
The effective use of anchor observations 
in variational bias correction in the 
presence of model bias 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Francis, Devon J., Fowler, Alison M. ORCID logoORCID: 
https://orcid.org/0000-0003-3650-3948, Lawless, Amos S., 
Eyre, John and Migliorini, Stefano (2023) The effective use of 
anchor observations in variational bias correction in the 
presence of model bias. Quarterly Journal of the Royal 
Meteorological Society, 149 (754). pp. 1789-1809. ISSN 1477-
870X doi: https://doi.org/10.1002/qj.4482 Available at 
https://centaur.reading.ac.uk/111215/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/qj.4482 

Publisher: Wiley 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Received: 27 September 2022 Revised: 3 March 2023 Accepted: 5 March 2023

DOI: 10.1002/qj.4482

R E S E A R C H A R T I C L E

The effective use of anchor observations in variational bias
correction in the presence of model bias

Devon J. Francis1,2 Alison M. Fowler1,2 Amos S. Lawless1,2 John Eyre3

Stefano Migliorini3

1School of Mathematical, Physical and
Computational Sciences, University of
Reading, Reading, UK
2National Centre for Earth Observation,
Reading, UK
3Met Office, Exeter, UK

Correspondence
Devon J. Francis, Department of
Meteorology, Meteorology Building,
University of Reading, Whiteknights
Road, Earley Gate, Reading, RG6 6ET,
Berkshire, UK.
Email: d.francis@pgr.reading.ac.uk

Funding information
Natural Environment Research Council,
Grant/Award Number: PR140015; UK
Research and Innovation, Grant/Award
Number: NE/S007261/1

In numerical weather prediction, satellite radiance observations have a signif-
icant impact on forecast skill. However, radiance observations must usually be
bias-corrected for the satellite data to have a positive impact. Many operational
centres use variational bias correction (VarBC) to correct the observation biases,
but VarBC assumes that there is no model bias within the system. As model
biases are often non-negligible, unbiased observations (anchor observations) are
known to play an important role in VarBC to reduce the contamination of model
bias. However, more work is needed to understand what properties the network
of anchor observations needs to have to reduce most contamination of model
bias. We derive analytical expressions to show the sensitivity of the bias cor-
rection to the anchor observations and the expected value of the error in the
analysed bias-correction coefficients. We find that the precision and location of
the anchor observations are important in reducing the contamination of model
bias in the estimate of observation bias. Anchor observations work best at reduc-
ing the effect of model bias when they observe the same state variables as the
bias-corrected observations. When this is not the case, strong background-error
correlations become more important, as they allow more information about
the model bias to be passed from the anchor observations to the bias-corrected
observations. The model bias observed by both the biased and anchor obser-
vations must be similar, otherwise the anchor observations cannot reduce the
contamination of model bias in the observation-bias correction. These results
show that, in operational systems, regions with sparse anchor observations
could be more susceptible to model biases within the radiance observation-bias
corrections. We demonstrate these results in a series of idealised numeri-
cal experiments that use the Lorenz 96 model as a simplified model of the
atmosphere.
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1 INTRODUCTION

In numerical weather prediction (NWP), the models that
describe the evolution of the atmosphere are chaotic,
which means that errors in the initial state will lead to
larger errors in the forecast. To minimise errors in the ini-
tial state, it is important to incorporate observations, so
that we have a more complete picture of the full system.
Data assimilation (DA) is used to combine measurements
from observations and previous forecasts (which we call
the background state) to find the best estimate of the state
of the atmosphere at the start of the forecast.

Observations from satellites are very important for
NWP, as they have a large impact on improving NWP
forecasts (English et al., 2013; Eyre et al., 2022). In particu-
lar, microwave and infrared hyperspectral radiances have
a higher impact on NWP forecasts than other observation
types (Candy et al., 2021). However, most radiance obser-
vations need to be bias-corrected (Dee and Uppala, 2009),
and this is now done in most operational centres such as
the Met Office (Cameron and Bell, 2018) and European
Centre for Medium-Range Weather Forecasts (ECMWF:
(Han and Bormann, 2016) by variational bias correction
(VarBC), a system that calculates the bias correction adap-
tively and can update the bias-correction coefficient at
each cycle (Auligné et al., 2007).

In addition to observation biases, biases can also be
present as systematic errors in the model, into which the
observations are assimilated. Model biases come from sys-
tematic errors in the formulation of the models, which
approximate the physics and dynamics of the (real)
atmosphere. Some operational centres—for example,
ECMWF (Laloyaux et al., 2020a)—use weak-constraint
four-dimensional variational assimilation (WC4DVar) to
reduce model biases in the stratosphere. This has recently
had more success, due to the separation of scales between
model bias (large-scale) and initial condition errors
(smaller scale), as well as a large number of radio occulta-
tion observations available in the stratosphere, which can
be assumed to be unbiased. WC4DVar works by includ-
ing a forcing parameter within the model trajectory, which
represents the model bias. The cost function is then min-
imised as a function of both the state and the new model
bias parameter.

WC4DVar is not used in all NWP centres, due to its
technical difficulty and the resources needed to implement
it. Therefore model bias is often not accounted for explic-
itly within VarBC. If model biases are left within VarBC,
then the observations will be corrected towards the model
bias, as the system struggles to separate sources of bias
(Talagrand, 1998). Therefore, as with WC4DVar, unbiased
observations need to be used to anchor the system so that
the magnitude of the analysis bias is smaller than that of

the forecast model. We call these observations that are not
bias-corrected “anchor observations” (Eyre, 2016).

Currently, several types of observations are used as
anchor observations within NWP systems. Radioson-
des have been used as observations in NWP for over
seven decades, measuring upper-air temperature, pres-
sure, humidity, and wind. They are mainly located over
land, but some are launched from ships to get some cov-
erage over oceans. Most radiosondes have a bias due to
solar and/or infrared radiation, but these are corrected
prior to data assimilation so that the data in an assimila-
tion system are considered to be unbiased (Sun et al., 2013).
Radio occultation (RO) measurements provide informa-
tion about temperature in the stratosphere and upper tro-
posphere with good spatial coverage across the Earth. They
do not need to be bias-corrected, as any biases occurring
in the bending angles are small in comparison with other
biases within the DA system, hence RO observations work
well as anchor observations (Healy and Thépaut, 2006;
Cucurull et al., 2014). Some radiance observations are
not bias-corrected using VarBC, so that they can be used
as anchor observations, as it is assumed that the model
bias is much bigger than the observation bias in the vari-
ables that they observe, although these observations may
still be bias-corrected using a static bias-correction prior
to use in VarBC. For example, AMSU-A channel 14 is
used to anchor the upper stratosphere (Di Tomaso and
Bormann, 2011) in addition to RO; selected hyperspec-
tral infrared window channels are used to anchor skin
temperature at the Met Office; and selected ozone chan-
nels from hyperspectral infrared instruments are used to
anchor the upper tropospheric/lower stratospheric ozone
analysis at ECMWF (Han and McNally, 2010). How-
ever, the assumption that observation biases are small
for these observations can be wrong: for example, biases
in the observation operator may be large (Han and Bor-
mann, 2016).

Over the past 30 years there has been a significant
increase in the number of satellite observations, due to
their large impact on NWP (Eyre et al., 2020; Saun-
ders, 2021; Eyre et al., 2022). As a result, it is becoming
more important to use unbiased observations more effec-
tively in reducing the contamination of model bias in
VarBC. Previous work from Eyre (2016) shows the impor-
tance of anchor observations in the presence of model bias
for a scalar system with no explicit random error in the
observations. Eyre (2016) shows that if there is model bias
present in a VarBC system then, as the number of anchor
observations reduces, the observation-bias correction is
more affected by model bias, so the analysis bias will tend
towards the model bias. In this study, we extend the work
of Eyre (2016) by looking at a multivariate system with
explicit random error to look at the role of the locations of
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FRANCIS et al. 3

anchor observations and their uncertainty characteristics
in reducing the effect of model bias on observation-bias
correction.

The article has the following structure. In Section 2,
the general method of VarBC is explained. In Section 3,
we extend current VarBC theory to include two types of
observation to demonstrate the role of anchor observa-
tions: in Section 3.1 we derive analysis equations for the
state and bias coefficients when there are both obser-
vations that are bias-corrected and observations that
are used as anchor observations; in Section 3.2 we
look at the importance of the location of the anchor
observations relative to the bias-corrected observations;
in Section 3.3 we look at the importance of the loca-
tion of the anchor observations relative to the locations
of model bias; and in Section 3.4 we show how bias in
the analysed bias-correction coefficients filters into the
state in subsequent cycles. In Sections 4 and 5 we test
the theory using an idealised 40-variable model of the
atmosphere (Lorenz, 1996): Section 4 gives details about
the setup of the toy data assimilation system used in
the experiments and Section 5 presents idealised exper-
iments to show the following: how the observation bias
coefficients are affected by model bias, depending on the
precision of the anchor observations; the effect of anchor
and bias-corrected observations observing different parts
of the state; and how the model bias contaminates both the
observation-bias correction and the state estimation when
VarBC is cycled. Finally, we present our conclusions and
further discussion in Section 6.

2 BIAS CORRECTION OF
OBSERVATIONS

Auligné et al. (2007) describe three types of bias-correction
techniques: static, “offline”, and variational (VarBC). In
the static scheme, a vector to describe the observation
biases is calculated via the mean difference between the
observations and the background state and this term is
taken to be fixed until the bias correction is updated. As
a result, this scheme cannot take into account any vari-
ation in the bias over different DA cycles since the last
update. In the “offline” scheme, the bias-correction coef-
ficients are calculated at every new cycle based on the
background state from the analysis of the previous cycle.
The bias-correction coefficients are calculated by minimis-
ing the cost function with respect to the bias-correction
coefficients. Although this scheme can adapt more eas-
ily than the static scheme to changing biases, the bias
coefficients are calculated via the background state, so
the “offline” scheme will be more affected by model bias
than VarBC would be (Eyre, 2016). VarBC, on the other

hand, is an adaptive scheme that updates the bias coeffi-
cients within the data assimilation system, taking advan-
tage of the latest unbiased anchor observations. This is the
method primarily used operationally, for example at the
Met Office (Cameron and Bell, 2018) and ECMWF (Han
and Bormann, 2016). In this article, we will only look at
VarBC.

The bias correction for the kth observation (e.g., a mea-
surement taken by an individual channel of a particular
satellite) is given by

ck = sk +
rk∑

i=1
𝛽k,ipk,i(x) (1)

where sk is a constant; pk,i are the rk predictors used
for the kth observation; x ∈ Rn is the NWP model state;
and 𝛽k,i are the corresponding bias-correction coefficients
that are updated at each cycle for each instrument that
is bias-corrected. We define the vector 𝜷 ∈ Rr to hold all
values of 𝛽k,i, which for simplicity we will call the bias
coefficient, where r =

∑
k rk. We define the vector function

c(x, 𝜷) ∈ Rm1 to be the bias correction for all observations
that are bias-corrected, where m1 is the number of biased
observations.

