model parameters and may suffer 

from searching for the best training method. 

· Domain-based: it will create a boundary based on the structure of the training data, 

and outliers will be determined according to their proximity to this boundary [51]. 

This approach is often achieved using support vector machine (SVM) algorithms, 

and it faces the challenge of selecting suitable kernel functions and tuning 

hyperparameters for the desired boundary region. 

· Information-theoretic based: it assumes that outliers are supposed to change the 

information content of the entire dataset (based on Shannon’s information entropy 

or entropy-related indices), and any subsets with the greatest difference will contain 

outliers [52]. The drawback of this approach is that it is only sensitive when there 

are a large number of outliers in the dataset. 

These five outlier detection approaches have numerous real-world applications in 

different domains, such as IT security [53], healthcare [54], industrial monitoring [55], 

image processing [56], text mining [57], and sensor networks [58]. However, a common 

understanding of outliers has not been reached, and all of these methods have been used 



in various domains based on specific considerations in practice and theory. Therefore, 

it is difficult to recommend which outlier detection method is always the best due to the 

availability/dimension/continuity/format of data, the specific application domain, and 

the wide variety of real-world datasets. Specifically, stochastic-based rules are 

frequently used in the analysis that can be mathematically described, including 

probability density function (pdf) [59] or Hidden Markov Model (HMM) [60], while 

distance-based rules measure data similarity in areas such as climate data [61], network 

intrusion [62], and protein sequences [63]. Reconstruction-based rules model the 

underlying data by developing complicated neural network structures, such as LSTM 

(long short-term memory) [64], or by projecting data into lower dimensional spaces, 

such as PCA (Principal Components Analysis) [65]. Domain-based rules generate 

decision boundaries (usually based on SVM) and are applied in various fields including 

audio recordings [66], text data [67], functional magnetic resonance imaging [68], and 

identifying patient deterioration in vital signs [69]. Information-theoretic based rules 

regard entropy as the fundamental concept, such as developing conditional entropy or 

relative conditional entropy [52], combining mutual information [70], and 

incorporating it into the Bayesian network frame [71]. 

In thermal comfort studies, outlier detection is usually involved in data preprocessing 

to remove the misleading effects of extreme values. The available techniques include 

stochastic-based methods like the 3-Sigma rule [72], the Boxplot rule [73], and the 

Hampel rule [74]; distance-based methods such as cook distance [75] and k-nearest 

neighbour (KNN) [76]; manually inspection [45] or setting fixed ranges [77]; and 

binning or adjusting variables into specific intervals [78]. The majority of studies in 

thermal comfort research filtered outliers using stochastic-based methods, and more 

details can be found in Appendix B. Although outlier detection approaches have been 

extensive used in many domains, they typically appear only during data preprocessing 

rather than explaining the impact of these outliers on model establishment in the thermal 

comfort community. Instead of enumerating and calculating the performance of all 

outlier detection methods, the aim of this study is to investigate how stochastic-based 



outlier removal affects data distribution in the database and examine the filter 

performance of stochastic-based outlier detection approaches on Comfort Database.  

 

2. Methodology 

Despite the fact that there are five major types of outlier detection techniques, 

stochastic-based approaches are used in more than half of the thermal comfort research 

publications (Appendix B), with a focus on three rules: the 3-Sigma rule, the Boxplot 

rule, and the Hampel rule. However, the foundation and performance of these three 

filtering methods have received less attention in previous published 

articles. Therefore, this section summarizes the theoretical foundations of these three 

rules. To investigate how these detection rules perform on the machine learning 

algorithms, the SVM (Support Vector Machine) was taken to analyze predictive 

performance and decision boundaries both before and after outlier removal as a case 

study to demonstrate the shared characteristics. Fig. 2 depicts a schematic overview of 

the methodology.  

 

Fig. 2 The schematic overview of the methodology 



Within SVM classifiers, “thermal preference” was chosen as the predicted label 

because it can indicate to the built environments what type of control action should be 

taken [12] but has not been widely discussed in previous publications. The stochastic-

based outlier detection approach typically employs the three steps to detect an outlier 

listed below [48]: 

1) Compute a reference value 𝑥0 and a measured variation 𝜁 from the data sequence 

{𝑥𝑘};  

2) Choose a threshold parameter 𝑡; 

3) Test every data in sequence {𝑥𝑘} to determine whether it is an outlier according to 

the rule described:  

|𝑥𝑘 − 𝑥0| > 𝑡 𝜁                                                    (1) 

Eq. (1) intuitively states that if the new data 𝑥𝑘lies too far from the reference value 𝑥0, 

it is recognized as an outlier. The aggressiveness of the detection procedure will be 

adjusted by the threshold 𝑡. If 𝑡 equals 0, all data different from 𝑥0will be outliers; if 𝑡 

is too large, the detection rule will find no outliers. 

2.1 Stochastic-based outlier detection rules 

This section presents some fundamentals of three stochastic-based models which have 

been widely used in thermal comfort studies (details in Appendix B): the 3-Sigma rule, 

Boxplot rule, and Hampel rule. 

2.1.1 3-Sigma rule 

The basic idea of the 3-Sigma rule, also known as the extreme studentized deviation 

(ESD) identifier [79], states that if a data sequence is well approximated to Gaussian 

random variables, the probability of seeing a value xi more than three standard 

deviations away from the mean is only about 0.3%: 

|𝑥𝑖 − �̂�| > 3�̂�                                                   (2) 

Where �̂� is the sample mean, and �̂� is the sample standard deviation. 

However, outliers themselves in the dataset can cause significant errors in estimating 

the mean and standard deviation values, which are the foundations of this outlier 



detection procedure [80]. As a result, the magnitude of the differences between the 

observed value 𝑥𝑖 and mean value �̂� may be too small, and the scale estimate could be 

too large, making detecting outliers more difficult. 

2.1.2 Boxplot rule 

The Boxplot rule was introduced by John Tukey for exploratory data analysis in the 

1970s [81]. It detects outliers by utilizing quartile information with box and whiskers 

plots, which include the lower quartile (Q1, 25th percentile), median (Q2, 50th 

percentile), upper quartile (Q3, 75th percentile), and interquartile range (IQR=Q3-Q1): 

𝑥𝑖 > 𝑄3 + 1.5𝐼𝑄𝑅 ∪ 𝑥𝑖 < 𝑄1 − 1.5𝐼𝑄𝑅                                       (3) 

Boxplot rule can be applied to data with asymmetric distributions in addition to 

Gaussian distributions due to the specific computation of the 25th and 75th percentiles. 

It also substitutes the median value for the mean value, removing the potentially 

misleading effects of the extremely large outliers and making it more outlier-resistant. 

2.1.3 Hampel rule 

To honour Hampel’s contribution in describing the useful characteristics of the median 

absolute deviation (MAD) scale estimator [82], Davies and Gather [83] proposed the 

Hampel rule based on the MAD scale estimator: 

|𝑥𝑖 − �̃�| > 𝛼𝑆                                                     (4) 

𝑆 =
1

0.6745
𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑖 − �̃�|}                                                  (5) 

Where �̃� is the median value, α is the threshold parameter (suggested as 3 in [48]), and 

S is the MAD scale estimator. 

Similar to the symmetry of the 3-sigma rule, the Hampel rule is unable to present the 

asymmetric property of data distributions. The MAD scale estimator used in the 

Hampel rule also has lower outlier sensitivities than the mean and standard deviation 

values. 



