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Abstract
In psychology, researchers often predict a dependent variable (DV) consisting of multiple measure-
ments (e.g., scale items measuring a concept). To analyze the data, researchers typically aggregate
(sum/average) scores across items and use this as a DV. Alternatively, they may define the DV as a com-
mon factor using structural equation modeling. However, both approaches neglect the possibility that an
independent variable (IV) may have different relationships to individual items. This variance in individ-
ual item slopes arises because items are randomly sampled from an infinite pool of items reflecting the
construct that the scale purports to measure. Here, we offer a mixed-effects model called random item
slope regression, which accounts for both similarities and differences of individual item associations.
Critically, we argue that random item slope regression poses an alternative measurement model to com-
mon factor models prevalent in psychology. Unlike these models, the proposed model supposes no
latent constructs and instead assumes that individual items have direct causal relationships with the
IV. Such operationalization is especially useful when researchers want to assess a broad construct
with heterogeneous items. Using mathematical proof and simulation, we demonstrate that random
item slopes cause inflation of Type I error when not accounted for, particularly when the sample size
(number of participants) is large. In real-world data (n= 564 participants) using commonly used sur-
veys and two reaction time tasks, we demonstrate that random item slopes are present at problematic
levels. We further demonstrate that common statistical indices are not sufficient to diagnose the pres-
ence of random item slopes.

Translational Abstract
In psychology, researchers often predict a dependent variable (DV) consisting of multiple measurements
(e.g., nine scale itemsmeasuring conscientiousness). To analyze these data, researchers typically try and cre-
ate a single value (e.g., collapse eight-item responses to one value indicating conscientiousness). Typically,
researchers sum/average item scores, or use structural equation modeling, which posits a single hypothetical
value representing a common element captured by the items. However, both approaches neglect the possi-
bility that an independent variable (IV, e.g., birth order) may have different relationships to individual items.
This variance results from the fact that items are randomly sampled from an infinite number of items that
reflect the construct (i.e., all items that could measure conscientiousness). Using mathematical proof and
simulation, we demonstrate that the chance of finding a falsely significant relationship between and IV
and DV increases when using the standard approaches described above, particularly when the number of
participants is large. In contrast, we offer a statistical model that accounts for similarities and differences
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of relationships between an IV and individual items, which does not have this problem. In real-world data
(n= 564 participants) using commonly used surveys and two reaction time tasks, we demonstrate that
though large variation in relationships between an IV and individual items measuring a concept are not
very common, they are both present and problematic. Our proposed model should therefore be considered
when analyzing data with multiitem DVs, especially when assessing a broad construct with heterogeneous
items.

Keywords: mixed-effects modeling, random effects, alternative measurement models

Supplemental materials: https://doi.org/10.1037/met0000587.supp

Think about a common situation in psychology in which one
predicts scale scores from an independent variable (IV). For exam-
ple, a researcher may be interested in predicting a personality trait
from birth order. Normally the researcher measures the personality
trait (e.g., extroversion) using multiple self-reported items on a sur-
vey, aggregating across them (i.e., computing sum or average
scores), and conducts a regression analysis with the personality
trait as the dependent variable (DV) and birth order as the IV.
Of course, this aggregation approach is not limited to researchers
using surveys. For example, a researcher may be interested in pre-
dicting participants’ response times to particular types of stimuli
from some IV (e.g., an experimental condition) and would use
average response times across trials. Or a researcher may get par-
ticipants to fill out a behavioral checklist (e.g., “in the last week
have you X’d, have you Y’d?”) to generate a total score of how
prone to some behavioral trait a participant is, and predict this
using some IV that is thought to be related. Throughout this
paper, we use common nomenclature regarding survey data, talk-
ing about items (and item slopes), but equally this generalizes to
other experimental stimuli (e.g., reaction time [RT] data). Our
focus is not the specific type of items or stimuli used in research
in particular fields (e.g., social psychology), but the research
design typically used when investigating individual differences:
where researchers aggregate across multiple measurements to cre-
ate a DV.
The aggregation approach mentioned above (using birth order to

predict a personality trait measured by multiple scale items) is the
standard approach taken toward this kind of data. However, an
implicit assumption of this approach is that there is a single fixed
relationship between the IV (e.g., birth order) and the DV (e.g.,
aggregated trait scores). Therefore, this approach neglects the possi-
bility that an IV may have different unique relationships to people’s
responses to each individual item in the personality scale (or RT to
each individual stimuli in a RT task). This variation results from the
fact that the items are sampled randomly from an infinite number of
items (item pool, item population) that assess the same thing, e.g.,
some personality trait (Cronbach et al., 1963; Mõttus, 2016). We
shall call these variations of the relationships random item slopes,
as they represent random variation in the slopes between individual
items and the IV.
The idea that items in a scale are randomly sampled from a pop-

ulation is not uncommon in test theories (Cronbach et al., 1963; De
Boeck, 2008; McDonald, 1999; Shavelson & Webb, 1981) and is
also an implicit assumption of measurement models based on com-
mon factors (latent variables), which are typically estimated by
structural equation modeling (SEM; see Bollen & Lennox,
1991). Furthermore, the idea of random intercepts and slopes is

at the heart of mixed-effects modeling (Baayen et al., 2008; Barr
et al., 2013; Judd et al., 2012; Murayama et al., 2014). To the
best of our knowledge, however, while there are some isolated
examples where these effects have been modeled (see Bayesian
regression models predicting extrapair desire in Arslan et al.,
2021; “category-specific effects” in Bürkner & Vuorre, 2019;
equations in Appendix C in James et al., 2018; and multilevel
SEM in Kessels et al., 2021), random item slopes in this type of
research design have not been explicitly and systematically dis-
cussed in the literature. The aim of this article is to introduce the
idea of incorporating random item slopes in this type of research
design, which we shall call random item slope regression, and to
discuss potential statistical and practical implications.