The Met Office uses the following predictors: air-mass
thicknesses, which are the differences in height between
different pressure levels; Legendre polynomials to describe
the spatial variation of bias across a scan; Fourier series
to describe orbital bias (only used for SSMIS and MWRI);
and a constant predictor that is not dependent on loca-
tion (Cameron and Bell, 2018), which is given by pk,0 = 1
(Dee and Uppala, 2009). pk,0 differs from the static bias
correction sk in Equation 1, as it is multiplied by the bias
coefficient, 𝛽k,0, so is updated within VarBC.

In VarBC the cost function, J, for three-dimensional
variational assimilation (3DVar) is now dependent on
v =

(
xT, 𝜷T)T,

J(v) = 1
2
(v − vb)TB−1

v (v − vb)

+ 1
2
(y − hv(v))TR−1(y − hv(v)), (2)

where vb is the background of the state and bias coeffi-
cients; Bv is the background-error covariance matrix for
the state and bias coefficients; R is the observation-error
covariance matrix; y is the vector that contains all obser-
vations; hv(v) is the observation operator given by a vector
function that is the sum of the nonlinear observation oper-
ator transforming the state to the observation space, h(x),
and the bias correction, c(x, 𝜷) (Auligné et al., 2007). hv(v)
will vary for each observation: for example, observations
that are not bias-corrected will have c(x, 𝜷) = 0. In this
article we refer to y − hv(v) as the innovation vector. The
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4 FRANCIS et al.

cost function can be generalised to 4DVar by summing
over the innovation vectors to include all observations in
the assimilation window and incorporating the model into
the observation operator. In the following we have looked
only at 3DVar for simplicity.

Assuming the observation operator can be linearised
around the background state vb, then the cost function in
Equation 2 is minimised by the analysis equation,

va = vb +Kv(y − hv(vb)), (3)

where the superscripts a and b denote the analysis and
background, respectively, and Kv is known as the Kalman
gain matrix for v, given by

Kv = BvHT
v (HvBvHT

v + R)−1 ∈ R
(n+r)×m, (4)

where Hv is the Jacobian of hv(vb) and m is the total num-
ber of combined anchor and bias-corrected observations.
We will refer to Kv as the sensitivity of the control vector
to the observations.

3 THE IMPORTANCE OF
ANCHOR OBSERVATIONS IN
VARBC: THEORETICAL RESULTS

Through experience at operational centres, anchor obser-
vations are known to be essential in VarBC. Their impor-
tance for constraining the system from diverging to the
model bias was highlighted in the theoretical work of
Eyre (2016) in a scalar system. In this section we derive
general insight for VarBC that demonstrates the role of
the anchor observations in limiting the contamination of
model biases. We use this theory to understand how the
role of anchor observations is sensitive to their error char-
acteristics and their location within the spatial domain.
We then look at the effect that model bias has on the bias
coefficients and how this is translated into the state in
subsequent cycles.

3.1 Setup and derivation of theory
for two observation types

In order to separate the roles of the bias-corrected and
anchor observations, we write Equation 3 in terms of the
state analysis and bias-coefficient analysis, by assuming
that there are no correlations between the errors in the
state and the bias coefficients, consistent with operational
VarBC implementation (Dee, 2004). By also assuming
that there are no correlations between the errors in the
bias-corrected and anchor observations, we can further

extend Equation 3 to include two observation types,
where y(1) ∈ Rm1 are bias-corrected within the assimila-
tion (bias-corrected observations) and y(2) ∈ Rm2 are not
bias-corrected (anchor observations):

xa = xb +Kxy(1)d(1) +Kxy(2)d(2), (5)

𝜷a = 𝜷b +K𝛽y(1)d(1) +K𝛽y(2)d(2), (6)

where

d(1) = y(1) − h(1)(xb) − c(xb, 𝜷b); d(2) = y(2) − h(2)(xb).
(7)

We use Kxy(1) and Kxy(2) to denote the sensitivities of the
state analysis to the bias-corrected and anchor observa-
tions, respectively, and K𝛽y(1) and K𝛽y(2) to denote the sensi-
tivities of the bias-coefficient analysis to the bias-corrected
and anchor observations, respectively. These four Kalman
gain matrices are stored in the matrix Kv:

Kv = BvHT
v (HvBvHT

v + R)−1

=

(
Kxy(1) Kxy(2)

K𝛽y(1) K𝛽y(2)

)
∈ R

(n+r)×(m1+m2), (8)

where Hv is given by

Hv(v) =

(
H(1) + Cx C𝛽

H(2) 0

)
∈ R

(m1+m2)×(n+r). (9)

H(1) is the Jacobian of the bias-corrected observation
operator h(1)(x); H(2) is the Jacobian of the anchor obser-
vation operator h(2)(x); Cx is the Jacobian of c(x, 𝜷) with
respect to x; and C𝛽 is the Jacobian of c(x, 𝜷) with respect
to 𝜷. Operationally, the bias correction would be a func-
tion of the background state such that c(xb, 𝜷), hence Cx
would be zero, as c is dependent on the model state at the
time of the background, not the variable x. Therefore in
the remainder of this article we will set Cx to be zero. Bv is
the background-error covariance matrix for the state and
the bias coefficient, given by

Bv =

(
Bx 0
0 B𝛽

)
∈ R

(n+r)×(n+r). (10)

R is the observation-error covariance matrix for the
bias-corrected and anchor observations, given by

R =

(
R(1) 0

0 R(2)

)
∈ R

(m1+m2)×(m1+m2). (11)

From Equation 6, the sensitivities of the bias-
coefficient analysis to the bias-corrected observations,
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FRANCIS et al. 5

anchor observations, state background, and bias-
coefficient background respectively are given by

𝜕𝜷a

𝜕y(1)
= K𝛽y(1) , (12)

𝜕𝜷a

𝜕y(2)
= K𝛽y(2) , (13)

𝜕𝜷a

𝜕xb = −K𝛽y(1)H(1) −K𝛽y(2)H(2), (14)

𝜕𝜷a

𝜕𝜷b = I −K𝛽y(1)C𝛽 , (15)

where we have used the convention that a partial deriva-
tive is a row vector. We will use Equation 14 to study
the dependence of 𝜷a on the state background, which
is the mechanism for model bias to be passed into the
bias-coefficient analysis.

In order to understand the sensitivity of 𝜷a to xb via
Equation 14, we need to know what K𝛽y(1) and K𝛽y(2) are
dependent on. Upon calculating Kv in terms of Kxy(1) , Kxy(2) ,
K𝛽y(1) , and K𝛽y(2) (see Appendix A ), we can rewrite K𝛽y(2) in
terms of K𝛽y(1) :

K𝛽y(2) = −K𝛽y(1)H(1)BxHT
(2)(H(2)BxHT

(2) + R(2))−1. (16)

Therefore this shows that the sensitivity of the
bias-coefficient analysis to the anchor observations is
dependent on the sensitivity of the bias-coefficient analy-
sis to the bias-corrected observations and vice versa (K𝛽y(1)
is also dependent on K𝛽y(2)).

As K𝛽y(2) can be written in terms of K𝛽y(1) , we can
rewrite the sensitivity of the bias-coefficient analysis to the
state background, Equation 14, so that it is written in terms
of K𝛽y(1) : 𝜕𝜷a

𝜕xb = −K𝛽y(1)H(1)(I −D), (17)

where D is given by

D = BxHT
(2)(H(2)BxHT

(2) + R(2))−1H(2). (18)

In order to understand how biases in the model are
passed into the bias-coefficient analysis, we define the
errors in the analysis, background, and observations for
both the state and the bias coefficients as follows:

𝝐a
x = xa − xt, 𝝐a

𝛽
= 𝜷a − 𝜷 t, (19)

𝝐b
x = xb − xt, 𝝐b

𝛽
= 𝜷b − 𝜷 t, 𝝐b

v = vb − vt, (20)

𝝐o
1 = y(1) − h(1)(xt) − c(xt, 𝜷 t), 𝝐o

2 = y(2) − h(2)(xt), (21)

where the “t” superscript denotes the true value of the
state, bias coefficient, or control vector, respectively. The
true bias coefficient is the theoretical vector that would
correct the observations in the bias correction perfectly if
the biased observations had no random error.

Taking the expected value of the analysis errors in the
state and bias coefficient (see Appendix B), we find

⟨𝝐a
x⟩ = ⟨𝝐b

x⟩ +Kxy(1)⟨𝝐
o
1⟩ −Kxy(1)Hv(1)⟨𝝐b

v⟩
+Kxy(2)⟨𝝐

o
2⟩ −Kxy(2)Hv(2)⟨𝝐b

v⟩, (22)

⟨𝝐a
𝛽
⟩ = ⟨𝝐b

𝛽
⟩ +K𝛽y(1)⟨𝝐

o
1⟩ −K𝛽y(1)Hv(1)⟨𝝐b

v⟩
+K𝛽y(2)⟨𝝐

o
2⟩ −K𝛽y(2)Hv(2)⟨𝝐b

v⟩, (23)

where Hv(1) =
(
H(1), C𝛽

)
and Hv(2) =

(
H(2), 0

)
, see

Equation 9. If the right-hand side of Equation 22 is nonzero
then the state analysis is biased. If the right-hand side of
Equation 23 is nonzero then the bias-coefficient analysis
has a bias. Biases in𝜷a will filter into ⟨𝝐a

x⟩when𝜷a becomes
𝜷b in the next cycle, as will be shown in more depth in
Section 3.4.

Assuming that c(xt, 𝜷 t) is the true bias correction, then
⟨𝝐o

1⟩ = 0, as 𝝐o
(1) is not dependent on the state background.

We assume the anchor observations are unbiased (⟨𝝐o
2⟩ =

0). To isolate the effect of model bias on the bias-coefficient
analysis, we make the theoretical assumption that the
bias-coefficient background has no bias (⟨𝝐b

𝛽
⟩ = 0). In sub-

sequent cycles, ⟨𝝐b
𝛽
⟩ will be propagated from the previous

cycle, so this assumption can only be possible for the
first cycle. We will demonstrate the impact that a biased
background bias coefficient has on the state and bias coef-
ficient analyses in Sections 3.4 and 5.2.1. Using Appendix
C, the expected value of the bias-coefficient analysis error,
Equation 23, simplifies to

⟨𝝐a
𝛽
⟩|||⟨𝝐o

1⟩=0,⟨𝝐o
2⟩=0,⟨𝝐b

𝛽
⟩=0

= −K𝛽y(1)H(1)(I −D)⟨𝝐b
x⟩, (24)

where D is as defined in Equation 18 and we denote ⟨𝝐a
𝛽
⟩

with the above assumptions as ⟨𝝐a
𝛽
⟩t=0 to highlight that this

is only valid for the initial cycle. In the next few sections
we will study Equation 24 to see how ⟨𝝐a

𝛽
⟩t=0 is affected

by model bias when we vary the anchor observation
parameters.