2.1.4 Performance simulation of three outlier detection rules 

This section intends to compare the performance of outlier detection rules in sections 

2.1.1 to 2.1.3. There were 1000 sampling data sets, which followed the normal 

distribution with a mean value of 20 and a standard deviation value of 3.33. It was 

generated using the Python package numpy.random with a random seed of 42. This seed 

parameter ensures that the same set of random numbers appears each time when the 

same seed is reset [84]. Outliers with different contamination levels were generated 

beyond the 20-30 boundary, as shown in Fig. 3. The introduction of simulated data here 

is intended to reflect the filtering performance of the three stochastic-based outlier 

detection rules when subjected to the same normally distributed data and noise. It serves 

as a benchmark and a compared reference for the analyses using the Comfort Database 

in this paper because real-world data typically deviates from a standardised normal 

distribution. 

 

(a) 2% contamination level 

 

(b) 5% contamination level 

 

(c) 10% contamination level 

 

(d) 20% contamination level 

 

(e) 30% contamination level 

 

(f) 40% contamination level 



 

(g) 60% contamination level 

 

(h) 60% contamination level with 

very imbalanced outliers 

 

Fig. 3. Generated data points under different contamination levels 

 

Table 1. Predictive boundaries and outlier sums of three outlier detection rules under 

different contamination levels 

 
3-sigma 

upper 

3-sigma 

lower 

Boxplot 

upper 

Boxplot 

lower 

Hampel 

upper 

Hampel 

lower 

2% boundary 32.8 7.0 29.1 10.7 30.09 9.67 

2% sum (10 outliers) 4 7 
11 (one false 

positive) 

11 (one false 

positive) 
7 8 

5% boundary 37.0 2.6 29.6 9.71 30.84 8.74 

5% sum (25 outliers) 15 13 21 22 19 21 

10% boundary 41.8 -1.8 30.1 10.1 31.1 9.0 

10% sum (50 outliers) 21 18 40 43 38 41 

20% boundary 47.3 -7.0 31.7 8.1 32.9 6.6 

20% sum (100 outliers) 18 14 78 66 72 62 

30% boundary 55.5 -15.3 34.5 5.6 36.3 3.9 

30% sum (150 outliers) 0 0 112 106 97 91 

40% boundary 58.4 -18.4 37.5 2.8 39.3 0.5 

40% sum (200 outliers) 0 0 104 108 93 95 

60% boundary 67.5 -27.5 53.3 -13.3 57.2 -17.3 

60% sum (300 outliers) 0 0 0 0 0 0 

imbalanced 60% boundary 2937.1 -2018.6 1419.9 -833.2 75.0 -35.7 

imbalanced 60% sum (300 outliers) 2 0 159 0 296 0 

 



  

Fig 4. Predictive accuracies of outlier detection rule 

Table 1 and Fig. 4 present the results of outlier removal. When the contamination level 

increases, two median-value based rules (Boxplot and Hampel rules) outperforms the 

mean-value based rule (3-sigma rule) more. The 3-sigma rule can rarely detect any 

outliers when the contamination level is over 30%. Pearson [48] also demonstrated 

mathematically that the 3-sigma rule can fail to detect outliers when contamination 

levels exceed 10%. For two median-value based rules, the Boxplot rule generally 

outperforms than Hampel rule. However, in this extremely imbalanced case Fig. 3h, the 

Hampel rule performs better because it is based on the 2/4 quantile value, whereas the 

boxplot is based on the 1/4 and 3/4 quantile values. The Hampel rule may be more 

appropriate when the 2/4 quantile can provide more solid information to represent the 

data distribution. 

2.2 Support vector machine (SVM) algorithm 

The support vector machine (SVM) is a supervised algorithm based on the Vapnik-

Chervonenkis theory, which attempts to statistically explain the learning process [85]. 



When compared to other machine learning algorithms, the SVM has the advantage of 

avoiding over-fitting and local minima, performing well with limited training data, and 

solving problems with non-linear and high-dimensional patterns. It has been widely 

used in face detection [86], text categorization [87], image classification [88], 

bioinformatics [89], protein fold and remote homology detection [90], handwriting 

recognition [91], generalized predictive control (GPC) [92], and also in the thermal 

comfort research domain. Megri et al. [93] demonstrated the feasibility of applying 

SVM to small groups of people, such as the sick, disabled, or elderly. Chaudhuri et al. 

[94] used skin temperature to assess thermal comfort or discomfort based on SVM and 

extreme learning machine (ELM) classifiers. The predictive accuracy of their SVM 

classifier is around 87%, which is 7% higher than the ELM classifier. Dai [95] also 

investigated the predictive performance of skin temperature in steady-state conditions 

based on SVM and achieved 90% predictive accuracy. Aryal and Becerik-gerber [96] 

employed five machine learning algorithms to analyze individual thermal sensations 

using wrist-worn sensors, thermal cameras, and environmental parameters. Their 

findings suggested that SVM with a quadratic kernel outperformed other algorithms. 

However, Zhou et al [37] discovered that using an SVM model to analyze RP-884 data 

has the benefits of self-learning and self-correction, but it can be unreliable in extreme 

conditions. Therefore, this paper will regard the SVM algorithm as one case study to 

discuss how extreme conditions, namely outliers or anomalies, affects the performance 

of machine learning algorithms.  

The SVM algorithm was proposed by Cortes and Vapnik in 1995 [97]. The fundamental 

goal of the SVM classifier is to create the best hyperplanes possible to distinguish the 

data vectors with different features. The optimization problem of the soft-margin SVM 

is: 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
||𝑤||2 + 𝐶 ∑ ξ𝑖𝑖                                                                (6) 

subject to: yi(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖                                                           (7)         



Where w is the weight vector, ξ𝑖 are known as slack variables that allow an example to 

be in the margin (0 ≤ ξ𝑖 ≤ 1) or misclassified (ξ𝑖 ≥ 1), b is the bias, and parameter C is 

a regularization factor that determines the relative importance of maximizing margins 

and minimizing the amount of slack. 

After using Lagrange multipliers, the dual formulation form of SVM minimization can 

be expressed in terms of variables 𝛼𝑖: 

𝑚𝑖𝑛
1

2
∑ 𝑦𝑖𝑖𝑗 𝛼𝑖𝑦𝑗𝛼𝑗𝐾(𝑥𝑖𝑥𝑗) − ∑ 𝛼𝑖𝑖                                                      (8) 

Where 𝐾(𝑥𝑖𝑥𝑗) is a kernel function that converts the original non-linear observations 

into a higher-dimensional space where they can be separated. 

The Gaussian Radial Basis Function (RBF) kernel is expressed as: 

𝐾(𝑥𝑖𝑥𝑗) = exp (−𝛾||𝑥𝑖 − 𝑥𝑗||2)                                                          (9) 

Where parameter γ is one RBF SVM hyperparameter that controls the flexibility of 

the resulting classifier by defining how far the influence of a training example can 

reach. To solve a specific RBF SVM classification problem, a pair of parameters C 

and γ is typically chosen using optimization procedures, such as grid search, random 

search, simulated annealing, and Bayesian optimization [98]. The SVM algorithm also 

includes several other kernel functions like linear, polynomial, and sigmoid. Because 

human interaction with thermal environments is highly non-linear [99], this paper 

focuses on the RBF kernel due to its greater flexibility in generating decision 

boundaries. Several studies [100] [101] [102] have also demonstrated that the RBF 

kernel is more effective at predicting thermal comfort states compared with other 

kernel functions. 