Random Item Slope Regression: A Mixed-Effects Model
With Random Item Slopes

Let’s first consider a common aggregation approach (i.e., an
aggregated DV is predicted by an IV). Under the aggregation
approach (hereafter called aggregation regression), where there is
only one measurement of y per participant, a model predicting indi-
vidual differences in y from an IV (x) can be represented by the
equation:

yi = b0 + b1xi + 1i, (1)

where i denotes participants (i= 1, 2,…, I ). Parameter estimates and
their standard errors (SEs) can be obtained using the ordinary least
squares (OLS) method. Although we consider a case where there
is a single IV for the purpose of simplicity, we can apply the follow-
ing logic to cases where there are multiple IVs.

Random item slope regression treats items as crossed with partic-
ipants in the data because all I participants respond to the same set of
J items (I× J data points in total).1 Mixed-effects modeling can
effectively analyze nested or crossed data (for a review of advan-
tages, e.g., statistical power, see Baayen et al., 2008). To conduct
mixed-effects modeling, data are normally organized in so-called
long format, in which every row represents a single item, resulting
in data with I× J rows (see Figure 1 for an illustration of the trans-
formation between wide format and long format data). First, con-
sider a model with no IV, simply looking at the items that would
typically be aggregated across:

yij = b0 + u0i + u0j + 1ij, (2)

1 This is analogous to situations where I participants’ performance is rated
by the same set of K raters (e.g., in multirater designs).

DONNELLAN, USAMI, AND MURAYAMA2

https://doi.org/10.1037/met0000587.supp
https://doi.org/10.1037/met0000587.supp
https://doi.org/10.1037/met0000587.supp
https://doi.org/10.1037/met0000587.supp


where u0i represents a random intercept for each participant and u0j
represents a random intercept for each item. These random effects
are independent and assumed to follow a normal distribution,
u0i � N(0, v00), u0j � N(0, t00), 1ij � N(0, s2). The model is a
two-factor random-effects analysis of variance and has been exten-
sively discussed in the context of generalizability theory (Brennan,
2001). Generalizability theory quantifies the variance components
of observed scores obtained in various factorial designs, which
allows us to flexibly estimate reliability of test scores in a new
study (Cronbach et al., 1963; Shavelson & Webb, 1981, 2006). In
generalizability theory, test items or raters are some of the major
sources of variance (in addition to the occasion of testing). An
important assumption from this theory is that test items in the data
are, like participants, randomly drawn from an infinite number of
items in the population (called an “item universe”). In other
words, the model assumes that all the items are exchangeable, mean-
ing that the statistical conclusion is not dependent on the specific
items used in the study. In standard statistical models (like the
model in Equation 1), exchangeability is assumed for participants,
and the results are guaranteed to generalize to the participant popu-
lation. In this model, the same logic is applied to items as well: τ00
represents variance in this item population, as ω00 represents vari-
ance in the participant population. Note that Cronbach’s α under

this model is v2
00/ v2

00 +
s2

J

( )
(Shrout & Fleiss, 1979).

Although not normally considered in the literature of generaliz-
ability theory, we can add an IV assessed at the participant level
(i.e., each participant has one value), xi, to the model as follows:

yij = b0 + u0i + u0j + b1xi + 1ij, (3)

where β1 is a regression coefficient of xi. Additionally, ui and ɛij
are assumed to be independent from xi. This model (hereafter ran-
dom intercepts regression as it considers random intercepts for
items and participants) is different from aggregation regression
in Equation 1 and cannot be estimated using OLS. However, ran-
dom intercepts regression in Equation 3 produces the identical
parameter estimate and SE for β1 with those from aggregation
regression (and the same β0 parameter estimate) using restricted
maximum likelihood method (see Appendix A for mathematical
proof). In other words, random intercepts regression in Equation
3 is mathematically equivalent to aggregation regression in
Equation 1.
Critically, this model can be extended further by assuming that

there is random variation of the slopes between items, for example,
random item slopes. Specifically, the model now includes a popula-
tion slope β1 (i.e., a slope that we can obtain if we conducted the
analysis for the entire population of participants and items) as well
as individual slopes between items and the IV. The final model
with random item slopes is as follows:

yij = b0 + u0i + u0j + (b1 + u1j) xi + 1ij. (4)

The current manuscript calls this model random item slope
regression. The deviation between the population and indivi-
dual slopes is assumed to follow a normal distribution,
u1j � N(0, t11), and there is a covariance between random item
intercepts and random item slopes, cov(u0j, u1j)= τ10. When there
is a DV assessed by common multiple items and a single
participant-level predictor, this is the full mixed-effects model

with complete specification of all possible random effects. The
model is easily estimated by any software of mixed-effects modeling
that can specify crossed random effects, for example, lme4 in R
(Bates et al., 2015; R Core Team, 2019), Hierarchical Linear
Modeling (Raudenbush & Bryk, 2002), Mplus (Muthén &
Muthén, 2017), and so on. By comparing Equations 4 and 3, and
the fact that Equations 3 and 1 produce identical parameter estimates
and SE (of β1), aggregation regression in Equation 1 can be seen as a
special case of random item slope regression in Equation 4, in which
random item slopes are nonexistent.