The effect of the model bias on 𝜷a will be small if at
least one term in the product K𝛽y(1)H(1)(I −D) is also small.
If K𝛽y(1) is small, then the sensitivity of the bias-coefficient
analysis to the bias-corrected observations, Equation 12,
would be small. If H(1) is small, then the bias-corrected
observations would not be used to determine the state
analysis. Therefore, as these are both uninteresting cases
for determining the bias-coefficient analysis, in this study

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4482 by T
est, W

iley O
nline L

ibrary on [06/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 FRANCIS et al.

we will focus instead on when the magnitude of I −D is
small depending on the parameters given in the system.

Note that ⟨𝝐a
𝛽
⟩t=0 can also be rewritten in terms of

the sensitivity of the bias-coefficient analysis to the state
background, Equation 17, such that Equation 24 becomes

⟨𝝐a
𝛽
⟩t=0 =

𝜕𝜷a

𝜕xb ⟨𝝐
b
x⟩. (25)

Therefore if the sensitivity of the bias-coefficient analysis
to the state background reduces, less model bias will be
able to contaminate the analysed bias coefficient.

In subsequent sections, we look at the importance
of the location of the anchor observations relative to
the bias-corrected observations for reducing I −D and
thus reducing the contamination of model bias in the
observation-bias correction.

3.2 Position of anchor observations
relative to bias-corrected observations

In this section, we want to understand how anchor obser-
vations can reduce the contamination of model bias in
the bias-coefficient analysis depending on whether the
bias-corrected and anchor observations observe the same
state variables.

3.2.1 Anchor observations fully observe
the domain

In order to understand the role of anchor observations in
reducing the contamination of model bias in VarBC, we
first consider an almost perfect case where we have anchor
observations everywhere in the domain. If H(1) and H(2) are
both equal to the identity, that is, the state is fully observed
directly by both bias-corrected and anchor observations,
then D, Equation 18, is given by

D|||H(2)=I
= Bx(Bx + R(2))−1 ∶= DI. (26)

Equation 24 is then given by

⟨𝝐a
𝛽
⟩t=0

|||D=DI
= −K𝛽y(1)

|||H(1)=H(2)=I
(I −DI)⟨𝝐b

x⟩ ∶= ⟨𝝐a
𝛽
⟩t=0,DI .

(27)
Equation 27 shows that, even with complete observation
coverage, ⟨𝝐a

𝛽
⟩t=0,DI is still nonzero, as it is still a function

of the state model bias. However, if DI tends to the identity,
then the right-hand side of Equation 27 would tend to zero,
such that the observation-bias correction would no longer
be contaminated by the model bias. DI would tend to the

identity when the elements of R(2) are smaller than the
elements of Bx. This would occur when the anchor obser-
vations are more precise than the state backgrounds that
they observe.

Overall, Equation 26 shows that, even with anchor
observations at every model grid point, we still have model
bias contaminating the bias-coefficient analysis. This can
only be reduced by having anchor observations that are
more precise than the state backgrounds that they observe.

3.2.2 Anchor observations partially observe
the domain

Anchor observations and observations to be bias-corrected
could observe different parts of the state. Therefore in this
section we derive equations for the expected value of the
bias-coefficient analysis error and the sensitivity of the
bias-coefficient analysis to the state background when the
anchor observations do not observe the whole domain.

Let the state x be separated into two parts: x𝜙 and
x𝜓 , such that x =

(
xT
𝜙
, xT

𝜓

)T. Let the anchor observa-
tions only observe a subset of the state, such that they
only observe variables in x𝜓 . Bias-corrected observations
could observe variables in x𝜙 and x𝜓 . Then the linearised
bias-corrected and anchor observation operators will be
given by

H(1) =
(

H(1)𝜙 , H(1)𝜓

)
, (28)

H(2)
|||H(2)𝜙=0

=
(

0, H(2)𝜓

)
∶= H(2)p, (29)

where H(1)𝜙 is related to observations of x𝜙 and H(1)𝜓 and
H(2)𝜓 are related to observations of x𝜓 . We have denoted
H(2)p to be the Jacobian of the anchor observation operator
when the state is only partially observed by anchor
observations, that is, anchor observations only observe
variables in x𝜓 .

The background-error covariance matrix that describes
the relationships between xb

𝜙
and xb

𝜓 is

Bx =

(
Bx𝜙 Bx𝜙𝜓

BT
x𝜙𝜓 Bx𝜓

)
. (30)

The magnitude of Bx𝜙𝜓 determines how much information
about the observations will be shared between the state
variables (Bannister, 2008). For example, if the elements in
Bx𝜙𝜓 are small then there are weak correlations between
the errors in xb

𝜙
and xb

𝜓 .
We are interested in how the value of D, Equation 18,

affects the sensitivity of the bias-coefficient analysis to
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FRANCIS et al. 7

the state background. When the anchor observations only
observe a subset of the state, we denote D by

D|||H(2)=H(2)p
∶= Dp =

(
Dp𝜙 Dp𝜙𝜓

Dp𝜓𝜙 Dp𝜓

)
.

The blocks of Dp are given by (see Appendix D)

Dp𝜙 = 0, (31)

Dp𝜙𝜓 = Bx𝜙𝜓 HT
(2)𝜓
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1H(2)𝜓 , (32)

Dp𝜓𝜙 = 0, (33)

Dp𝜓 = Bx𝜓 HT
(2)𝜓
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1H(2)𝜓 . (34)

Then the sensitivity of 𝜷a to xb (Equation 17), when
H(2) = H(2)p, is given by

𝜕𝜷a

𝜕xb
|||H(2)=H(2)p

= −K𝛽y(1)
|||H(2)=H(2)p

(
H(1)𝜙 ,−H(1)𝜙Dp𝜙𝜓 +H(1)𝜓 (I −Dp𝜓 )

)
.

The first block element of the matrix in Equation 35 (i.e.,
−K𝛽y(1)

|||H(2)=H(2)p
H(1)𝜙) gives the sensitivity of 𝜷a to xb

𝜙
and

the second block element of the matrix in Equation 35
(i.e., −K𝛽y(1)

|||H(2)=H(2)p
[−H(1)𝜙Dp𝜙𝜓 +H(1)𝜓 (I −Dp𝜓 )]) gives

the sensitivity of 𝜷a to xb
𝜓 . Dp𝜙 and Dp𝜓𝜙 are zero (from

Equations 31 and 33) so do not appear in this equation,
but their role would be to vary the sensitivity of 𝜷a on xb

𝜙
.

Therefore, as Dp𝜙 and Dp𝜓𝜙 are zero, the sensitivity of 𝜷a

to xb
𝜙

is not explicitly dependent on anchor observations,
when anchor observations do not observe state variables in
x𝜙. However, there is some implicit dependence of anchor
observations in K𝛽y(1) . If Dp𝜙𝜓 and Dp𝜓 change magnitude,
then this will vary the sensitivity of 𝜷a to xb

𝜓 . Therefore,
as Dp𝜙𝜓 and Dp𝜓 are explicitly dependent on the anchor
observations, the sensitivity of 𝜷a to x𝜓 is also explicitly
dependent on the anchor observations, as in this case the
anchor observations observe state variables in x𝜓 .

Putting Dp into Equation 24 gives ⟨𝝐a
𝛽
⟩t=0 when the

anchor observations observe part of the state:

⟨𝝐a
𝛽
⟩ = −K𝛽y(1)

(
H(1)𝜙⟨𝝐b

x𝜙⟩

−
[
H(1)𝜙Dp𝜙𝜓 −H(1)𝜓 (I −Dp𝜓 )

]
⟨𝝐b

x𝜓 ⟩
)

∶ = ⟨𝝐a
𝛽
⟩t=0,Dp , (36)

where ⟨𝝐b
x𝜙⟩ and ⟨𝝐b

x𝜓 ⟩ are the biases in the background
state variables xb

𝜙
and xb

𝜓 respectively. We will use this
equation further in Sections 3.2.3 and 3.3 to show how
the sensitivity of the bias in 𝜷a varies depending on the
location of the model bias in relation to the anchor obser-
vations.

3.2.3 Special case: anchor observations
and bias-corrected observations observe
different parts of the state

Next we look at the case where anchor and bias-corrected
observations observe different parts of the state to
understand the importance of the background-error
covariance matrix. Let the bias-corrected observations
only observe x𝜙 and anchor observations only observe x𝜓 .
Then the observation operators of both observation types
will be given by

(
H(1)𝜙 , 0

)
∶= H(1)p,

(
0, H(2)𝜓

)
∶= H(2)p, (37)

where we have denoted H(1)p and H(2)p to be the Jacobians
of the observation operators when both bias-corrected and
anchor observations observe the state only partially.

Substituting Equation 37 into Equation 36 gives the
expected value of the bias-coefficient analysis when
anchor and bias-corrected observations observe different
parts of the state,

⟨𝝐a
𝛽
⟩t=0,Dp

|||H(1)pH(2)p
= −K𝛽y(1)H(1)𝜙

(
⟨𝝐b

x𝜙⟩ −Dp𝜙𝜓⟨𝝐b
x𝜓 ⟩

)
,

(38)
which holds because H(1)𝜓 = 0.

The right-hand side of Equation 38 will reduce
if ⟨𝝐b

x𝜙⟩ −Dp𝜙𝜓⟨𝝐b
x𝜓 ⟩ tends towards zero. Dp𝜙𝜓 , from

Equation 32, is linearly dependent on Bx𝜙𝜓 . Therefore, the
strength of the background-error covariances between xb

𝜙

and xb
𝜓 will influence how small the difference term in

Equation 38 is. In the case in which the model biases
⟨𝝐b

x𝜙⟩ and ⟨𝝐b
x𝜓 ⟩ have similar sign and magnitude, if Dp𝜙𝜓

tends to the identity, the difference term will reduce
and the expected value of the bias-coefficient analysis
error will tend to zero. Dp𝜙𝜓 will tend to the identity if
the background-error correlations between the states are
large. In practice, the model biases may be similar for
different parts of the state and the background-error cor-
relations between these two states could be large when
restricted to specific atmospheric layers higher in the
atmosphere. However, this will not be the case when
the bias-corrected and anchor observations observe states
vertically far apart: for example, biases in stratospheric
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8 FRANCIS et al.

temperatures tend to be much bigger than biases in tropo-
spheric temperatures.