To avoid the imbalance scale effects of data in this study, all SVM model inputs have 

been standardised (μ=0, σ=1) using the function StandardScaler in the Python package 

sklearn. The hyperparameters C and γ in SVM have been tested by the grid 

search method in the RBF kernel function for the SVM classifier. The best cross-



validation accuracy was obtained with exponentially growing sequences ranging from 

10-4 to 104. The data set was randomly divided into 70% and 30% proportions for 

training samples and testing predictive accuracy. 

2.3 Data processing 

This research processes the data in Comfort Database with the following procedures: 

1) Removing any data that does not contain records of thermal sensation vote, thermal 

preference, air temperature, relative humidity, air velocity, clothing level, and 

metabolic rate at the same time, with a focus on the HVAC and NV operation 

strategy. 

2) Based on the available sample size and outdoor temperature distribution, three 

representative climate zones were chosen for analysis as shown in Fig. 5 with red 

marks on the x-axis: hot semi-arid climate (BSh, 3844 records), humid subtropical 

climate (Cfa, 3074 records), and temperate oceanic climate (Cfb, 3176 records), 

with a total sum of 10,094. 

3) Applying 3-Sigma, Boxplot, and Hampel rules to filter outliers in three instrumental 

measurements: air temperature, relative humidity, and air velocity. 

4) Employing the SVM algorithm with RBF kernel functions to classify the thermal 

preferences of “prefer warmer” and “prefer cooler” with training and cross-

validation process carried out using the functions SVC and GridSearchCV in Python 

package sklearn. 

5) Comparing the predictive performance of PMV and SVM models for HVAC and 

NV buildings before and after using outlier removal rules, the PMV values were 

computed through the function pmv_ppd_optimized in Python package 

pythermalcomfort developed by Tartarini and Schiavon [103]. 



 

Fig. 5. Outdoor air temperature distribution after removing unqualified data in the 

Comfort Database      

3. Results  

3.1 Outlier detection of three removal rules 

3.1.1 Different climate zones 

To better visualise the effects of three different outlier removal rules, this paper employs 

the histogram figure to summarise the distribution of particular parameters such as air 

temperature, followed by dotted lines on both sides of the histogram to indicate the 

boundaries provided by different rules. As shown in Fig. 6, the dashed lines on the left 

and right represent the lower and upper limits generated by the outlier removal rules, 

respectively. Specifically, the green colour represents the 3-Sigma rule, the blue colour 

represents the Boxplot rule, and the red colour represents the Hampel rule. 

The outlier removal results of the HVAC buildings in different climate zones in the 

Comfort Database are shown in Fig. 6, where we can see the indoor air temperature 



shows a relatively standard normal distribution. The 3-Sigma rule (green dotted lines) 

provides the greatest degree of tolerance for extreme values. This is consistent with the 

analysis in section 2.1.4, which shows that the 3-Sigma rule is more likely to fail as 

contamination levels rise. Two median-value based rules (Boxplot and Hampel) both 

filter more outliers compared with the 3-Sigma rule. In general, the normal range of the 

Boxplot rule (blue dotted lines) is tighter than the Hampel rule (brown dotted lines). 

The relative humidity has double-peak distributions rather than normal distributions in 

each climate zone. Unlike previous filter cases, all three rules show a clear sum 

reduction in outlier detection, particularly in the latter two climates (humid subtropical 

and temperate oceanic) with a more obvious double-peak feature. For air velocity, the 

3-Sigma rule draws the largest normal ranges in three climates similar to the results for 

air temperature. The upper limit of the 3-Sigma rule in temperate oceanic climates is 

nearly three times that of two median-value-based rules, indicating that the 3-Sigma 

rule is very susceptible to being affected by extreme outliers and broadening its normal 

range. 

 

(a) Indoor air temperature in hot 

semi-arid 

 

(b) Relative humidity in hot semi-

arid 

 

(c) Air velocity in hot semi-arid 

 

(d) Indoor air temperature in a 

 

(e) Relative humidity in a humid 

 

(f) Air velocity in a humid 



humid subtropical subtropical subtropical 

 

(g) Indoor air temperature in 

temperate oceanic 

 

(h) Relative humidity in temperate 

oceanic 

 

(i) Air velocity in temperate 

oceanic 

Fig. 6. Outlier removal in HVAC buildings in different climate zones 

The outlier removal of the NV buildings in different climate zones is shown in Fig. 

7. We can see that the indoor temperature in the first two climates (hot-semi-arid 

and humid subtropical) all have double-peak distributions, while all normal ranges 

of three rules fail to detect any outliers. For relative humidity in a hot semi-arid 

climate, the 3-Sigma rule and the Boxplot rule even create upper boundaries that 

exceed 100% while the Hampel rule computes a more reasonable upper limit 

around 90% (Fig. 7b). The 3-Sigma rule sets the upper boundary of air velocity in 

temperate oceanic climate around 3m/s, whereas the maximum allowable air 

velocity for compensating hot feeling in ASHRAE 55-2020 [104] is only 1.6 m/s. 

 

(a) Indoor air temperature in hot 

semi-arid 

 

(b) Relative humidity in hot semi-

arid 

 

(c) Air velocity in hot semi-arid 



 

(d) Indoor air temperature in a 

humid subtropical 

 

(e) Relative humidity in a humid 

subtropical 

 

(f) Air velocity in a humid 

subtropical 

 

(g) Indoor air temperature in 

temperate oceanic 

 

(h) Relative humidity in temperate 

oceanic 

 

(i) Air velocity in temperate 

oceanic 

Fig. 7. Outlier removal in NV buildings in different climate zones 

The total removal sum from three outlier detection rules is shown in Fig. 8, after 

combining all outliers detected based on air temperature, relative humidity, and air 

velocity. The two median-value based rules (Boxplot and Hampel) generally remove 

more outliers than the mean-value based rule (3-Sigma). 

  



(a) HVAC results (total sum is 2008, 1836, and 

2466 in Hot semi-arid, humid subtropical, and 

Temperate oceanic) 

(b) NV results (total sum is 608, 1173, and 2003 in 

Hot semi-arid, humid subtropical, and Temperate 

oceanic) 

Fig. 8. Removal sum in different climate zones  

3.1.2 Different countries 

Taking into account the available sample size in Comfort Database, data from the 

HVAC operation buildings in the hot semi-arid climate and the NV buildings in 

temperate oceanic climate were chosen to be broken down into country levels and 

further investigated whether there are differences between countries in the same climate. 

Fig. 9 shows the results after dividing the data from HVAC buildings in hot semi-arid 

climates by countries Australia and India. The results of air temperature and air velocity 

removal at the country level show similar trends of removal at the climate level, but 

relative humidity each presents a single-peak distribution with a different peak value 

(Fig. 9b and 9e). The three rules can all detect some outliers in humidity at the country 

level. However, combining them at the climate level leads to a double-peak distribution 

(Fig. 6b), making it more difficult for these rules to find outliers. 