Conceptual Ground: Random Item Slope Regression as
an Alternative Measurement Model

The idea of random item slope regression is a natural extension of
the standard regression model from a perspective of mixed-effects
modeling. Although previous literature has repeatedly underscored
the importance of incorporating possible random effects in various
research designs (Baayen et al., 2008; Clark, 1973; Judd et al.,
2012; Kajimura et al., 2023; Murayama et al., 2014; Usami &
Murayama, 2018), the proposed model specification has rarely
been discussed. One possible reason is that most of the previous
work using crossed random effects focuses on factorial experiments
and has not paid much attention to studies on individual differences.

Another possible reason is that, when researchers predict psycho-
logical constructs, they automatically suppose (either explicitly or
implicitly) that there is a common factor underlying it; a predomi-
nant measurement framework to model people’s responses to
items on a scale. Using SEM, a common factor model with regres-
sion (hereafter called common factor regression) can be explicitly
specified as depicted in Figure 2 (left). We also depict random
item slope regression in Figure 2 (right) to clarify the differences
between the models. In common factor regression, a common factor
(i.e., a latent variable) representing the psychological construct of
interest (e.g., “conscientiousness”) is supposed to cause the items
(observed variables), and the factor is predicted by the IV. From
this perspective, item scores are the manifestation of the underlying
construct with measurement errors. Interestingly, aggregation
regression in Equation 1 can be considered as a special case of com-
mon factor regression. Specifically, aggregation regression is essen-
tially equivalent to a constrained common factor regression model,
with all factor loadings being 1 and error variances being equal
(regression with a parallel factor model; McNeish & Wolf, 2020;
see also Rose et al., 2019). Thus, aggregation regression can also
be considered as supposing a common factor to explain an IV–DV
relationship.2

A strength of common factor regression is that it can effectively
separate measurement errors (e1, e2,…, e5 in Figure 2) from the con-
struct of interest (separately from the residuals of the regression
itself, which is denoted as d in Figure 2). This is clearly an

2 As noted earlier, aggregation regression is also essentially equivalent to
random intercepts regression in Equation 3. By implication, random item
slope regression and common factor regression can be seen as extending
aggregation regression in a different manner. Random item slope regression
extends random intercepts regression, which is equivalent to aggregation
regression, by incorporating random item slopes. Common factor regression
extends a constrained common factor regression model, which is also equiv-
alent to aggregation regression, by freeing the equality constraints on the fac-
tor loadings and error variances.
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advantage, but in light of the model we put forth in Equation 4, this
strength also entails a cost. Specifically, common factor regression
defines measurement errors as the components that are not common
to all items. That is, if there are important item-specific components
for a construct (i.e., the components that are specific to one or some,
but not all items), these components are regarded as errors (e.g., e1 in
Figure 2) in common factor regression (McClure et al., 2021;
McDonald, 1999, pp. xi, 485). Importantly, common factor regres-
sion normally considers that these item-specific components are
uncorrelated with the IV (because they are considered measurement
errors), and instead assumes that there is a single true effect between
the IV and latent variable (β in Figure 2). Potential differential rela-
tionships between the IV and individual items that define the latent
variable are supposed to be proportional to the factor loadings of the
common factor (γ1, γ2,…, γ5 in Figure 2). In other words, individual
item slopes are all attributed to the difference in measurement prop-
erties, rather than the substantive contents of the individual items.
For example, if an item loads highly onto the common factor in com-
parison to other items, the item has more of the common component
than the other items (i.e., it includes less measurement errors) and the
model supposes that the item should have a stronger relationship
with the IV. In short, common factor regression does not allow for
the differential association between the IV and individual items
beyond what is expected by factor loadings (i.e., higher factor load-
ings= stronger association).
On the other hand, random item slope regression understands

the IV–DV relationship from a substantially different perspective.
Specifically, while random item slope regression aims to evaluate
a common relationship with the IV across all items, it also allows
for heterogeneous items, evaluating different item-specific true
associations with the IV (Figure 2). Heterogeneous items are

still seen as assessing the same construct, as the model assumes
that individual items are randomly sampled from a common
item population. As such, random item slope regression quanti-
fies both similarities (represented by the regression coefficient
β1; this can be seen as the population mean of item slopes) and
differences (represented by random item slope u1j) of individual
items, both of which explain the relationship with external vari-
ables. In other words, random item slope regression posits that
a set of overlapping but heterogeneous items represent a construct
as a whole.

Given this fundamental difference between common factor
regression (and aggregation regression) and random item slope
regression in how they conceptualize the relationship between indi-
vidual items and the construct of interest, one can view random item
slope regression as an alternative measurement model. At the very
least, by adopting random item slope regression, researchers should
be aware that this implicitly endorses a different way of conceptual-
izing measurement than if they adopt common factor regression.
Common factor regression has dominated the analysis of multiitem
constructs for decades in the psychological literature, and the model
has indeed been useful in statistical analysis of psychological con-
structs. However, there is a good reason to believe that common fac-
tor regression is not the only correct measurement model to describe
psychological constructs. In fact, common factor regression has been
criticized in the literature, especially in terms of the critical assump-
tion that there is a single latent construct that causally affects
observed variable (Borsboom et al., 2003), with some researchers
arguing that this assumption is restrictive and even unrealistic
(Edwards & Bagozzi, 2000; van Bork et al., 2017). Recent literature
suggests that we should take measurement models more seriously,
underscoring the importance of understanding both strengths and