To understand the importance of Bx𝜙𝜓 when the anchor
and bias-corrected observations observe different parts of
the state, let us look at the case when Bx𝜙𝜓 = 0. In this case
we can simplify Kv from Equation 8, as the off-diagonal
blocks in (HvBvHT

v + R) are zero:

H(1)pBxHT
(2)p =H(1)𝜙Bx𝜙𝜓 HT

(2)𝜓
= 0 (39)

and
H(2)pBxHT

(1)p =H(2)𝜓 BT
x𝜙𝜓 HT

(1)𝜙
= 0. (40)

Putting Equations 39 and 40 into HvBvHT
v + R gives a

block diagonal matrix. Then Kv from Equation 8 can be
simplified to

Kv
|||Bx𝜙𝜓 =0

=
⎛
⎜
⎜
⎜⎝

Kxy(1)
|||Bx𝜙𝜓 =0

Kxy(2)
|||Bx𝜙𝜓 =0

K𝛽y(1)
|||Bx𝜙𝜓 =0

K𝛽y(2)
|||Bx𝜙𝜓 =0

⎞
⎟
⎟
⎟⎠

, (41)

where K𝛽y(1) and K𝛽y(2) can be simplified from
Equations A11 and A12 to give

K𝛽y(1)
|||Bx𝜙𝜓 =0

= B𝛽CT
𝛽
(H(1)𝜙Bx𝜙HT

(1)𝜙
+ C𝛽B𝛽CT

𝛽
+ R(1))−1,

(42)

K𝛽y(2)
|||Bx𝜙𝜓 =0

= 0. (43)

The derivation of K𝛽y(1) and K𝛽y(2) for the general
case case be found in Appendix A. As K𝛽y(2)

|||Bx𝜙𝜓 =0
= 0,

from Equation 13 the sensitivity of the bias-coefficient
analysis is independent of the anchor observations
when there are no background-error cross-correlations
between the states observed by the anchor observations
and the states observed by the bias-corrected obser-
vations. This means anchor observations do not play
a role in determining the bias coefficients if anchor
observations do not observe the same state variables
as the bias-corrected observations and information is
not passed between x𝜙 and x𝜓 via Bx𝜙𝜓 . Therefore, if
bias-corrected and anchor observations observe differ-
ent state variables, nonzero background-error covari-
ances allow the anchor observations to be used to deter-
mine the bias coefficients and therefore reduce the effect
of the model bias in 𝜷a. We will use this result in
Section 3.3.

So far, we have not considered that the model bias
may change magnitude depending on location. In the next

section, we will investigate scenarios where the location of
the model bias differs relative to the location of the anchor
observations.

3.3 Position of anchor observations
relative to model bias

In reality, biases in the model will not be uniformly dis-
tributed throughout the domain. For example, a version
of the ECMWF Integrated Forecast System model has a
cold bias between 100 and 10 hPa and a warm bias above
10 hPa (Laloyaux et al., 2020b). In this section, we explore
the case in which the model bias varies across the domain.
For simplicity, we assume that some parts of the domain
are biased and others not. We continue to assume that the
anchor observations observe only a subset of the state, but
assume that the bias-corrected observations could observe
the whole state.

Figure 1 is a schematic diagram that depicts the dif-
ferent possibilities of the locations of the model bias in
relation to the observations. The presence of model bias is
shown by the patterned background; the circles with H(1)
show the parts of the state observed by the bias-corrected
observations; and the circles with H(2) show the parts of
the state observed by anchor observations. In Figure 1
a the model bias is in x𝜓 , which is observed by anchor
observations and some bias-corrected observations, in
Figure 1 b the model bias is in x𝜙, which is only observed
by bias-corrected observations, and in Figure 1 c the model
bias is in both x𝜙 and x𝜓 , such that the whole state that is
observed has model bias. In the next sections we assume
that the model biases in x𝜙 and x𝜓 (when present) have the
same sign and magnitude. These scenarios are discussed
below.

3.3.1 Model bias in state variables observed
by anchor observations, but not in all state
variables observed by bias-corrected
observations

If ⟨𝝐b
x𝜙⟩ = 0 (i.e., there is no model bias in xb

𝜙
, the state

variables are observed only by the bias-corrected obser-
vations) but ⟨𝝐b

x𝜓 ⟩ ≠ 0 (i.e., there is model bias in xb
𝜓 , the

state variables are observed by both the bias-corrected
and anchor observations), then the expected value of the
bias-coefficient analysis, Equation 36, becomes

⟨𝝐a
𝛽
⟩t=0,Dp

|||⟨𝝐b
x𝜙
⟩=0

= K𝛽y(1)
[
H(1)𝜙Dp𝜙𝜓 −H(1)𝜓 (I −Dp𝜓 )

]

⟨𝝐b
x𝜓 ⟩. (44)
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FRANCIS et al. 9

F I G U R E 1 A schematic diagram depicting the location of the model bias in relation to the bias-corrected and anchor observations,
where H(1)𝜙 is the observation operator relating the bias-corrected observations to x𝜙; H(1)𝜓 is the observation operator relating the
bias-corrected observations to x𝜓 ; and H(2)𝜓 is the observation operator relating the anchor observations to x𝜓 . The model bias is shown by
the patterned background. In (a) there is only model bias in x𝜓 , which is observed by the anchor observations and some bias-corrected
observations, in (b) there is only model bias in x𝜙, which is only observed by the bias-corrected observations, and in (c) there is model bias in
both x𝜙 and x𝜓 , which is observed by both bias-corrected and anchor observations. [Colour figure can be viewed at wileyonlinelibrary.com]

The effect of model bias from xb
𝜓 in Equation 44 would

be reduced if the matrix in the square brackets tends to
zero. This could occur if both H(1)𝜙Dp𝜙𝜓 and H(1)𝜓 (I −Dp𝜓 )
tend to zero, or if their difference tends to zero. If the
bias-corrected observations observe state variables in x𝜓
(so they observe the same part of the state as the anchor
observations) such that H(1)𝜓 is nonzero, then the sec-
ond term in the square brackets would tend to zero if
DT

p𝜓 tends to the identity. From Equation 34, this would
occur if R(2)𝜓 is smaller than Bx𝜓 , or, in other words, if
the anchor observations were more precise than the state
backgrounds that they observe, as we saw for a simpli-
fied case in Section 3.2.1. If the bias-corrected observations
observe state variables in x𝜙 (so they observe different parts
of the state from the anchor observations) such that H(1)𝜙
is nonzero, then H(1)𝜙Dp𝜙𝜓 would tend to zero if Dp𝜙𝜓
tends to zero. Using Equation 32, Dp𝜙𝜓 would tend to
zero if the background-error covariances Bx𝜙𝜓 are small,
which would mean less information is passed between
xb
𝜙

and xb
𝜓 than when the background-error covariances

are larger.
Therefore, if anchor and bias-corrected observations

observe the same state, the anchor observations can reduce
the effect of the model bias in the state when the anchor
observations are more precise than the state backgrounds
they observe. If there are bias-corrected observations
that observe a different part of the state from the anchor
observations, which do not have model bias, then smaller
background-error covariances between the two parts of
the state will limit the amount of model bias able to
contaminate the estimate of the bias coefficient, as the
anchor observations cannot share information about the
model bias with the bias-corrected observations. This is in
contrast to Section 3.2.3, in which we showed that if
anchor and bias-corrected observations observe different

states, but the model bias observed was the same,
then they would need nonzero background-error
cross-correlations for the anchor observations to pass
information about the model bias to the bias-corrected
observations.

3.3.2 Model bias not in state variables
observed by anchor observations

If there is no model bias in xb
𝜓 (i.e., there is no model

bias in state variables observed by anchor observations),
such that ⟨𝝐b

x𝜓 ⟩ = 0, but there is model bias in xb
𝜙

(i.e.,
there is model bias in state variables only observed
by bias-corrected observations), then the expected
value of the bias-coefficient analysis, Equation 36,
reduces to

⟨𝝐a
𝛽
⟩t=0,Dp

|||⟨𝝐b
x2
⟩=0

= −K𝛽y(1)H(1)𝜙⟨𝝐b
x𝜙⟩. (45)

In this case, the anchor observations cannot reduce the
effect of the model bias in xb

𝜙
via Dp, as ⟨𝝐a

𝛽
⟩t=0,Dp is

no longer dependent on Dp and no other variables in
Equation 45 are explicitly dependent on the anchor obser-
vations. Therefore, if anchor observations do not observe
the parts of the state that have model bias, they can-
not explicitly reduce the effect of model bias on 𝜷a.
Anchor observations will only have an effect on model bias
implicitly through K𝛽y(1) , as K𝛽y(1) is implicitly dependent
on H(2) and R(2) (see Equation A12). However, as was
discussed at the end of Section 3.1, a small K𝛽y(1) would
mean the bias-coefficient analysis is independent of the
bias-corrected observations, so we are not interested in
this case.
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10 FRANCIS et al.

3.3.3 Model bias in state variables observed
by both anchor and bias-corrected observations

If we have model bias in both xb
𝜙

and xb
𝜓 , then we come

back to Equation 36, which gives the same results as in
Section 3.2 : that is, giving a higher weighting to the
anchor observations will reduce the contamination of
model bias in the observation bias coefficient. If there are
similar model biases in state variables observed by either
bias-corrected or anchor observations, background-error
covariances between state variables become more impor-
tant in sharing information about the model bias.

In Sections 3.2 and 3.3, we have shown that, in order
for the anchor observations to have the biggest impact on
reducing the effect of model bias on 𝜷a, both anchor and
bias-corrected observations need to observe model bias. If
both anchor and bias-corrected observations observe the
same parts of the state, the effect of the model bias is small-
est when Dp𝜓 tends towards the identity, as was shown in
Section 3.2.1. If both anchor and bias-corrected observa-
tions observe model bias, but do not observe the same state
variables, background-error correlations with large mag-
nitudes will have a bigger impact in reducing the effect of
model bias on 𝜷a, as was shown in Section 3.2.3, as Dp𝜙𝜓
is linearly dependent on Bx𝜙𝜓 (Equation 32).

3.4 The effect of a biased
bias-coefficient analysis on the state
analysis in further cycles

So far we have only looked at the contamination of
model bias in 𝜷a, not in xa. However, any bias in the
bias-coefficient analysis will filter into the bias correction
and therefore the state analysis in the next cycle. Within
this section we extend the theory developed so far to under-
stand the impact of model bias on the state analysis via the
implementation of VarBC.