 

(a) Indoor air temperature in 

Australia 

 

(b) Relative humidity in Australia 

 

(c) Air velocity in Australia 



 

(d) Indoor air temperature in India 

 

(e) Relative humidity in India 

 

(f) Air velocity in India 

Fig. 9. Outlier removal in HVAC buildings in different countries from hot semi-arid 

(Fig. 6a is divided into Fig. 9a and 9d; Fig 6b is divided into Fig. 9b and 9e; Fig. 6c is 

divided into Fig. 9c and 9f) 

Fig. 10 shows the results of outlier removal of data in France, Germany, and the UK in 

NV buildings from the temperate oceanic climate. Although all three rules can detect 

some air temperature outliers, the 3-Sigma rule still offers the most tolerance range. In 

the case of relative humidity, however, all three rules fail to identify outliers in the 

France and Germany cases (Fig. 10b and 10e), but identify the upper extreme values in 

the UK case (80% RH in Fig. 10h). This may be due to the reason why that data of 

relative humidity in France and Germany cases do not strictly follow the normal 

distribution with many leaks in the middle range, pushing the 1/4 and 3/4 percentiles 

further away from middle compared to a more standard normal distribution, such as 

UK case. Therefore, the IQR value used in the Boxplot rule has been increased and the 

range will be expended consequently. With similar causality, the Hampel rule’s median 

absolute deviation (MAD) scale will be magnified and lead to a wider boundary range. 

 

(a) Indoor air temperature in 

France 

 

(b) Relative humidity in France 

 

(c) Air velocity in France 



 

(d) Indoor air temperature in 

Germany 

 

(e) Relative humidity in Germany 

 

(f) Air velocity in Germany 

 

(g) Indoor air temperature in the 

UK 

 

(h) Relative humidity in the UK 

 

(i) Air velocity in the UK 

Fig. 10. Outlier removal in NV buildings in different countries from temperate 

oceanic climates (Fig. 7g is divided into Fig. 10a, 10d, and 10g; Fig 7h is divided into 

Fig. 10b, 10e, and 10h; Fig. 7i is divided into Fig. 10c, 10f, and 10i) 

The final outlier removal sums are shown in Fig. 11. The 3-Sigma rule still presents the 

most conservative solution. However, in the Germany case, the Hampel rule removed 

far more sum of outliers compared with the 3-Sigma and Boxplot rules. The Hampel 

rule is found to set a very narrow range for air velocity data around 1 m/s, whereas the 

other two rules set around 3.5 to 4 m/s. This implies that the Hampel rule can effectively 

remove outliers when the data is extremely imbalanced the mean value can represent 

the main information in the data, which is consistent with the simulated results in Fig. 

3h that the 3-Sigma, Boxplot, and Hampel rules detected 2/300, 159/300, and 296/300 

outliers, respectively. If the air velocity data in Fig. 10f between 1 and 3.5 m/s are 

considered outliers, the Hampel rule may be the only effective one. Otherwise, the 

Hampel rule may be too aggressive. 



 

(a) HVAC removal results (total sum is 1202 and 

806 in Australia and India) 

 

(b) NV removal results (total sum is 275, 643, 

and 1085 in France, Germany, and the UK) 

Fig. 11. Removal sum in different counties  

3.2 SVM prediction under three outlier removal rules 

Instead of going through each case, this paper focuses on the hot semi-arid (BSh) 

climate under SVM predictions, which has the highest outdoor air temperature of the 

three climates, resulting in 652 “prefer warmer/cooler” votes in HVAC buildings and 

753 “prefer warmer/cooler” votes in NV buildings, as shown in Table 2. The results of 

the outlier detection applied to subjective thermal preference in the Comfort Database 

are shown in Fig. 11 and Fig. 12. Two-dimensional data “indoor air temperature” and 

“thermal sensation vote” have been used to predict thermal preference. Fig. 12, Fig. 13, 

Table 3, and Table 4 present the SVM classification results of occupants’ thermal 

preferences across different temperature ranges under HVAC and NV operations. Fig. 

12a/13a shows the prediction models built without using outlier removal; Fig. 12b/13b, 

Fig. 12c/13c, and Fig. 12d/13d show the models built with outliers removed based on 

the 3-Sigma rule, Boxplot rule, and Hampel rule, respectively. The red and blue circles 

represent actual thermal preferences for warmer and cooler temperatures, while the red 

and blue mesh boundaries were generated by SVM classification using the best 

accuracy prediction. 

Table 2. Data sum of voting prefer warmer or cooler in HVAC and NV buildings 



Climate 

HVAC  NV 

Total in 

HVAC 

Prefer warmer 

or cooler  

Percentage of 

prefer changing 

 Total in 

NV 

Prefer warmer 

or cooler  

Percent of prefer 

changing 

Hot semi-arid 

(BSh) 
2008 652 32.5% 

 
1836 753 41.0% 

Humid 

subtropical 

(Cfa) 

2466 953 38.6% 

 

608 428 70.4% 

Temperate 

oceanic (Cfb) 
1173 424 36.1% 

 
2003 655 32.7% 

 

The SVM algorithms achieved relatively high predictive accuracy before and after 

outlier removal, ranging from 79.7% to 83.6% in Fig. 12. Before outlier removal, the 

SVM achieved 82.7% accuracy in Fig. 12a, indicating that the SVM can adequately 

adapt to extreme values and generate corresponding boundaries for specific groups of 

data. In Fig. 12a, one obvious predictive boundary with red colour (marked with a red 

dotted circle) in the top middle predicts that occupants in HVAC buildings will prefer 

warmer even when voting for the hottest sensation (+3), which is contradictory. 

However, the predictive performance of thermal preference has been improved after 

excluding potential outliers: the 3-Sigma and Hampel rule completely eliminated this 

abnormal warm preference (Figs. 12b and 12d), while the Boxplot rule weakens them 

(Fig. 12c). The Boxplot and Hampel removal rules both classify abnormal blue regions 

(prefer cooler when feeling cool) in the bottom middle that is surrounded by red regions 

(marked with blue dotted circles in Figs. 12c and 12d).  

  



(a) No filter (accuracy: 82.7%) (b) 3-Sigma rule (accuracy: 79.7%) 

 

(c) Boxplot rule (accuracy: 81.8%) 

 

(d) Hampel rule (accuracy: 83.6%) 

Fig. 12. SVM models of thermal preference in HVAC buildings (red contour: prefer 

warmer; blue contour: prefer cooler) 

Table 3 shows the hyperparameters obtained by a grid search to achieve the best 

accuracy performance for SVM classification through cross-validation. The parameters 

γ remain constant for all of these four cases, but the parameters C related to the Boxplot 

and Hampel rules are both 10, which is lower than no outlier removal (100) and higher 

than the 3-Sigma rule (0.1). The lower value of parameter C will encourage the SVM 

classifier to use a larger margin, resulting in a simpler decision or boundary  [98]. As 

parameters γ in all cases remain constant (γ = 1), the differences of parameter C are in 

Table. 3 are well supported by the SVM classification results in Fig. 12: the no filter 

rule (Fig. 12a) with the highest C value of 100 presents the most complicated 

boundaries, dividing most regions into preferred warmer categories with an obvious 

anomaly at the top; the 3-Sigma rule (Fig. 12b) with the lowest C value of 0.1 shows 

simplest boundaries; the C values of Boxplot and Hampel rules are both 10 in the 

median, which also has moderate degree of contours (Figs. 12c and 12d). 

Table 3. Best combinations of SVM hyperparameters in HVAC buildings 

Parameter No filter 3-Sigma Boxplot Hampel 

C 100 0.1 10 10 

γ 1 1 1 1 

Similarly, Fig. 13 illustrates SVM classification results in NV buildings. When 



compared to the case without filtering outliers (Fig. 13a), using the 3-Sigma rule for 

outlier removal results in overfitting, which causes the SVM classifier to try to 

remember the features of the training data rather than generating meaningful patterns 

(Fig. 13b). This could be caused by the limitation of a grid search method in 

determining the best pair of hyperparameters C and γ to achieve best predictive accuracy. 