Figure 1
Wide Format Data With I Participants and J Items (With I Rows, as Used for Aggregation Regression, Left) Transformed to Long Format
Data for Mixed-Effects Modeling (With I× J Rows, Right)

Note. IV= independent variable; DV= dependent variable.
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weakness of common factor regression, and calling for consideration
of potential alternative measurement models (Bollen & Lennox,
1991; Borsboom & Cramer, 2013; Fried, 2020; Rhemtulla et al.,
2020). We believe that random item slope regression is a valuable
option for consideration when there are substantial item-specific
associations in the IV–DV relationship.
Therefore, the decision to use random item slope regression

should primarily be based on substantial theory, that is, how
researchers conceptualize the construct that they are investigating.
If one is assessing a relatively narrow construct that could plausibly
underscore each individual item, common factor regression based
on SEM is more appropriate. On the other hand, if one is assessing
a relatively large construct with a heterogeneous set of items, and
thinks that item-specific elements are a constituent part of the con-
struct, we believe random item slope regression is more appropri-
ate. At the same time, common factor regression and random item
slope regression are two distinct statistical models with different
expected variance–covariance structures. As such, it is theoretically
possible to distinguish between these two models purely with
empirical data (e.g., by looking at model fit). We will evaluate
the potential empirical distinguishability of these models in this
paper.

Differences From Other Seemingly Related Models

Random item slope regression is not the only model that
addresses item-specific effects, and it is worth considering
differences from other seemingly related approaches, for example,
generalizability theory and item response theory (IRT).
Generalizability theory explicitly models random item effects to
address the contribution of different sources of measurement vari-
ance (Brennan, 2001). However, to the best of our knowledge, gen-
eralizability theory only concerns random item intercepts without
explicitly incorporating random item slopes. As shown above,

our proposed model (Equation 4) can be considered as an exten-
sion of a common model in generalizability theory (Equation 2)
specifically incorporating item-specific slopes while also incorpo-
rating an IV. IRT also focuses on item-specific effects. However,
like generalizability theory, the IRT literature primarily concerns
item-specific properties within a measurement, not in relation to
IVs.3 For example, Rijmen et al. (2003) provide an analytic frame-
work to understand IRT based on generalized mixed-effects model-
ing. However, item-specific parameters are defined only in relation to
measurement (and they are fixed rather than random parameters), not
slopes between items and IVs. One remarkable exception is
De Boeck and Wilson (2004), who discussed a collection of IRT
models based on generalized mixed-effects modeling including
person-level predictors (see also De Boeck, 2008). However, a
model with random item slopes (participant effects randomly varying
among items) was not directly discussed.

In the context of SEM, ourmodel could be analyzedwithmultilevel
SEM with cross-classified design given that this model subsumes
mixed-effects models (Muthén & Muthén, 2017). In fact, it is chal-
lenging to specify the proposed random item slope regression within
the SEM framework without using multilevel cross-classified SEM.
For example, Mehta and Neale (2005) describe a way to specify
random-effects models based on standard SEM. However, the models
they discuss only handle single random effects with nested data, while
the critical feature of the proposedmodel is that we analyze datawith a
multiple-item scale with crossed random effects (random effects of
participants crossed with random effects of items). Another SEM
approach to deal with item-specific slopes is a bifactor regression

Figure 2
SEM Common Factor Model for a Scale With Five Items Predicted by an IV (Common Factor Regression; Left) Compared to Random Item
Slope Regression (Right)

Note. j represents items ( j= 1, 2, …, 5). For both diagrams, the participant dimension i is not explicitly expressed, which is common in SEM diagrams.
Intercepts are all omitted for the purpose of simplicity. SEM= structural equation modeling; IV= independent variable.

3 As an exception, literature in differential item functioning (DIF) dis-
cusses cases in which item-specific parameters differ between externally
defined groups. However, DIF effects are normally treated as fixed, not
random.
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model, inwhich external variables relate to both a single general factor
as well as subgroup factors defined by a bifactor model (Martel et al.,
2017; Wiernik et al., 2015). While the model allows for differential
associations between the items and IVs, bifactor models are normally
used to test a “hierarchical” structure of a broad construct, aiming to
account for homogeneous “subgroups” across items. This perspective
is critically different from random item slope regression where each
individual item is supposed to cover different aspects of the target con-
struct. In addition, the model has been criticized in terms of its sus-
ceptibility to overfitting and unstable parameter estimates, making
the interpretation of these factors difficult (Watts et al., 2019).
Although not commonly observed in practice, perhaps the most

relevant SEM specification is a model in which individual items
are directly predicted by an IV (a version of seemingly unrelated
regression [SUR]; Srivastava & Giles, 1987; Zellner, 1962). When
the structure of residual variances/covariance matrix has compound
symmetry (i.e., all variances are equal and all covariances are equal),
the model is very similar to random item slope regression, and one
can compute the average of Individual Item� IV regression coeffi-
cients to statistically test the overall DV� IV relationship.
Alternatively, one can add a latent factor predicting individual
items with a fixed path coefficient of 1 while constraining the covari-
ance of residuals being zero (see Figure B1 in Appendix B). This
model is mathematically equivalent to the former model, and the
latent factor exactly represents the random participant intercept. In
either case, however, this model misses the critical element of ran-
dom item slope regression: It treats variations of regression coeffi-
cients as fixed rather than random (i.e., the model does not
estimate the population variance of item-specific slopes). As a con-
sequence, the model suffers from another critical issuewhich wewill
discuss below: the inflation of Type I error rates.4