Cycle 1 (theory so far): At the initial time, we
assume that 𝜷b is unbiased. We assume the mean anchor
observation errors are zero by definition. When the bias
correction function is dependent on the true state and
bias coefficient, c(xt, 𝛽t), we assume it is perfect, such
that the expected value of the bias-corrected observation
errors are zero. Then the mean values of the errors in the
observations and bias-coefficient background at the first
cycle are denoted by

⟨𝝐o
1⟩t=0 = ⟨y(1)t=0 − h(1)(xt

t=0) − c(xt
t=0, 𝜷

t
t=0)⟩ = 0,

⟨𝝐o
2⟩t=0 = ⟨y(2)t=0 − h(2)(xt

t=0)⟩ = 0, (46)

⟨𝝐b
𝛽
⟩t=0 = 0. (47)

If we assume that there is a bias in the state back-
ground, which arises from a model bias, then from
Equations 22 and 23 we have that the expected value of
the analysis errors at the first cycle for the state and bias
coefficients respectively are

⟨𝝐a
x⟩t=0 = (I −Kxy(1)H(1) −Kxy(2)H(2))⟨𝝐b

x⟩t=0, (48)

⟨𝝐a
𝛽
⟩t=0 = (−K𝛽y(1)H(1) −K𝛽y(2)H(2))⟨𝝐b

x⟩t=0. (49)

Note that Equation 49 is equivalent to Equation 24.
Cycle 2: We assume the bias coefficients are approx-

imately constant between cycles, such that ⟨𝝐b
𝛽
⟩t=1 =

⟨𝝐a
𝛽
⟩t=0. We assume that the expected values of the errors

in both bias-corrected and unbiased observations are still
zero, as the observation errors in Equation 47 are not
dependent on the background state and background bias
coefficient. The state background is the previous state
analysis evolved forward via the linearised model M, plus a
bias increment 𝜼Δt. The expected values of the background
and observation errors at the second cycle are therefore
given by

⟨𝝐b
𝛽
⟩t=1 = ⟨𝝐a

𝛽
⟩t=0 = (−K𝛽y(1)H(1) −K𝛽y(2)H(2))⟨𝝐b

x⟩t=0, (50)

⟨𝝐b
x⟩t=1 = M0→1(⟨𝝐a

x⟩t=0) + 𝜼Δt, (51)

⟨𝝐o
1⟩t=1 = ⟨y(1)t=1 − h(1)(xt

t=1) − c(xt
t=1, 𝜷

t
t=1)⟩ = 0,

⟨𝝐o
2⟩t=1 = ⟨y(2)t=1 − h(2)(xt

t=1)⟩ = 0. (52)

Then, substituting Equations 50 – 52 into Equations 22
and 23, we have that the expected values of the analysis
errors for the state and bias coefficients at the second cycle
are

⟨𝝐a
x⟩t=1 = (I −Kxy(1)H(1) −Kxy(2)H(2))⟨𝝐b

x⟩t=1

−Kxy(1)C𝛽⟨𝝐a
𝛽
⟩t=0, (53)

⟨𝝐a
𝛽
⟩t=1 = −(K𝛽y(1)H(1) +K𝛽y(2)H(2))⟨𝝐b

x⟩t=1

+ (I −K𝛽y(1)C𝛽)⟨𝝐a
𝛽
⟩t=0. (54)

The expected value of the state analysis is now dependent
on both ⟨𝝐b

x⟩t=1 and ⟨𝝐a
𝛽
⟩t=0. This shows that, if the

bias-coefficient analysis is biased at time n, then this will
contaminate the estimate of both state and bias-coefficient
analysis at time n + 1. As ⟨𝝐b

𝛽
⟩t=1 = ⟨𝝐a

𝛽
⟩t=0, we see that in

future cycles we cannot assume ⟨𝝐b
𝛽
⟩ = 0, as any bias in

the bias-coefficient analysis will become the bias in the
bias-coefficient background. Therefore, this shows that it
is important to reduce the contamination of model bias in
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FRANCIS et al. 11

the observation bias coefficient, as ⟨𝝐a
𝛽
⟩ feeds into future

cycles and contaminates the state analysis.

4 EXPERIMENTAL DESIGN

In this section, we demonstrate our general theory for a
linear system by considering a simplified experiment that
uses the nonlinear Lorenz 96 model (Lorenz, 1996), which
we will denote as L96, as the basis for our system. L96
has been used as a way to study predictability, particularly
in weather and other atmospheric systems, and is often
used today as a test problem for numerical weather pre-
diction and in data assimilation (e.g. Ott et al., 2004; Fertig
et al., 2007; Brajard et al., 2020). We use L96 as it allows
us to choose certain parameters that control how quickly
the system displays chaotic behaviour (Lorenz, 1996; Kerin
and Engler, 2020). Model bias is added to the equations
over more than one cycle by changing the forcing term in
the model that propagates the state analysis forward, but
not in the model that calculates the true state, which is
used to generate the observations.

The L96 model is a system of coupled ordinary dif-
ferential equations which describes the evolution of a
quantity via advection, dissipation, and external forc-
ing. The system contains N variables x1, ..., xN , and is
determined by N equations, where the kth equation is
given by

dxk

dt
= −xk−2xk−1 + xk−1xk+1 − xk + F, (55)

where F is independent of k (Lorenz, 1996). This is solved
numerically using the fourth-order Runge–Kutta scheme.
We assume that we are on a periodic circular domain
such that x0 = xN and x1 = xN+1. The first two terms of
Equation 55 are the advection terms, which conserve the
total energy: they simulate flow out of and into the grid
point k, respectively. The third term is the internal dissipa-
tion, where a fraction of the quantity present is destroyed
or dissipated, and the fourth term, F, shows how much of
the current quantity xk is added to each state (Kerin and
Engler, 2020).

As in many toy data assimilation experiments utilising
the L96 model, we choose the number of spatial variables
N to be 40 and the forcing term in the true model, F,
to be 8 (e.g. Ott et al., 2004; Fertig et al., 2007; Brajard
et al., 2020). We set the distance between grid points
ΔLk = 1 for all k, such that the length of the domain is
40 (equal to the number of spatial variables). We initialise
the L96 model from a sine curve and run it for 105 time
steps of Δt = 0.0125, in order to allow the system to relax

into its dynamics. The time step Δt = 0.0125 is equiva-
lent to approximately 45 min in the real atmosphere (Ott
et al., 2004; Brajard et al., 2020), based on the assumption
that the error-doubling time of the atmosphere is approxi-
mately 1 day (Simmons and Hollingsworth, 2002). We then
use the final time step as the initial condition for the true
trajectory in our numerical experiments.

In our data assimilation setup, we set the true model to
be the L96 model with forcing F = 8. We define the biased
observations to be the truth plus an error consisting of
random and systematic error,

y(1) = xt + eo
(1) + bo ∈ R

m(1) , (56)

where xt is the true state; eo
(1) is the uncorrelated random

error in the biased observations, calculated from a Gaus-
sian distribution with zero mean and error variance 𝜎2

o(1);
and bo is the observation bias. We define the bias to be con-
stant over all observed variables, and set it to 2 (∶= 𝛽t). The
unbiased observations are given by the truth plus a random
error,

y(2) = xt + eo
(2) ∈ R

m(2) , (57)

where eo
(2) is the random error in the unbiased observa-

tions, calculated from a Gaussian distribution with zero
mean and error variance 𝜎2

o(2). These will be our anchor
observations. The data assimilation method used for our
experiments with the L96 model is 1DVar, which is anal-
ogous to the theory presented on 3DVar in Section 3, as
we do not use a time dimension. The number of obser-
vations in space varies depending on the experiment. For
each experiment there is at least one observation (anchor
and/or bias-corrected observations) observing every state
variable. Although such a high frequency of observations
is unrealistic operationally, this is necessary when using
the L96 model, as variables that are spatially close in L96
are not highly correlated (Lorenz, 2005), which implies
that their errors are not highly correlated. We attempted
similar experiments with sparser observations, but it
produced background-error covariance matrices with
unstable values.

We simulate direct observations, hence H(1) ∈ Rm1×40

and H(2) ∈ Rm2×40 have values of one at the locations of
observations and zero at all other locations. As the biases
added to the observations are constant, we set c(x, 𝛽) = 𝛽
such that Cx = 0 and C𝛽 = 1. This means that we only
use one predictor, which is equal to 1, that is, pk,0 = 1
in Equation 1. R(1) and R(2) are set to be the identity,
unless stated otherwise as in experiment 1 (Section 5.1.1).
The matrix Bv (the matrix that combines Bx and B𝛽 : see
Equation 10) is given by two different matrices in the
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12 FRANCIS et al.

following experiments. In experiments 1 and 3, Bv is cal-
culated from an initial ensemble run, so that it is the opti-
mal background-error covariance matrix for the system.
The calculation of Bv for these experiments is explained
in more detail in Appendix E. In experiment 2 (Section
5.1.2), in which we do not cycle the system, the correla-
tions in Bx are given by the second-order autoregressive
(SOAR) correlation function, which has previously been
used to model the background-error correlations of the
atmosphere (Ingleby, 2001; Simonin et al., 2014), allowing
us to control the length-scales of the error correlations. The
SOAR correlation function is given by

sk =
(

1 + k
Lb

)
e−k∕Lb , (58)

where k is the index from 1 to N∕2; Lb is the length-scale;
and e is the exponential function. For values greater than
N∕2, sk is repeated in opposite order such that the array s is
palindromic. To calculate Bx, s is multiplied by𝜎2

bx to create
a circulant matrix. The background-error covariances are
varied by varying the length-scale of the SOAR function.
B𝛽 is given by the scalar 𝜎2

b𝛽 .

5 NUMERICAL RESULTS

In this section, we demonstrate the theoretical results from
Section 3 using the L96 model and the metrics we have
introduced in Section 4.

We want to demonstrate the ability of anchor obser-
vations to reduce the contamination of model bias act-
ing on the analysed observation bias coefficient. In each
experiment we compute the bias-coefficient analysis over
a given number of realisations, with random error in the
observations and initial background values. The num-
ber of realisations varies in each experiment, due to the
computational cost and the error variances chosen. From
these realisations we obtain the mean and standard devi-
ation of the bias-coefficient analysis. We can illustrate
the bias in the analysed bias coefficient with the ratio

|𝛽a − 𝛽t|
𝜎a𝛽

, (59)

where | ⋅ | is the absolute value; 𝛽a is the mean 𝛽a over
all realisations; 𝛽t is the true bias; and 𝜎a𝛽 is the standard
deviation of 𝛽a from all realisations. This shows the bias
associated with the mean value of 𝛽a in relation to the error
variance. We will refer to this ratio as the bias ratio. If the
bias ratio is large, then the bias can be considered signifi-
cant in comparison with the random noise, but if the bias
ratio is small, then the bias in the bias-coefficient analysis

F I G U R E 2 The ratio (Equation 59) from running the system
with different values of anchor observation-error standard deviation
(𝜎o(2)). Both biased and anchor observations are at every location in
the domain. The bias-corrected observation-error standard
deviations are set to 1. The background-error covariance matrix is
calculated from an ensemble, see Appendix E. A bias of 0.15 was
added to all background state variables. The solid line is the analytic
ratio, calculated from the linearised observation operators and error
covariance matrices in the system, and the crosses are the
numerical ratios, calculated by averaging over 3000 realisations.
[Colour figure can be viewed at wileyonlinelibrary.com]

will be lost within the random error and so will be insignif-
icant. The ratio at 0.1 is plotted for reference as a dotted
line in Figures 2, 3, and 4 and is referred to as the reference
ratio.