In Fig. 13c, the SVM results with the Boxplot removal rule show the most general 

contours but the lowest predictive accuracy. This is due to the extremely low 

hyperparameter value of 0.001, which allows for a broad decision region while 

tolerating higher bias [105]. In Fig. 13d, the SVM classifier with the Hampel removal 

rule has the most complex boundaries and the highest hyperparameter C of 1000, with 

two unexpected blue predictive regions among the red regions at the bottom (marked 

with blue dotted circles). These complex boundaries will also make it difficult to link 

occupants’ real-time feedback to building operation decision-making. For example, if 

the indoor temperature is around 31 °C, as shown in the green background in Fig. 13d, 

the SVM classifier will recommend seven different types of strategies for building 

operation, which is complicated and less energy efficient. 

 

(a) No filter (accuracy: 83.5%) 

 

(b) 3-Sigma rule (accuracy: 84.3%) 



 

(c) Boxplot rule (accuracy: 80%) 

 

(d) Hampel rule (accuracy: 83.6%) 

Fig. 13. SVM models of thermal preference in NV buildings (red contour: prefer 

warmer; blue contour: prefer cooler) 

Fig. 14 depicts the SVM classification results using the data under the 3-Sigma removal 

rule with hyperparameters from the no filter, Boxplot, and Hampel rules in Table 4. The 

overfitting phenomenon has been greatly reduced by sacrificing the predictive accuracy 

of 0.3% to 2.4%. As a result of the preceding examples in Fig. 13b and Fig. 14 using 

the same data under the 3-Sigma removal rule, it is suggested that the hyperparameter 

setting plays a significant role in influencing the outlines of the decision boundary, 

while this hyperparameter setting is affected by the data points, validation method, and 

search resolution/step. 

 

 

(a) Hyperparameters in no filter case 

(accuracy: 84.0%) 

 

(b) Hyperparameters in Boxplot rule 

case (accuracy: 81.9%) 



 

(c) Hyperparameters in Hampel rule case (accuracy: 83.4%) 

Fig. 14. SVM models with data under the 3-Sigma removal rule with different pairs of 

hyperparameters C and γ 

Table 4. Best combinations of SVM hyperparameters in NV buildings 

Parameter No filter 3-Sigma Boxplot Hampel 

C 10 1 1 1000 

γ 1 10 0.001 1 

3.3 Trade-off between predictive accuracy and complexity of decision boundary 

Because machine learning algorithms typically use the black box method to find the 

best hyperparameters under the constraints of accuracy or other evaluation approaches, 

overfitting can occur in some cases, making the established machine learning model 

difficult to extend to other new datasets. This can be illustrated in Fig. 13b, the SVM 

classifier generates one overfitting cluster with only one data point that ensures overall 

predictive accuracy highest. Furthermore, when a single evaluation criterion (accuracy 

or confusion matrix) is used as the sole criterion, the decision boundary could become 

too complicated to provide practical value at the application level. This is shown in Fig. 

13d that although the accuracy is second best just below the overfitting case of Fig. 13b, 

it generates too many clusters in certain intervals. For example, in the temperature range 

of 26 to 30℃, seven different clusters have to be fulfilled to maintain the expected 

predictive accuracy, which will increase the difficulty for building design or operational 

systems to generate effective solutions for satisfying occupants’ thermal preferences in 



practice.  

To better illustrate this scenario, Figs 15a, and 15b are used to simulate two hypothetical 

office cases that correspond to the cluster results in Figs 13d and 13c. The red arrows 

and numbers reflect the warm preference and expected temperature adjustment, while 

the blue ones represent the cool preference. It will be difficult for buildings to provide 

suitable and personalized operation solutions when people with different preferences 

clustered by machine learning algorithms are in the same shared space. One example 

in Fig. 15a is that there is not enough space for each cluster to generate an isolated room 

due to the high cluster sum, and people in zones 4 and 5 with different preferences must 

share the public environment, and preference conflict will be difficult to eliminate if 

personal comfort systems (PCS) [106] are not available. This problem is partially 

solved in Fig. 15b: because of the low cluster sum, it is easier for people with similar 

thermal preferences to congregate in one area, reducing the number of customized 

thermal zones and relieving preference conflict. Relevant information about thermal 

preferences can be obtained by either offline investigation or online monitoring, such 

as gathering historical thermal responses [107] [108], adjusting temperature setpoints 

from occupants [109], uploading real-time thermal feedback through smartphones 

[110], utilizing physiological signals like heart rate [111], facial temperature [112], 

wrist temperature [113], etc. 

When a building is required to provide too many customized environments based on 

various subjective feedbacks, heat exchanges between rooms will occur through 

internal walls. To compensate for these heat exchanges and maintain a stable level of 

personalized temperatures, more energy will be used for heating or cooling in each 

room. In Fig. 15a, for example, people in zone 5 expect temperatures to rise by 2 ℃, 

while those in zone 6 expect temperatures to fall by 1 ℃. Assume zones 5 and 6 both 

meet people's thermal requirements and ignore climate or other influential factors, 

namely that the temperature in zone 5 is 3 °C higher than it is in zone 6, and heat will 

constantly flow through the internal walls between zones 5 and 6. To compensate, the 

building must implement a less energy-efficient strategy that provides more heating in 



zone 5 and more cooling in zone 6. However, in the case shown in Fig. 15b, fewer 

clusters are required, allowing the building to maintain stable thermal environments 

with fewer fluctuations. As a result, less heat loss will be exchanged between different 

rooms via internal walls, which is beneficial for lowering total energy loads. 

 

(a) Seven clusters with a predictive accuracy of 83.6% under Hampel filtering 

 

(b) Two clusters with a predictive accuracy of 80% under Boxplot filtering 

Fig. 15.  Hypothetical cases in the office corresponding to cluster results under SVM 

classification 

Employing different filtering rules will lead to different data distributions, which affects 

the selection of the best pair of hyperparameters in the SVM classifiers model, resulting 

in changes in prediction accuracy and decision boundary, but overall predictive 

accuracy remains high (80-84.3%). Fig. 16 depicts the number of clusters in different 

temperature ranges of the four SVM classifiers from Fig. 13 in section 3.2. If predictive 

accuracy is the only concern, the cases under 3-Sigma and Hampel rules are more likely 

to be accepted. However, based on the specific decision boundary, it is observed that 

the 3-Sigma case has the overfitting problem in the temperature range of 17-21℃, while 



the Hampel case suggests seven clusters in the temperature range of 26-30℃. These 

two cases in practice could have similar unfavourable situations discussed in Fig. 15a. 

Therefore, results from the Boxplot rule will present the most competitive solution 

because fewer clusters are required, and extreme values have been removed.  

 

 

Fig. 16. Cluster sum of four different pairs of hyperparameter in SVM classifier in 

different temperature ranges 

 

4. Discussion 

4.1 Filtering performance of three outlier removal rules 

In summary, the filtering results of simulated cases (Fig. 3 and Fig. 4) and data from 

public datasets in various climates (from Fig. 6 to Fig. 8) and countries (from Fig. 9 to 

Fig. 10) revealed: 

· 3-Sigma rule: it is influenced by the mean value and standard deviation of the 

dataset and is easily distracted by extreme values. When the contamination level 

exceeds 20% in simulated cases, it fails to detect any outliers. It is typically the most 

conservative strategy and filters out the fewest outliers, such as setting the upper 



limit of air velocity as high as 3 m/s in Fig. 6i. 