Consequences of Ignoring Random Items Slopes in
Statistical Inference: Type I Error Inflation

As discussed so far, if we do not incorporate random item slopes
in the model, we implicitly ignore the possibility that an IV has dif-
ferent direct relationships with individual items. Another (somewhat
less obvious) implication is that, by not accounting for random item
slopes in the model, statistical results for β1 cannot generalize to the
item population, limiting our interpretation of the obtained findings.
In other words, if we do not consider random item slopes in the
model, the statistical results cannot guarantee that the same results
(e.g., statistical significance) will hold if the same construct was
assessed by a different set of items measuring the same construct/
concept. This is especially problematic for many assessments in
social and personality psychology, as these assessments normally
purport to measure an abstract-level construct (e.g., “conscientious-
ness”) and it is difficult to justify that a particular set of items in a
scale uniquely and sufficiently assess the construct (Mõttus, 2016).
These conceptual issues also come with a serious statistical prob-

lem when ignoring random item slopes: the inflation of Type I error
rates. Suppose that the true relationship between an IV (e.g., birth
order) and a personality trait (e.g., extroversion) is exactly zero
(β1= 0). A researcher may use eight items to measure the personal-
ity trait (e.g., using the Big Five Inventory; John & Srivastava,
1999). As these are sampled from the population of items that mea-
sure the trait, the average relationship between the IV and the eight
items is unlikely to equal exactly zero due to random variation

affecting each individual slope (e.g., random item slopes).
Therefore, for the given eight individual items, the estimated aggre-
gated slope (b̂1: averaged slope between the IV and these individual
items) will be nonzero even though the true mean is zero (β1: average
relationship between the IV and all items in the item population).
This phenomenon is directly related to the number of items chosen
to measure the construct: Increasing the number of items used means
b̂1 will more closely approach β1, that is, the influence of random
item slopes decreases. In the example above, when more items are
used the aggregated slope will be closer to zero.

However, even if random variation in item slopes is very small
(meaning b̂1 more closely approaches β1), as power increases
(e.g., when the number of participants is larger), even small nonzero
relationships become significant, resulting in a Type I error rate
above the nominal level (e.g., 5%). In statistical terms, this increased
Type I error is explained by underestimation of SE about b̂1

when random item slopes are present in the data but not accounted
for in calculating se(b̂1).

5 In fact, in the mixed-effects modeling lit-
erature, it is well known that standard errors are generally underesti-
mated when one fails to specify random effects which are present in
data (Barr et al., 2013; Clark, 1973; Usami & Murayama, 2018).
We provide a mathematical proof of the underestimation of
SE in Appendix A. Importantly, the mathematical proof (see
Equation A19 in Appendix A) demonstrates that when random
item slopes are present the degree of SE underestimation by aggre-
gation regression in Equation 1 compared with random item slope
regression in Equation 4 is a function of:

1. the number of participants (I ): larger underestimation when
there are more participants,

2. the number of items (J ): larger underestimation when there
are fewer items,

3. variation in participant intercepts (i.e., average scores of par-
ticipants, ω00): larger underestimation when there is smaller
variation, and

4. variation in random residuals (σ2): larger underestimation
when there is larger residual error variance.6

The issue of a larger number of participants is particularly note-
worthy because in research focusing on individual differences
(e.g., investigating whether birth order predicts personality traits),
researchers often collect data from a large number of participants
with the good faith intention to increase statistical power. A large
sample size is important to ensure high statistical power, but when
the true effect does not exist, ironically it makes it more likely that
researchers find false-positive effects. In theory, as the number of
participants increases, Type I error rate asymptotically reaches

4 In Appendix B, we run a simulation of this model following the simula-
tion work described in this paper. We demonstrate that this model suffers
from the same critical issue as aggregation regression and common factor
regression.

5 b̂1 is actually unbiased (see Appendix A for a proof). This is because the
average of b̂1 converges to the true value if we repeatedly and randomly sam-
ple items to compute b̂1. Note also that even if β1= 0 (i.e., there is a nonzero
true relationship), this underestimation of SE means that confidence intervals
around b̂1 are narrower than they should be. This situation is discussed in the
General Discussion section.

6 The proof also shows that underestimation is larger when variance in the
IV is larger (s2x ). However, this is simply a scaling factor; if the variance of an
IV is larger, random item slopes decrease.
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100%. The issue of a smaller number of items is alsoworth mention-
ing as researchers often seek to reduce the number of items in their
scales with the intention of reducing the burden on their participants,
developing shorter scales to measure the same constructs (and often
to facilitate data collection from a larger sample). Both decisions the-
oretically have big implications if the possibility of random item
slopes is ignored.
A false-positive effect due to random item slopes may have a par-

ticular hallmark, namely a “small but statistically significant effect in
a large sample.” This is because, when the true effect is absent and
random item slopes are present, the estimate of β1 is likely to be
small (due to the absence of the true effect) with underestimated
SE. Such a small effect becomes falsely significant particularly
when the sample size (number of participants) is large.
Accordingly, false-positive effects due to random item slopes some-
times manifest as small statistically significant effects with a large
sample.
It is worth noting that the inflation of Type I error rates is consid-

ered true only when the items are sampled from a population of pos-
sible items that could assess a construct, and where the effect is not
present across this item population. However, if we only cared about
the specific set of items used to collect data (e.g., testing the effect on
scores of extroversion on a particular scale developed by a particular
researcher), and did not care about generalizing the results to a wider
set of items, then Type I error rate is accurately controlled for (i.e.,
these effects are not false positives). The problem is that, when ran-
dom item slopes are not considered, a statistically significant effect
does not guarantee that the results from one study would replicate
when using different items assessing the same construct. Again, as
we are normally interested in a broader construct assessed by scale
items, and as such we expect the effect to generalize regardless of
the items used (assuming item exchangeability), it may be difficult
to substantially justify the omission of random item slopes when
they are indeed present.