5.1 One-cycle experiments (no model
evolution)

In the first two experiments (Sections 5.1.1 and 5.1.2)
we use 1DVar to calculate the analysis of the state
and bias coefficients at the initial time step. To sim-
ulate a model bias, we set the state background to
have a bias, to represent any bias that has accumu-
lated from running a previous cycle forward using the
model. The background state is given by the truth plus an
error,

xb = xt + eb
x + bb ∈ R

40, (60)

𝛽b = 𝛽t + eb
𝛽
∈ R, (61)

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4482 by T
est, W

iley O
nline L

ibrary on [06/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


FRANCIS et al. 13

F I G U R E 3 The ratio in
Equation 59 at one cycle when the
length-scale of Bx has been varied.
Biased observations observe all even
state variables (x0, x2 etc), anchor
observations observe all odd state
variables. The dotted line is the
reference ratio. A bias of 0.3 was
added to the background: in state
variables only observed by biased
observations (solid line); in state
variables only observed by anchor
observations (dotted line); and in
state variables observed by both
types of observations (dash-dotted
line). [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 4 The ratios in Equations 59 and 62 over 200 cycles for 100 realisations. Fbiased = 8.8, error variances are 1, Bv is calculated by
an ensemble (Appendix E). Anchor and biased observations observe every state variable. [Colour figure can be viewed at
wileyonlinelibrary.com]

where eb
x is the random error in the state background

calculated from a Gaussian distribution with zero mean
and from the error covariance matrix Bx; bb is the bias

in the initial state background; and eb
𝛽

is the random
error in the bias-coefficient background calculated from a
Gaussian distribution with zero mean and error variance
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14 FRANCIS et al.

𝜎2
b𝛽 . In experiment 1 this is set from the climatological Bv

(as described in Appendix E) and in experiment 2 this is
set to be 1, so that it is equal to the other error variances.

5.1.1 The effect of varying the anchor
observation-error variance

First we present an experiment to illustrate the results
found in Section 3.2.1. The theoretical results showed that,
in a system observed fully by anchor observations, small
anchor observation-error variances reduce the contamina-
tion of model bias in 𝛽a. Therefore, in this experiment, we
have observed all spatial variables with both bias-corrected
and anchor observations, such that every spatial variable
is observed twice, once by the bias-corrected observations
and once by the anchor observations.

In Figure 2, we plot the bias ratio as in
Equation 59 from 3000 realisations after one cycle and
vary the anchor observation-error standard deviation, to
test the importance of the weighting given to anchor obser-
vations in reducing the effect of model bias in the analysed
bias coefficient. The bias-corrected observation-error
standard deviations (𝜎o(1)) are set to 1, so that they are
approximately 10% of the variability of the state. Bv is cal-
culated via an ensemble, as described in Appendix E, and
is kept constant for the different values of 𝜎o(2). Although
this gives a suboptimal Bv for the system, it isolates the
effect of varying the anchor observation-error variance.
A bias of 0.15 has been added to the initial conditions, as
in Equation 60, which represents our model bias. This is
approximately 1.5% of the variability of the state and was
chosen so that the system could still control the model
bias. 𝜎o(2) has been varied from one-tenth of 𝜎o(1) to ten
times 𝜎o(1) (i.e., between 0.1 and 10). The crosses are the
results from the 3000 realisations and the solid line is the
analytic result given by Equation 24, to give the “true”
bias ratio for the system.

In Figure 2, the bias in the observation bias coefficient
becomes more significant as the anchor observation-error
standard deviation is increased. There is some variation
in the bias ratio when calculated from the realisations,
which is due to the random error in the observations
and background, but they follow the shape of the ana-
lytic solution. The bias ratio increasing with larger anchor
observation-error variance is in line with the results found
from Equation 27, as we showed that if the anchor
observation-error variance is small, then the effect of the
model bias on 𝛽a would be small. This is because the ratio
D in Equation 18 will tend to the identity as 𝜎o(2) reduces.
The ratio increases as 𝜎o(2) increases, which shows that, as
less trust is put into the anchor observations, the bias in the
analysed bias coefficient increases. This occurs as model

bias dilutes the analysis of the bias coefficient and pulls
the VarBC system away from the truth. In the limit where
the anchor observation-error variance is large, the anchor
observations receive insignificant weight in the analysis
and so the biased observations are bias-corrected towards
the model bias, instead of to the truth.

5.1.2 The location of the anchor
observations relative to the model bias

Next we present experiments to demonstrate the results
found in Sections 3.2.3 and 3.3, such that we have anchor
and biased observations observing different state variables
that do and do not have model biases. In Section 3.3, we
showed how the role of the anchor observations in reduc-
ing the effect of model bias changes depending on whether
or not anchor observations observe state variables that
have model bias. When anchor and biased observations
observe different parts of the state, as in Section 3.2.3, then
the influence of the anchor observations is dependent on
the background-error covariances between state variables.

In Figure 3, we have plotted the ratio in Equation 59
from 1000 realisations after one cycle. The observations
are spaced evenly at every other spatial variable, such that
the biased observations observe the even state variables
(x0, x2, x4, etc.) and anchor observations observe all odd
state variables (x1, x3, x5, etc.). The observation-error stan-
dard deviations are equal to 1. Bx is given by the SOAR
correlation function, with 𝜎2

bx = 1. B𝛽 is scalar, also equal
to 1. To see the effect of different background-error covari-
ances, we have varied Bx by varying the length-scale, Lb,
which is varied in Figure 3 along the x-axis. When Lb is
small, the background-error covariances between state
variables are small, and when Lb is increased, so are the
background-error covariances between state variables.
Larger length-scales will mean more background informa-
tion is shared between parts of the state that are spatially
further away from each other. The dotted line is 0.1, below
which any biases are considered to be insignificant. We
have considered three cases where a bias of 0.3 has been
added to the background state in three different locations:
in state variables that are observed by biased observations;
in state variables that are observed by anchor observa-
tions; and in state variables that are observed by both
types of observations.

Model bias only in state variables observed by
anchor observations (dotted line): In Figure 3, when
the model bias is only in state variables observed by anchor
observations (dotted line), the bias in the observation bias
coefficient is insignificant when the error covariances of
Bx are small. As the length-scale of Bx is increased, the
ratio of the bias also increases, which means 𝛽a has a more
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FRANCIS et al. 15

significant bias in comparison with the random error. This
reflects the results found from Equation 44, as we found
that, in order to reduce the contamination of model bias
in state variables observed by the anchor observations in
⟨𝝐a
𝛽
⟩t=0, less information had to be passed between the state

variables observed by the anchor and bias-corrected obser-
vations: that is, smaller background-error correlations.
However, in Section 3.2.3, we showed that, if the anchor
and bias-corrected observations observe different parts of
the state and Bx𝜙𝜓 tends to zero, then the anchor observa-
tions would not be used in the VarBC system. Hence this
scenario would not be ideal, as it would mean that either
𝜷a is affected by model bias or the anchor observations are
not used within the VarBC system.

Model bias only in state variables not observed
by anchor observations (solid line): In Figure 3, when
model bias is only in state variables that are observed by the
biased observations (solid line), the bias in ⟨𝝐a

𝛽
⟩t=0 remains

significant regardless of the magnitude of the covariances
in Bx. This reflects the theoretical results, as Equation 45
is independent of D, which means that the anchor obser-
vations cannot reduce the effect of model bias in state
variables directly if they do not observe the parts of the
state that have model bias.

Model bias in state variables observed by both
anchor and bias-corrected observations (dash-dotted
line): In Figure 3, if model bias is in both state vari-
ables observed by biased observations and state variables
observed by anchor observations (dash-dotted line), then
the bias in ⟨𝝐a

𝛽
⟩t=0 is initially significant compared with

the random error when the length-scales of Bx are small
and becomes less significant as more information between
background state variables is shared. As was shown in
Equation 38, Figure 3 shows that varying Bx𝜙𝜓 has a large
effect in reducing the effect of the model bias from parts of
the state that both are and are not observed by the anchor
observations. If model bias is in the system, then hav-
ing strong error correlations between bias-corrected and
anchor observations that observe state variables with simi-
lar model biases is the best possibility, as the anchor obser-
vations have the biggest effect in reducing the contamina-
tion of model bias acting on the estimate of the observation
bias coefficient, whilst still being used within VarBC.

5.2 Cycled experiment

In the third experiment (Section 5.2.1) the system is run
over 50 cycles to demonstrate how the bias in the bias
coefficient will accumulate and be passed into the state
analysis. On the first cycle, the background state and bias
coefficient are set up as in Equations 60 and 61, but with
zero added background bias, so that bb = 0. This means

the first few cycles will act as a spin-up period to allow
the background bias to settle into an equilibrium. In future
cycles, the background values at cycle T are given by the
analysis values at cycle T − 1 after they are evolved for-
wards in time. The bias-coefficient background is evolved
by the identity, that is, the previous bias-coefficient anal-
ysis is taken to be the bias-coefficient background. The
state background is evolved forward via the model from
Equation 55, but replacing F with Fbiased = 8.8 to add a bias
to the model by changing the forcing term.

We set the assimilation window length to be 10 time
steps (which represents approximately 7.5 hr in the real
atmosphere, as discussed at the beginning of Section 4) to
allow the background errors to grow sufficiently within
each window.

5.2.1 How bias in the state analysis
and bias-coefficient analysis accumulates when
the system is cycled

Finally, we have an experiment to demonstrate the results
from Section 3.4, which show the effect of having a bias
in 𝜷a on the state analysis in the next cycle. These show
how the contamination of the model bias in 𝜷a leads to
a biased 𝜷b, which in turn contributes to the bias in the
state analysis.