· Boxplot rule: it is related to the 1/4, 2/4, and 3/4 percentiles of data distribution and 

can resist a certain level of extreme value influence. When the analyzed data is close 

to the standard normal distribution in public datasets, it filters the outliers with the 

highest sum (Figs. 6a, 6c, 6d, 6g, 7g, 7h, 8a, 9a, 9d, 9g, and 9h). 

· Hampel rule: it is calculated using the 2/4 percentile and the median absolute 

deviation (MAD). It performs similarly to the Boxplot rule with extreme value 

resistance, but occasionally provides too aggressive solutions, such as suggesting 

air velocity below 1 m/s during natural ventilation in Fig. 10f. 

· Data distribution: When the data distribution does not conform to a strict normal 

distribution, the above three removal rules may all fail to detect any outliers, such 

as cases with two peaks (Figs. 6c, 6h, 7a, 7d, 10b) and leaks in the middle (Fig. 10e). 

The three rules all detect few outliers of relative humidity in HVAC buildings from 

hot semi-arid climates with double peak distribution, but when data is broken down 

from climate level (Fig. 6b) to country level (Figs. 9b and 9e), these detection rules 

perform better on selecting extreme values. Therefore, the activity of combining 

data from different sources may result in new data distributions that are unsuitable 

for outlier detection using the three rules described above. 

Even though the above three rules have different theoretical foundations and 

performance, they can all detect some obvious outliers, such as the nearly 100% 

humidity level in Fig. 7e. The outlier removal principle in these three rules is based on 

the hypothesis that if some observations deviate too far from one reference value (mean 

or median), they are labelled as outliers [48]. However, it is debatable whether these 

extreme values are simply carelessness errors or have a hidden meaning. Hughes et al. 

[114] conducted winter surveys in the living and bed rooms of the 65+ elderly and 

discovered that certain indoor air temperatures are far below the boxplot lower limits. 

These extremely low temperatures would have the most dangerous consequences for 

the elderly’s thermal comfort and respiratory illness, and are worth further investigation. 



Furthermore, general outlier removal rules may oversimplify the study conditions and 

risk removing valid data, such as regarding unique thermal preferences as abnormal 

voting patterns [34]. In general, the usage of three outlier removal rules involved in this 

paper has made certain assumptions and simplifications to eliminate data that deviates 

far from the expected value in the dataset. More research on irregular situations or 

anomaly detection is still needed. 

4.2 Hyperparameters C and γ in SVM algorithms 

The hyperparameters C and γ in the RBF kernel were determined using the grid search 

method with 5-fold cross-validation to achieve the best accuracy scoring. Outlier 

removal using 3-Sigma, Boxplot, and Hampel rules will influence this hyperparameter 

determination and thus affect the training process of the SVM algorithm.  

· Hyperparameter C: when C is large, a big penalty is assigned to margin errors, 

causing the hyperplane to be close to the data points and usually presenting complex 

decision boundaries (Figs. 12a and 13d, C = 100 and 1000). These complex decision 

boundaries will necessitate facility managers or HVAC systems in buildings to run 

more personalized scenarios to meet different people’s preferences and increase the 

difficulty of operation. 

· Hyperparameters γ: when γ is large, more local vectors are allowed to participate 

in the boundary decision process, which increases the risk of overfitting (Fig. 13b, 

γ = 10). However, if γ is too small, the decision boundaries may be nearly linear 

and contribute less to personalizing the comfort model (Fig. 13c, γ = 0.001). The 

small γ value may also sacrifice model accuracy as fewer local vectors are involved 

in the boundary decision process. 

· Outlier removal rules: After removing outliers, the predictive accuracy of SVM 

models does not vary significantly and remains relatively high at around 80% to 

84%. However, removing extreme data points may prevent the SVM algorithm 

from producing unreasonable classifications, such as people voting +3 prefer still 

warmer at the top of Fig. 12a. The Hampel rule removed nearly 1/3 of the dataset 



simply by considering the parameter air velocity (Fig. 10f), indicating that the 

Hampel rule may be too aggressive in cases where median value cannot represent 

the main information of the entire data distribution. 

Traditional thermal comfort models, such as PMV, have been criticized for their poor 

predictive accuracy in real-world buildings (34% in [24]). On the contrary, many 

studies have used SVM algorithms to predict thermal comfort with high accuracy (76.7% 

in [115], 87% in [94], 89% in [116], and 90% in [95]). This paper discovered that 

several pairs of tuning hyperparameters in RBF kernel functions can all ensure overall 

predictive accuracy with only minor fluctuations (79.7% to 84.3%), but the specific pair 

of hyperparameters may lead to the SVM algorithm generating more user-friendly 

operation strategies for real-world buildings with only a minor reduction in accuracy 

(less individualized heating or cooling areas that still meet the majority of people’s 

preferences). Therefore, it is questionable whether the extremely high accuracy or other 

evaluation indices should be the only dominant benchmark when the overall 

performance of machine learning algorithms is already very high.   

4.3 Limitation and future work 

This paper focuses on stochastic-based outlier detection methods, the performance of 

which is heavily influenced by the amount and distribution of data. Its limitations and 

future research directions could be: 

1. To predict thermal preference, the training process of SVM models only considers 

the two representative dimensions: thermal sensation vote and indoor air 

temperature. More dimensional representations can assist models in making more 

comprehensive decisions.  

2. The optimal hyperparameter matching obtained in this paper has room for 

improvement due to the limitation of the search method and search step. Although 

the RBF kernel function is chosen in this paper due to its nonlinear capability and 

widespread acceptance in thermal comfort research, other kernel functions, such as 

linear kernel [117], may also show good predictive outcomes in specific situations. 



The confusion matrix here only discusses the accuracy, and combination with other 

indicators, such as recall and F1-score, could lead to a more reasonable evaluation 

of machine learning models.  

3. The performance of outlier removal rules was evaluated using the SVM algorithm 

as a case study due to the aim and length limitations of this paper. It is anticipated 

that these outlier removal methods will be extended to other machine learning 

algorithms in the future to achieve more generalised outcomes. 

4. The amount of data considered in this paper is limited due to the data sum and 

features stored in the original Comfort Database and the criteria for selecting data 

in this paper, resulting in selecting data from three climate zones. It is suggested to 

conduct more performance evaluations at a broader range of climate data in the 

future. 

5. Although the stochastic-based methods discussed in this paper are mathematically 

well-grounded, prior knowledge and a specific data sum are required to accurately 

estimate the data distribution during the implementation stage, which is often costly 

or even unavailable in thermal comfort practice. Therefore, it would be valuable to 

explore distance-based or other unsupervised outlier detection methods that can 

overcome the limitations of stochastic-based methods. 

 

5. Conclusions 

Outliers in thermal comfort data can significantly skew the performance of machine 

learning algorithms.  This study compares the effectiveness of three stochastic-based 

outlier detection techniques on data preprocessing namely 3-sigma, Boxplot upper, and 

Hampel, and their predictive performance based on the Comfort Database. The 

following findings and suggestions emerge: 

· The characteristics of data distribution influence the performance of statistical-

based outlier detection methods. When the data distribution is bimodal, all three 



stochastic-based methods are prone to miss outliers. The risk of meta-analysis, such 

as analyses based on the Comfort Database that combine data from many individual 

scholars’ studies, is that the inherent distribution of the original data will be 

transferred to a new distribution with completely fresh statistical features, such as 

combining two groups of data with Gaussian distribution with different mean values 

results in a bimodal distribution. This may increase the difficulty for stochastic-

based methods to eliminate outliers. 