Illustrating the Effects of Random Item Slopes

To illustrate the properties and implications of the proposed random
item slope regression, in the following, we try to address three issues
through statistical simulations and analysis of real-world data. First,
we demonstrate how aggregation regression and common factor
regression inflate Type I error rates when random item slopes exist
(at varying degrees) while random item slope regression shows no
Type I error inflation. Second, we empirically evaluate the potential
existence of such random item effects using real-world data.
Existence of item-specific associations has been examined and dis-
cussed in the literature of personality (“trait nuances” in Mõttus et
al., 2017; Mõttus & Rozgonjuk, 2021), psychometrics (Method of
Correlated Vectors regarding g factor of intelligence, Jensen, 1998),
and psychiatry (regarding p factor of psychopathology, Caspi et al.,
2014; see also McClure et al., 2021), while recent literature on causal
inference (VanderWeele, 2022) as well as network science has also
underscored their importance (Borsboom & Cramer, 2013; Fried,
2015). The current paper empirically evaluates potential item-specific
associations from the perspective of random item slope regression.
Third and finally, we also explore the potential effectiveness of

commonly used statistical indices that could alert researchers to
the presence of random item slopes: Cronbach’s α (a measure of
scale reliability) and the fit indices from SEM. As discussed

above, common factor regression and random item slope regression
are related but different statistical models. As such, it is theoretically
possible to distinguish between them based on empirical data in
order to select a more appropriate model. This could be achieved
by using Cronbach’s α or SEM fit indices generated when using
common factor regression. In fact, the presence of random item
slopes could reduce Cronbach’s α because random item variance
reduces the relative contribution of random participant intercepts,
which is the major source in calculating this reliability index (see
equation to compute Cronbach’s α above). Also, the presence of ran-
dom item slopes means that the association between an IV and indi-
vidual items varies above and beyond what is expected from the
differences in factor loadings. This deviation should manifest itself
by decreasing the fit of the data to common factor regression. Poor
fit of the SEM could therefore potentially alert a researcher to the
presence of problematic random item slopes.

Simulation

Using simulation, we demonstrate that, when items are differen-
tially predicted by the IV (i.e., random item slopes are present), aggre-
gation and common factor regression inflate Type I error rates, while
random item slope regression does not. Furthermore, we demonstrate
that the inflation is more pronounced as a function of larger sample
sizes, fewer items, and smaller participant intercepts.

Method

Models

Simulations were conducted using R 3.6.2 (R Core Team, 2019).
We tested aggregation regression (a simple linear regression model
where the DV is aggregated across multiple items for each partici-
pant, see Equation 1; implemented using stats::lm, R Core Team,
2019), which does not control for random item slopes. Crucially,
we compared this model with random item slope regression (a linear
mixed-effects model that controls for the random item slope in addi-
tion to participant and item intercepts, see Equation 4; implemented
using lme4::lmer, Bates et al., 2015) and common factor regression
(a structural equation model defining the DV as a latent variable, pre-
dicted by the IV and with each item as an indicator, Figure 2; imple-
mented using lavaan::sem, Rosseel, 2012).

Simulation Parameters

The models were tested on simulated data sets. Simulated data
were generated from the model in Equation 4.We systematically var-
ied the number of participants (I= 100, 200, 400, 1,000) and the
number of items (J= 5, 10, 20) per data set. Additionally, we sys-
tematically manipulated the variance of two random effects in the
data generation model: random item slopes (t211 = 0 [no slope],
0.01 [moderate], 0.09 [high]) and random participant intercepts
(v2

00 = 0.36 [low], 0.81 [high]). We simulated 1,000 data sets
from each of the 72 unique parameter sets (with the same random
seed used for each parameter set). For a given set of parameters,
we generated a data set by randomly sampling from these parame-
ters, where I participants had J items measuring the DV. We gener-
ated an IV value for each participant (xi), randomly sampling a
continuous value from a normal distribution (M= 0, σ2= 1).
Random item intercepts (u0j) are essentially means of each item
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and would not affect any of the statistical inferences that we are inter-
ested in; as such, we fixed t200 to 0.25 (note these were sampled from
a separate distribution than for t211, i.e., they were uncorrelated).
Variance of the random errors in Equation 4 (σ2) was fixed to 1.0.
Crucially we set the fixed effect slope to 0 (also the intercept was
also set to 0 for model interpretability, e.g., β0= β1= 0), meaning
that the true model has no overall relationship between the IV and
DV. Therefore any significant relationships found by the models
in the simulated data sets result from the random item slopes and
are Type I errors.
As the mathematical proof demonstrates that SE underestimation

is a function of variance in random item slopes, participant inter-
cepts, and residual error, for ease of interpretation we express vari-
ance of random item slopes and participant intercepts as a
percentage of this relevant error variance (e.g., v2

00 as a percentage

of relevant error variance= v2
00

v2
00 + t211 + s2

; see Table 1). The

values for our simulation were initially arbitrarily chosen with two
realistic constraints: (a) the prior assumption that random intercepts
are likely to be larger than random item slopes, and (b) that these val-
ues would produce a reasonable range of Cronbach’s α typically
observed in empirical research (see Table 1). Though somewhat
arbitrary, we demonstrate later that random item slopes of a magni-
tude tested in the simulation were present in real-world data (as a per-
centage of relevant error variance; see Real Data below).