We run an experiment that has 100 realisations over
200 cycles. In Figure 4, we plot the ratio from Equation 59
for the bias-coefficient analysis (bottom panel), but have
included a similar ratio for the norm of the state analysis
bias, given by

√∑40
i=1(x

a
i − xt

i )2

40𝜎ax
, (62)

where xa
i is the average state analysis across all realisations

for the spatial variable xi; xt
i is the true value of the spatial

variable xi; 40 is the number of state variables; and 𝜎ax is
the mean value of the standard deviations of the state anal-
ysis from 100 realisations, where the mean is calculated
over all state variables. We have both anchor and biased
observations at every location; the observation-error stan-
dard deviations are 1; and Bv is calculated via an ensemble,
see Appendix E. We have added a model bias by mul-
tiplying the forcing term in the model used to evolve
the analysis by 1.1, such that Fbiased is 8.8, but have not
added a model bias via the initial conditions, as explained
in Section 5.2. Multiplying the forcing term by 1.1 only
changes the state values by 0.01 over one cycle, allowing
the model bias still to be constrained. We plot the ratios
over 200 cycles to show the evolution of the bias in the state
and the bias coefficient.
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In Figure 4, the ratios for the state and the bias coef-
ficient start at approximately zero and then the state
ratio increases towards 0.1 and the bias coefficient ratio
increases towards 0.12. When the ratios are above 0.1, we
consider the biases to be significant in comparison with
the random error. Note that the magnitude of the ratios
would be larger if a larger model bias were chosen, fewer
state variables were observed, or less trust were put into
the observations, which we do not show here. Therefore
the 0.1 line has been included in the bias-coefficient bias
ratio to show general trends, not the exact value of param-
eters that causes the bias to be significant. The bias in the
first cycle is zero for both the state and the bias coefficient,
because no model bias has been added to the initial con-
ditions. There is only a model bias from the second cycle,
as model bias is added via the forcing term Fbiased, which
evolves the state analysis forward, so that the state analysis
of the first cycle becomes the state background of the sec-
ond cycle and so on. We would expect the bias in both the
state and the bias coefficient to grow with each cycle, as we
showed in Equations 53 and 54; the biases in xa and 𝛽a are
the accumulation of the previous state and bias coefficient
biases. In Figure 4, the error in the state appears to reach
saturation after approximately 20 cycles and the error in
the bias coefficient reaches saturation after approximately
90 cycles. As the model bias, 𝜂i, is constant in time, the state
and bias coefficient analyses reach an equilibrium between
the background bias and the truth from the anchor obser-
vations. We would expect an equilibrium to exist, as VarBC
relies on the background and the unbiased observations
as sources of the truth, so if they are different then the
analysis will be pulled between the two until it reaches an
equilibrium. However, it is not straightforward to evaluate
analytically what the equilibrium should be.

6 CONCLUSIONS AND
DISCUSSION

In order to study how model bias can contaminate
observation-bias correction, we have looked at the role
of unbiased (anchor) observations in variational bias cor-
rection (VarBC). The conclusions are based on general
optimal estimation theory and we have demonstrated the
results with idealised experiments.

In this study, we have focused on the importance of
the anchor observations in reducing the contamination
of model bias in bias-coefficient analysis, as opposed to
reducing the effect on the state analysis. This is because
if the bias-coefficient analysis has systematic error, then
observations will be wrongly bias-corrected and the
systematic error will filter into the state analysis, as was
shown when the system was cycled in Section 3.4 and
Figure 4.

In a theoretical world where we could have full cover-
age of anchor observations, we showed in Equation 27 that
the model bias can still contaminate the bias-coefficient
analysis. The only way that model bias could not affect
the bias-coefficient analysis at all would be to have
zero random error in the anchor observations. How-
ever, as this is only possible theoretically, we can only
look at reducing the contamination of model bias in the
bias-coefficient analysis, not removing it completely. We
showed in Equation 26 and Figure 2 that the effect of
model bias is reduced when the anchor observation-error
variance is smaller than the state backgrounds that the
anchor observations observe. Operationally, the anchor
observation-error variance needs to reflect the uncertainty
associated with the observations. However, it is possible
to change the weighting given to the anchor observations
by using more anchor observations within the system, if
they are available. Therefore, although we have shown that
more precise anchor observations will reduce the contam-
ination of model bias in the observation-bias correction,
this result also extends to the importance of a higher spatial
frequency of anchor observations, to increase the weight-
ing given to the anchor observations within the system and
thus have the biggest impact in reducing the contamina-
tion of model bias.

In Equations 36, 44, and 45 and Figure 3, we showed
that the contamination of model bias in the bias-coefficient
analysis can only be reduced by the anchor observations
if the anchor observations also observe state variables that
have similar model bias. Anchor observations have typi-
cally been from radiosondes, which mostly have coverage
over land, but with the increased use of radio occulta-
tion (RO) the spatial and temporal distribution of anchor
observations in the upper troposphere and stratosphere
has increased. Radiosondes and RO give a good coverage
of anchor observations for temperature in the troposphere
and stratosphere, but variables such as humidity and wind
speed are less well observed by unbiased observations. This
means that, although the spatial coverage of anchor obser-
vations is increasing, there are still significant parts of the
model domain where model bias could still contaminate
the bias-coefficient analysis.

We showed in Equation 44 and Figure 3 that, if
model bias only exists in state variables observed by the
anchor observations, such that bias-corrected observations
do not observe state variables with model bias, then the
anchor observations will pass the model bias into the
bias-coefficient analysis if there are strong error correla-
tions between the background state variables. This could
occur, for example, in the lower troposphere, as radiosonde
measurements are mostly taken over land, with little
coverage over sea. If a temperature bias exists over the
land but not the sea and there are strong horizontal error

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4482 by T
est, W

iley O
nline L

ibrary on [06/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FRANCIS et al. 17

correlations between the land and the sea, then the
model bias could be passed into the bias coefficients via
radiosondes.

In Equation 45 and Figure 3, we showed that, if there
is no model bias in the state variables that are observed
by the anchor observations but there is model bias in state
variables observed by the bias-corrected observations, then
the anchor observations cannot explicitly reduce the effect
of model bias in other state variables. Therefore, areas that
are most at risk of contamination of model bias within the
observation-bias correction will be locations with fewer
unbiased observations, such as humidity in the upper tro-
posphere, which is only sparsely observed by radiosondes
but is known to have model biases.

We showed in Equation 36 and at the end of Section
3.3 that, if both biased and anchor observations observe
state variables that have model bias, then anchor observa-
tions can reduce the contamination of model bias in the
bias-coefficient analysis. We saw in Figure 3 that, if the
anchor and biased observations observe different parts of
the state that have similar model bias characteristics, the
background-error covariances become more important:
larger background-error correlations will transfer more
information about the model bias between state variables
and so will reduce the contamination of the model bias
in the bias-coefficient analysis. In an operational system,
the length-scales of Bx will be locationally dependent: for
example, the length-scales of Bx will be larger at higher
altitudes (Ingleby, 2001). There will also be an element of
flow dependence, such that the background-error covari-
ance matrix will deform with the flow (Bannister, 2008).
This article shows that anchor observations that observe
different variables/locations from the bias-corrected obser-
vations, when both variables/locations have similar model
biases, will have the largest impact in reducing the contam-
ination of model bias when they are in systems with larger
background-error covariances, such as in the upper atmo-
sphere. When similar model biases are present in systems
where background-error covariances are small between
variables observed by bias-corrected and anchor observa-
tions, such as between locations of observations across
a front, then anchor observations will only have a small
impact in reducing the contamination of model bias in the
observation-bias correction.

This article has aimed to derive new insight into the
role of anchor observations for mitigating the impact of
model bias in VarBC. Our theoretical findings have been
tested in a toy system. The next steps for this work should
be to extend the theory to 4D variational data assimilation
and to look at how the assumptions made hold in an oper-
ational system: for example, how the bias predictors used
operationally allow the state and bias coefficient domains
to be separated more clearly.
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APPENDIX A. CALCULATION OF KV FOR
TWO OBSERVATION TYPES

If we have two types of observation: y(1) which are
bias-corrected and y(2) which are unbiased, then the lin-
earised observation operator is given by

Hv(v) =

(
H(1) + Cx C𝛽

H(2) 0

)
∈ R

(m1+m2)×(n+r), (A1)

and the observation-error variance for both types of obser-
vations is given by

R =

(
R(1) 0

0 R(2)

)
∈ R

(m1+m2)×(m1+m2). (A2)

Hence Kv becomes

Kv = BvHT
v (HvBvHT

v + R)−1, (A3)

=

(
Bx(H(1) + Cx)T BxHT

(2)

B𝛽CT
𝛽

0

)

×
⎛
⎜
⎜
⎜⎝

(H(1) + Cx)Bx(H(1) + Cx)T

+C𝛽B𝛽CT
𝛽
+ R(1)

(H(1) + Cx)BxHT
(2)

H(2)Bx(H(1) + Cx)T H(2)BxHT
(2) + R(2)

⎞
⎟
⎟
⎟⎠

−1

.

(A4)
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As (HvBvHT
v + R) is symmetric, from equation 4.2 in Lu

and Shiou (2002) we can calculate its inverse by writing
(HvBvHT

v + R)−1

=

(
W X
XT Z

)−1

=

(
(W − XZ−1XT)−1 −(W − XZ−1XT)−1XZ−1

− Z−1XT(W − XZ−1XT)−1 Z−1 + Z−1XT(W − XZ−1XT)−1XZ−1

)
,

(A5)where

W = (H(1) + Cx)Bx(H(1) + Cx)T + C𝛽B𝛽CT
𝛽
+ R(1), (A6)

X = (H(1) + Cx)BxHT
(2), (A7)

Z = H(2)BxHT
(2) + R(2). (A8)

Hence, combining Equations A4 and A5, the expressions
for Kxy(1) , Kxy(2) , K𝛽y(1) , and K𝛽y(2) are given by

Kxy(1) = Bx(H(1) + Cx)T(W − XZ−1XT)−1

− BxHT
(2)Z

−1XT(W − XZ−1XT)−1, (A9)

Kxy(2) = −Bx(H(1) + Cx)T(W − XZ−1XT)−1XZ−1

+ BxHT
(2)(Z

−1 + Z−1XT(W − XZ−1XT)−1XZ−1),
(A10)

K𝛽y(1) = B𝛽CT
𝛽
(W − XZ−1XT)−1, (A11)

K𝛽y(2) = −B𝛽CT
𝛽
(W − XZ−1XT)−1XZ−1. (A12)

Therefore, if we set Cx to be zero, then we can rewrite K𝛽y(2)
in terms of K𝛽y(1) :

K𝛽y(2) = −K𝛽y(1)XZ−1

= −K𝛽y(1)H(1)BxHT
(2)(H(2)BxHT

(2) + R(2))−1. (A13)

APPENDIX B. BIAS- COEFFICIENT
ANALYSIS ERROR

To calculate the error in the bias-coefficient analy-
sis, we subtract the true bias from both sides of the
bias-coefficient analysis Equation 6 and add and subtract
hv(1) (v

t) and hv(2) (v
t) in the respective innovation vectors, to

find

𝜷a − 𝜷 t

= 𝜷b − 𝜷 t +K𝛽y(1) (y(1) − hv(1) (v
t) + hv(1) (v

t) − hv(1) (v
b))

+K𝛽y(2) (y(2) − hv(2) (v
t) + hv(2) (v

t) − hv(2) (v
b). (B1)

Using Equations 19, 20, and 21, we can simplify this
using the error equations, plus rewriting vt as vb − 𝝐b

v and

expanding hv around vb; we find that the bias-coefficient
analysis error is given by

𝝐a
𝛽
= 𝝐b

𝛽
+K𝛽y(1) (𝝐

o
1 −Hv(1)𝝐

b
v) +K𝛽y(2) (𝝐

o
2 −Hv(2)𝝐

b
v), (B2)

where Hv(1) =
(
H(1), C𝛽

)
and Hv(2) =

(
H(2), 0

)
(see

Equation 9). To find the error in the state, we would go
through the same procedure, but subtracting the true state
from both sides of the state analysis Equation 5 initially,
which gives

𝝐a
x = 𝝐b

x +Kxy(1) (𝝐
o
1 −Hv(1)𝝐

b
v) +Kxy(2) (𝝐

o
2 −Hv(2)𝝐

b
v) (B3)

(full derivation not shown).