· The 3-Sigma rule tolerates extreme values that may fail to mark outliers, whereas 

the Hampel rule can be too aggressive, resulting in false alarms. In general, the 

Boxplot rule provides the best performance and robustness in data preprocessing. 

Some anomalies in SVM classifications will disappear after outlier removal. The 

SVM classifiers can maintain a high level of predictive accuracy both before and 

after outlier removal. 

· Specific outlier detection approaches will lead to different hyperparameters in 

machine learning models, resulting in changes to the classification boundary and 

model prediction accuracy. A small trade-off between cluster boundary and 

predictive accuracy can lead to more energy-efficient strategies and fewer thermal 

preference conflicts. Therefore, it is debatable whether predictive accuracy should 

always be the only benchmark for evaluating the effectiveness of a machine learning 

model for thermal comfort research in buildings. 

· For future applications with approximately normally distributed data, the Boxplot 

rule is the most recommended one in most cases based on the filtering performance 

of the simulation and the Comfort Database in this paper. The 3-Sigma rule is 

recommended if it is expected to filter out fewer extreme values or if the proportion 

of outliers in the known monitoring data is very low. The Hampel rule can be used 

when the distribution of monitoring data is asymmetrical or an extreme filtering 

effect is expected. In general, having a fixed mode to achieve the desired filtering 

results in all situations is difficult due to the ever-changing nature of data in reality, 

as well as differences in specific analyses and requirements. Meanwhile, the 



extreme values that were filtered out may be outliers, but they may also contain 

special patterns or potentials that should be investigated further. 
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Appendix 

Appendix A. Thermal comfort research using Comfort Database 

Reference 
Environmenta

l parameters 

Subjectiv

e metrics 
Contextual factors 

Data 

sum 
Algorithm Outlier processing 

Hu et al. [35] ·PMV inputs ·TSV - 11,164 
·Transfer 

learning 
- 

Vellei et al. 

[118] 
·PMV inputs ·TSV ·Time of day 21,000 ·Regression - 

Cheung  et al. 

[24] 
·PMV 

·TSV 

·TCV 

·Building types 

·Climate 

·Operation strategy 

56,771 ·Regression - 

Li et al. [25] ·PMV ·TSV 

·Age 

·Building type 

·Climate 

·Gender 

·Season 

17,841 

·Corresponde

nce analysis 

·Regression 

 

·Set minimum 

population size as 383 

Li et al. [29] 

·PMV 

·Air 

temperature 

·TSV 

·TCV 

·TS 

·Building type 

·Continent 

·Season 

94,145 
·Statistical 

analysis 
- 



·TPV 

Zhang and de 

Dear [44] 

·PMV inputs 

·Outdoor air 

temperature 

·TSV 

·Building type 

·Gender 

·Operation strategy 

·Season 

18,966 ·Regression 

·The 30/30 rule 

(delete data from 

sample size less then 

30) 

·Raudenbush & Bryk 

recommendation [119] 

Wang et al. 

[22] 

·PMV inputs 

·Outdoor air 

temperature 

·TSV 

·Building type 

·Continent 

·Gender 

·Operation strategy 

·Season 

11,717 

·Corresponde

nce analysis 

·Regression 

- 

Gaffoor et al. 

[27] 

·Air 

temperature 

·Radiant 

temperature 

· Operative 

temperature 

·PMV 

·Outdoor air 

temperature 

·TSV 
·Building type 

·Season 
1,121 ·Regression - 

Forgiarini et 

al. [31] 

·Air 

temperature 

·Clothing 

level 

·Relative 

humidity 

·Outdoor air 

temperature 

·TSV 
·Building type 

·Continent 
63,377 ·Regression - 

Wang et al. 

[32] 

· Operative 

temperature 
·TSV 

·Age 

·Building type 
57,908 ·Regression - 



 ·Climate 

·Country 

·Gender 

·Height and weight 

·Operation strategy 

 

Rupp et al. 

[120] 

·Clothing 

level 

·PMV 

·Air 

temperature 

·TSV 

·Building type 

·Season 

·Operation strategy 

 

58,954 ·Regression - 

Luo et al. [36] 

·Air 

temperature 

·SET 

·Relative 

humidity 

·Clothing 

level 

·Air velocity 

·Metabolic 

rate 

·Outdoor air 

temperature 

·TSV 

·Age 

·Building type 

·Gender 

·Operation strategy 

·Season 

10,619 

·Decision 

tree 

·Gradient 

Boosting 

Machine 

·K nearest 

neighbors 

·Linear 

regression 

·Neural 

network 

·Random 

forest 

·Support 

vector machine 

- 

Zhou et al. 

[37]  

·PMV inputs 

·Outdoor air 

temperature 

·TSV ·Operation strategy 20,954 

·Neural 

network 

·Support 

vector machine 

- 

Schweiker [45] ·PMV inputs ·TSV ·Building type 57,084 ·Regression ·Manually inspection 



·Outdoor air 

temperature 

·Operation strategy 

Ma et al. [38] 

·Air 

temperature 

·Operative 

temperature 

·Relative 

humidity 

·Air velocity 

·Outdoor air 

temperature 

·TSV 

·TPV 

·Age 

·Control behavior 

·Weight 

78,113 
·Bayesian 

neural network 
·Boxplot 

Yao et al. [26] 

·PMV inputs 

·Outdoor air 

temperature 

·TSV 
·Climate 

·Country 
7,837 ·Regression ·Boxplot 

Note: TSV = Thermal sensation vote; TCV = Thermal acceptability vote; TS = Thermal 

satisfaction; TPV = Thermal preference vote; PMV inputs: air temperature, radiant 

temperature, relative humidity, air velocity, clothing level, and metabolic rate; SET: 

standard effective temperature. 

 

Appendix B. Thermal comfort research with outlier removal 

Reference Theme 
Sample 

size 

Removing 

method 

Analyzed 

parameters 
Main finding 

Li et al. [29] 

Acceptable 

temperature 

ranges in real 

buildings 

62,444 

responses 

from a 

public 

dataset 

Fixed 

range (10th 

and 90th 

quantiles) 

·Neutral 

temperature 

People’s acceptable 

temperature range in 

real buildings is wider 

than the standard 

recommendation. 

Thapa and 

Indraganti 

[121] 

Adaptive 

thermal 

comfort 

model in 

2,608 

responses 

from 436 

subjects 

3-sigma - 

The comfortable 

temperature range in 

India is wider than 

published reports 



India 

Thapa et al. 

[122] 

Adaptive 

thermal 

comfort 

model in 

India 

444 

responses 

from 34 

subjects 

3-sigma 
·Clothing 

insulation 

People in India found 

cooler temperature 

comfortable compared 

with the standard 

suggestion. 

Thapa et al. 

[72] 

Cold and 

cloudy 

climates in 

Indian  

2,608 

responses 

from 436 

subjects 

3-sigma 

·Clothing 

insulation 

·Comfort 

temperature 

People’s thermal 

sensations are less 

sensitive than PMV 

prediction 

Li et al. [123] 

Real-time 

monitor using 

cameras 

12 subjects 3-sigma 
·Non-facial 

pixels 

Thermal comfort can 

be indicated by pixels 

from the ears, nose, 

and cheeks. 