Code/Data Availability

The code for the simulation and results from the simulation are
available at https://osf.io/g7nbw/.

Results and Discussion

The proportion of significant results (i.e., Type I errors) over
1,000 simulations are shown in Figure 3 for each of the 72 parameter
sets (4 [I ]× 3 [J ]× 2 [v2

00]× 3 [t211]= 72). This demonstrates that
random item slopes cause Type I error inflation when they are not
controlled for, with larger variation in random item slopes causing
higher Type I error rates for aggregation regression, and no inflation
for random item slope regression. The risk of Type I error increases
for larger numbers of participants, but decreases to some extent for
larger number of items. A larger variation in participant intercepts
also slightly decreases the risk of Type I error. Thus, the Type I
error rate is highest when the variance due to random item slopes
represents more of the total variance across the model (see Table 1

for the size of random item slopes as a percentage of relevant
error variance). However, we note that inflation is noticeable even
when the random item slope is small (0.549% of relevant error var-
iance) when I is large.

We calculated Cronbach’s α for the different parameter sets (aver-
aged across the four I, Table 1) and calculated the average fit statis-
tics across parameter sets for common factor regression (Figure 4).
Cronbach’s α did not substantially decrease as random item slopes
increased and were clearly much more of a function of random par-
ticipant intercepts. In fact, even when random item slopes were pre-
sent, Cronbach’s α was at a level commonly thought to be
satisfactory (..70, see Bland & Altman, 1997). This means that
Cronbach’s α is not sensitive to the presence of random item slopes.

Fit indices for common factor regression showed poorer fit as ran-
dom item slopes increased. However, when random item slopes are
small, fit is often within the range of “good/modest fit” (e.g., p. .05,
comparative fit index [CFI]. .90, and root-mean-square error of
approximation [RMSEA], .08; see Browne & Cudeck, 1993), sug-
gesting that fit may not be sufficient towarn researchers of the poten-
tial presence of random item slopes.

Real Data

We have shown in the mathematical proof and simulations that
random item slopes, and in particular the relative size of the variation
in random item slopes in proportion to other error variance, causes
inflation of Type I error. However, are there really differential rela-
tionships between items and IVs in real-world data from surveys
and tasks?

Method

We collected some popular survey responses and data from two
RT tasks to provide a range of real-world measures (see Table 2)
with different numbers of items, reported scale reliability, and
types of IV (all measures collected are reported in Table 3). Data
were collected via Prolific Academic from August to September
2020 using an online survey implemented using jsPsych (de
Leeuw, 2015). The study received ethical approval from the
School of Psychology and Clinical Language Sciences Research
Ethics Committee, University of Reading, UK.

Participants

N= 579 participants consented to take part; however, n= 15 were
excluded for failing to complete the full set of surveys and RT tasks.

Table 1
Variance in Participant Intercepts and Item Slopes Expressed as a Proportion of Relevant Error Variance,
and Mean Cronbach’s α (Across I) for Different Participant Intercept and Item Slopes

Participant intercept Item slope Cronbach’s α

Variance % Relevant error variance Variance % Relevant error variance J= 5 J= 10 J= 20

0.36 26.471 0 0.000 .639 .780 .877
0.36 26.277 0.01 0.730 .636 .779 .876
0.36 24.828 0.09 6.207 .618 .766 .867
0.81 44.751 0 0.000 .800 .888 .941
0.81 44.505 0.01 0.549 .798 .888 .941
0.81 42.632 0.09 4.737 .785 .881 .936
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The final sample consisted of n= 564 participants (Female= 382,
Male= 180, Prefer not to say= 2; Age: M= 32.08, SD= 12.01;
Ethnicity: Asian= 45, Black= 22, Describe differently= 6, Mixed
ethnicity= 27, Prefer not to say= 4, White= 460; Highest level of
education: No formal education= 3, Secondary school/General
Certificate of Secondary Education or equivalent= 38, College/
Advanced levels or equivalent= 192, Undergraduate degree= 228,
Postgraduate degree= 83, Doctorate= 18, Prefer not to say= 2).

Survey Data

The main purpose of our study was to analyze data using psycho-
logical measures that are commonly aggregated when used as DVs.
Participants completed a number of commonly used psychological
surveys (Table 2). All surveys in Table 2 were presented in the
same order for all participants, that is, the Balanced Inventory of
Desirable Reporting (Paulhus, 1991), the Big Five Inventory (John
& Srivastava, 1999), the Short Index of Self-actualization (Jones
& Crandall, 1986), and then the Epistemic Curiosity Scale
(Litman, 2008). These were chosen as they are commonly used
and have a range of reported α values. Additionally, most had facets
or subscales, and one had a short version (e.g., the Balanced
Inventory of Desirable Reporting; see Hart et al., 2015), again

with a range of reported α values. In addition to the measures
reported in Table 3, we collected the Biographical Inventory
of Creative Behaviours (Furnham & Bachtiar, 2008) to be
analyzed as part of a separate project where item scores are binary
variables that are treated as continuous when aggregated. Table 2
also shows the scale reliability calculated for each measure
(Cronbach’s α).