APPENDIX C. SIMPLIFYING THE
EXPECTED VALUE OF 𝛃A AFTER THE
ASSUMPTIONS THAT THERE IS ONLY BIAS
IN THE MODEL

If we assume that ⟨𝝐b
𝛽
⟩, ⟨𝝐o

1⟩, and ⟨𝝐o
2⟩ are equal to zero,

then Equation 23 becomes

⟨𝝐a
𝛽
⟩|||⟨𝝐o

1⟩=0,⟨𝝐o
2⟩=0,⟨𝝐b

𝛽
⟩=0

= −K𝛽y(1)

(
H(1), C𝛽

)(⟨𝝐b
x⟩

⟨𝝐b
𝛽
⟩

)

−K𝛽y(2)

(
H(2) 0

)(⟨𝝐b
x⟩

⟨𝝐b
𝛽
⟩

)

= −K𝛽y(1)H(1)⟨𝝐b
x⟩ −K𝛽y(2)H(2)⟨𝝐b

x⟩.

As we can rewrite K𝛽y(2) in terms of K𝛽y(1) , this simplifies to

⟨𝝐a
𝛽
⟩|||⟨𝝐o

1⟩=0,⟨𝝐o
2⟩=0,⟨𝝐b

𝛽
⟩=0

= −K𝛽y(1)H(1)(I −D)⟨𝝐b
x⟩ ∶= ⟨𝝐a

𝛽
⟩t=0,

(C1)
where D is as defined in Equation 18 and we denote ⟨𝝐a

𝛽
⟩

at the first cycle to be ⟨𝝐a
𝛽
⟩t=0.

APPENDIX D. SIMPLIFYING D WHEN
THE ANCHOR OBSERVATIONS PARTIALLY
OBSERVE THE SYSTEM

When the anchor observations only observe a subset of
the state, then D is given by

D|H(2)=H(2)p
=

(
Bx𝜙 Bx𝜙𝜓

Bx𝜙𝜓 Bx𝜓

)(
0

HT
(2)𝜓

)

((
0, H(2)𝜓

)(Bx𝜙 Bx𝜙𝜓

Bx𝜙𝜓 Bx𝜓

)(
0

HT
(2)𝜓

)
+ R(2)

)−1

×
(

0, H(2)𝜓

)
,
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=
⎛
⎜
⎜⎝

Bx𝜙𝜓 HT
(2)𝜓

Bx𝜓 HT
(2)𝜓

⎞
⎟
⎟⎠
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1

(
0, H(2)𝜓

)
,

=
⎛
⎜
⎜⎝

Bx𝜙𝜓 HT
(2)𝜓
(H(2)𝜙𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1

Bx𝜓 HT
(2)𝜓
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1

⎞
⎟
⎟⎠(

0, H(2)𝜓

)
,

=
⎛
⎜
⎜⎝

0 Bx𝜙𝜓 HT
(2)𝜓
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+R(2))−1H(2)𝜓

0 Bx𝜓 HT
(2)𝜓
(H(2)𝜓 Bx𝜓 HT

(2)𝜓
+ R(2))−1H(2)𝜓

⎞
⎟
⎟⎠

∶=Dp =

(
Dp𝜙 Dp𝜙𝜓

Dp𝜓𝜙 Dp𝜓

)
.

Then the sensitivity of 𝜷a to xb (Equation 17) when
H(2) = H(2)p is given by

𝜕𝜷a

𝜕xb

||||H(2)=H(2)p

= −K𝛽y(1)
|||H(2)=H(2)p

H(1)(I −Dp) (D1)

= −K𝛽y(1)
|||H(2)=H(2)p

(
H(1)𝜙 , H(1)𝜓

)(I −Dp𝜙𝜓

0 I −Dp𝜓

)
(D2)

= −K𝛽y(1)
|||H(2)=H(2)p

(
H(1)𝜙 ,−H(1)𝜙Dp𝜙𝜓 +H(1)𝜓 (I −Dp𝜓 )

)
.

(D3)

Substituting this into the equation for ⟨𝝐a
𝛽
⟩ (Equation 24),

we find

⟨𝝐a
𝛽
⟩|||D=Dp

= −K𝛽y(1)

(
H(1)𝜙 ,−H(1)𝜙Dp𝜙𝜓+H(1)𝜓 (I −Dp𝜓 )

)(⟨𝝐b
x𝜙⟩

⟨𝝐b
x𝜓 ⟩

)

(D4)

= −K𝛽y(1)

(
H(1)𝜙⟨𝝐b

x𝜙⟩ −
[
H(1)𝜙Dp𝜙𝜓

−H(1)𝜓 (I −Dp𝜓 )
]
⟨𝝐b

x𝜓 ⟩
)
. (D5)

APPENDIX E. CALCULATING THE
CLIMATOLOGICAL ESTIMATE OF THE
BACKGROUND-ERROR COVARIANCE
MATRIX FOR NUMERICAL EXPERIMENTS

A sample estimate of the climatological Bv matrix is
derived from an ensemble of 1DVar experiments cycled in

time. The estimate of Bv is sensitive to the Bv used within
the 1DVar experiments. We therefore repeat the method a
second time with the new estimate of Bv, to get a second
estimate of Bv. We found that two iterations was suffi-
cient for the estimate of Bv to converge to an appropriate
climatological estimate for the Lorenz96 model assimilat-
ing both anchor and bias-corrected observations at every
spatial variable.

The true trajectory is generated by solving Equation 55
numerically using the fourth-order Runge–Kutta scheme.
The bias-corrected and anchor observations are at every
location and are calculated as described in Equations 56
and 57.

On the first iteration, the background-error covariance
matrix for the state is calculated using the SOAR error
correlation function as in Equation 58 with standard devi-
ation 𝜎bx = 1 and length-scale Lb = 1. The bias-coefficient
background-error standard deviation, 𝜎b𝛽 , is set to 0.5, and
all error covariances between the state and bias coefficient
were set to 0, so that Bv was given by

Bv =

(
Bx 0
0 𝜎2

b𝛽

)
. (E1)

At the initial time, an ensemble of 15 background states
and bias coefficients is calculated as in Section 5.1 using
Bv as the background-error variance. An ensemble of anal-
yses was generated by updating each background mem-
ber using Equations 5 and 6. The analysis ensemble was
then evolved forward via the model by ten time steps
to give the background ensemble at the next observa-
tion time. This method for calculating the background
ensemble is repeated 700 times, such that the back-
ground ensemble at any given time step greater than 1 is
given by

xb
t+1,i = Mt→t+1(xa

t,i), 𝛽b
t+1,i = 𝛽

a
t,i, (E2)

where t is the time index; i is the ensemble member index;
and Mt→t+1(xt,i) is the model that takes the state from time
step t to t + 1. The errors between the background of each
ensemble member and the true state at the same time are
given by

𝝐b
xt,i
= xb

t,i − xt
t,i, 𝜖b

𝛽t,i
= 𝛽b

t,i − 𝛽
t. (E3)

The analysis ensemble was cycled for 700 assimilation
times to provide a total of 10,500 samples (700 × 15) of
the background error (Equation E3). From these 10,500
samples of 𝝐b

x and 𝜖b
𝛽
, we were then able to update the cli-

matological estimate of the Bv matrix by calculating the
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sample covariances of all state background errors 𝝐b
xt,i

and
bias coefficient errors 𝝐b

𝛽t,i
:

Cov
(
𝜖b

x𝑗t,i
, 𝜖b

xkt,i

)
=

∑700
t=1

∑15
i=1(𝜖x𝑗t,i − 𝜖x𝑗)(𝜖xkt,i − 𝜖xk)

10,500 − 1
,

(E4)

𝜎b𝛽 =
∑700

t=1
∑15

i=1(𝜖𝛽t,i − 𝜖𝛽)(𝜖𝛽t,i − 𝜖𝛽)
10,500 − 1

, (E5)

where 𝜖b
x𝑗t,i

and 𝜖b
xkt,i

are the background errors for the
𝑗th and kth variables of the state at time t, ensemble i;
and 𝜖x𝑗 and 𝜖xk are the mean background errors from the
10,500 samples at state variables 𝑗 and k, respectively. The
error covariances between the background state and bias
coefficient were set to 0 as before.

The process described above was repeated in another
iteration, but Bx used within the assimilation was given
by the state background-error covariance matrix that had
just been calculated. To remove noise caused by the lim-
ited sample estimate of Bx, we set the covariances between
state variables further than two grid points apart to 0.
𝜎2

b𝛽 was given by the estimate of the bias-coefficient
background-error variance, which had also just been cal-
culated. Using the new Bv, a new background-error covari-
ance matrix was calculated from Equations E2 – E5, again

F I G U R E E1 The climatological Bv calculated from an
ensemble. [Colour figure can be viewed at wileyonlinelibrary.com]

using 700 cycles and 15 realisations. This was taken to
be the optimal background-error covariance matrix in the
numerical experiments in Sections 5.1.1 and 5.2.1.

Figure E1 is the error covariance matrix from the final
iteration, which was used in our numerical experiments.
As the state variables are on a circular domain, x0 and x39
have a correlation to each other, as they would be next to
each other in the domain.
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