Li et al. [124] 
Auto-track 

using cameras 
16 subjects 

Median 

filter 
·Noisy pixels 

Distribution of facial 

temperature can be 

related to thermal 

comfort state. 

Chen et al. 

[125] 

CFD analysis 

in kitchen 

20 group 

data for 

simulation 

6-sigma 
·Particulate 

concentration 

Exhaust volume 

around 11-14m3 in 

kitchen is good for air 

quality and thermal 

comfort in kitchen 

Hawila et al. 

[126] 

Glass façade 

design 
- 

Turkey’s 

(boxplot) 

and 

Grubbs’ 

test 

·Thermal 

sensation vote 

Proposed façade 

design can ensure a 

comfortable 

environment with 

PMV ranging from -

0.381 to 0.107. 

Hurtado et al. 

[127] 

Demand 

flexibility on 

thermal 

storage and 

60 building 

energy 

simulations 

Boxplot 

·Ramp rate 

·Power 

capacity 

Buildings in a hot 

climate can offer 

higher flexibility 

potential compared 



comfort 

management 

with a cold climate 

Elnaklah et al. 

[73] 

Green 

building 

performance 

120 

subjects 
Boxplot 

·Occupant 

satisfaction 

·Air 

temperature 

·Relative 

humidity 

·CO2 (ppm) 

Thermal comfort in 

surveyed green 

buildings has been 

improved, but not air 

quality, visual and 

acoustic comfort. 

Noda et al. 

[128] 

School 

children in 

air-

conditioning 

classroom 

97 subjects Boxplot 
·Thermal 

sensation vote 

In air-conditioned 

classrooms, 34.01% of 

children reported cold 

discomfort and 

30.93% reported hot 

discomfort. 

Gautam et al. 

[129] 

Thermal 

history 

influence 

between local 

and migrant 

people 

395 

subjects 
Boxplot 

·Indoor air 

temperature 

·Globe 

temperature 

·Radiant 

temperature 

·Operative 

temperature 

·Outdoor air 

temperature 

When compared to 

locals, migrants 

reported more 

sweating and a lower 

preferred temperature. 

Craenendonck 

et al. [130] 

Cold 

discomfort 

caused by 

construction 

joints 

56 subjects Boxplot 
·Thermal 

sensation vote 

Small-area radiant 

asymmetry has limited 

effects on thermal 

sensation. 

Su et al. [131] 

Asymmetric 

radiant 

environment 

66 subjects Boxplot - 

Non-uniform 

environments can 

affect thermal 



at different 

exposure 

distances 

acceptability. 

Liu et al. 

[132] 

urban spatial 

characteristics 

on outdoor 

thermal 

comfort 

1,870 

responses 
Boxplot 

·PET 

·OUT-SET* 

·UTCI 

“Compact high-rise + 

scattered trees” 

appears to be a 

preferred urban design 

strategy in Shenzhen, 

China. 

Rewitz and 

Müller [133] 

Physiological 

responses in 

transient 

environments 

48 subjects Boxplot 

·Thermal 

sensation vote 

·Skin 

temperature 

BMI may be the most 

influential factor in 

physiological 

response. 

Zhang et al. 

[134] 

Footwarmers 

in office 

2,774 

responses 
Boxplot 

·Thermal 

acceptability 

Compared with 

central heating, a 

personal heating 

system can ensure 

both comfort and 

energy savings. 

Lipczynska et 

al. [135] 

Productivity 

under ceiling 

fans assisted 

HVAC 

environments 

15 subjects Boxplot 

·Outdoor air 

temperature 

·Outdoor 

relative 

humidity 

·Solar radiation 

·Rainfall 

The shared control of 

the ceiling fan can 

raise the HVAC 

setpoint from 23°C to 

26°C. 

Zhao et al. 

[136] 

 

Non-uniform 

thermal 

radiation in a 

street canyon 

2,226 valid 

pedestrian 

routes 

Boxplot 

·f300 

(frequency of 

the sunlight 

and shadow 

areas in a 300m 

long pedestrian 

route) 

The chest, back, and 

head are most 

vulnerable body parts 

in non-uniform 

radiation 

environments. 



Lau and Choi 

[137] 

Aesthetic and 

acoustic 

quality on 

outdoor 

thermal 

comfort 

1,917 

responses 
Boxplot 

·UTCI 

·Air 

temperature 

A quiet and beautiful 

outdoor environment 

can increase people’s 

thermal tolerance. 

Aryal and 

Becerik-

Gerber [74] 

Personalized 

comfort 

model based 

on wearable 

devices or 

thermal 

imaging 

20 subjects Hampel 

·Air 

temperature 

·Wrist skin 

temperature 

Data from wearable 

devices or the thermal 

cameras can provide 

3%-5% additional 

prediction accuracy 

for machine learning 

algorithms. 

Wang et al. 

[34] 

Anomaly 

detection in 

thermal votes 

11,000 

responses 

K-Nearest 

Neighbor 

·Thermal 

sensation votes 

·Thermal 

comfort votes 

Occupants’ strange 

votes will lead to bias 

in operation of 

building systems 

Schweiker 

[45] 

Combining 

adaptive and 

heat balance 

model 

57,084 

responses 

Manual 

inspection 

·Improving 

ATHB model 

Outdoor climates, 

building types, and 

cooling strategies can 

be considered in 

improved model 

Amasyali and 

El-Gohary 

[75] 

Occupant-

behavior on 

energy 

consumption 

and comfort 

12 subjects 
Cook 

distance 

·Cooling and 

lighting energy 

consumption 

·Occupant-

behavior data 

Optimizing occupant 

behavior can result in 

11-22% energy 

savings and increased 

thermal comfort. 

Manu et al. 

[77] 

Building 

adaptive 

comfort 

model 

6,330 

responses 

Fixed 

range 

· Indoor 

temperature 

Building adaptive 

model for mixed-

mode building in 

India, and PMV will 

over-predict sensation. 

Qiao et al. Machine 628 Adjust ·Generated data Adjusting ventilation 



[138] learning 

model for 

underground 

space 

responses sampling 

interval 

from 

variational 

autoencoder 

(VAE) 

is more effective for 

thermal comfort in 

underground space 

compared with 

adjusting temperature 

and humidity. 

Tse and Jones 

[139] 

Transitional 

space in 

buildings 

1,316 

responses 

Binning 

values 

·Clothing value 

·Thermal 

sensation vote 

People in transient 

places prefer to adjust 

themselves to restore 

comfort rather than 

making changes to 

building systems. 

Khoshbakht 

et al. [140] 

Control 

strategies in 

mixed-mode 

buildings 

1,001 

responses 

Binning 

values 

·Thermal 

sensation vote 

·Excluded 

unwell or sick 

participants 

The adaptive thermal 

comfort model is more 

suitable in semi-

control or manual 

operation rather than 

fully automated 

operation. 

Deuble and de 

Dear [78] 

Thermal 

expectations 

in mixed-

mode 

buildings 

1,359 

responses 

from 60 

subjects 

Binning 

values 

·Thermal 

sensation vote 

The adaptive comfort 

model is more 

applicable in mixed-

mode buildings than 

PMV-PPD models. 

Ma et al. 

[141] 

Elderly’s 

thermal 

perceptions in 

an urban park 

1417 

responses 

Binning 

values 
·PET 

Except outdoor 

microclimate, park use 

by the elderly is also 

affected by facility 

form and space 

function.  
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