Reaction Time Experiments

Alongside survey data, we were keen to demonstrate that random
item slope regression can be generalized to other kinds of psycho-
logical measures, for example, RT tasks where participant RTs to a
number of stimuli (items) are aggregated. After completing the sur-
veys, participants completed two Go/No-Go RT tasks. On Go tri-
als, participants had to press the spacebar, and on No-Go trials,
participants had to refrain from pressing the spacebar. One RT
used simple two-dimensional shapes (Go: blue shapes; No-Go:
orange shapes), while the other used pictures from the Open
Affective Standardized Image Set (OASIS) database (Go: animals,
No-Go: nonanimal objects—note all pictures were selected with a
valence≥5; see Kurdi et al., 2017). For both RTs, stimuli were sep-
arated with a blank screen with a fixation point for 1,000 ms, and

Figure 3
Simulation Results Showing Type I Error and Convergence Failure of Aggregation Regression, Random Item Slope Regression and Common
Factor Regression on Data With Varying Participant Intercepts and Item Slopes

Note. Bars indicate the proportion of simulations in which models failed to converge. Data points indicate the proportion of simulations (in which the model
converged) where the model found a significant relationship between IV and DV (e.g., Type I error rate), colored by model. IV= independent variable; DV=
dependent variable. See the online article for the color version of the figure.
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stimuli appeared for 2,000 ms. Participants had 10 practice trials in
which they received feedback (i.e., if they pressed the spacebar in a
No-Go trial they were informed that they should not have done). In
the actual tasks, there were 50 stimuli shown in a preselected ran-
dom order (all participants saw the same order, two blocks of 25
trials with a break in the middle, for both shapes and pictures),
with 25 Go and 25 No-Go stimuli. We calculated the mean
response time for each participant for both RTs (see Table 2).

Independent Variables

Demographics. We tested the relationship between a range of
IVs (Table 3). We focused on commonly used demographic infor-
mation (e.g., age, gender, birth order, and number of siblings) as
well as self-reported data on height.
Mood Induction. In addition, we wanted to demonstrate that

random item slope regression could generalize from observa-
tional studies of individual differences to experiments, so we con-
ducted a mood induction, assigning participants to one of two
experimental conditions: a neutral or positive mood induction.
This consisted of viewing 17 images of scenery from the
OASIS (Kurdi et al., 2017) for 4 s each. Images from the
OASIS database were selected because they were open access
and have previously been assigned scores for valence and
arousal. We selected 17 positively valanced and high-arousal

images (e.g., beautiful lakes, sunsets, fireworks with a reported
valence ≥6 out of 7, and arousal ≥4 out of 7 as reported in
Kurdi et al., 2017) and 17 neutrally valanced low-arousal images
(e.g., bare earth, concrete with a reported valence from 3.25 to
4.75, and arousal ≤4 out of 7).

Measures of participants valence and arousal were taken at base-
line and post-mood induction—Valence: “How pleasant are you cur-
rently feeling?” Responses on a 9-point scale ranging from 1
(extremely unpleasant) to 9 (extremely pleasant); Arousal: “How
aroused (i.e., feeling sleepy or feeling activated) are you currently
feeling?” Responses on a 9-point scale ranging from 1 (low
arousal/sleepy) to 9 (high arousal/activated). The mood induction
was successful as those in the positive condition experienced feeling
more pleasant after the induction relative to baseline and those in the
neutral condition. A mixed-effects model (with condition [effect
coded: neutral=−1, positive= 1], measurement time [baseline=
−1, post= 1], and Condition×Measurement Time, with a random
participant intercept) showed that the interaction was significant
for valence, b= 0.146, SE= 0.017, t(562)= 8.394, p, .001.
Participants in the positive condition reported feeling more pleasant
after the mood manipulation—baseline: M= 4.896, SD= 1.443;
post: M= 5.408, SD= 1.401; post hoc pairwise comparison cor-
rected using Satterthwaite method, t(562)= 11.088, p, .001—
while participants in the neutral condition did not—baseline: M=
5.020, SD= 1.427; post: M= 4.948, SD= 1.329; t(562)= 1.391,

Figure 4
Averaged SEM Fit Statistics for Common Factor Regression Across 1,000 Simulations for Each Parameter

Note. Dotted line indicates threshold for good fit (chi-square p. .05, CFI. .90, RMSEA, .08). SEM= structural equation modeling; CFI= comparative
fit index; RMSEA= root-mean-square error of approximation. See the online article for the color version of the figure.
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p= .506. However, for a mixed-effects model with the same
specification but with arousal as the DV, the interaction was not
significant—b= 0.035, SE= 0.192, t(562)= 1.794, p= .073.
Participants in the positive condition reported feeling marginally
more aroused/activated—baseline: M= 4.228, SD= 1.725; post:
M= 4.430, SD= 1.669; t(562)= 3.971, p, .001—whereas
participants in the negative condition did not—baseline: M=
4.097, SD= 1.654; post: M= 4.161, SD= 1.558; t(562)= 1.121,
p= .677.

Coding and Standardization

All IVs were effect coded (if dichotomous) or standardized (M=
0, SD= 1). All DVs were also standardized to allow us to compare
the size of random item slopes (and fixed effects) across measures
and models; specifically, for each DV, we mean-centered and scaled
a vector containing all item responses (e.g., if the DV consisted of

five items for 100 participants, this created a vector of 500 values,
which were then scaled). To create standardized aggregated scores,
these scaled values were then aggregated. This process of standard-
ization of DVs does not affect any test statistics for random item
slope regression.

Analysis

Aggregation, common factor, and random item slope regression
were implemented as in the simulation. In addition, random inter-
cepts regression was also implemented using lme4:lmer (Bates
et al., 2015).

Data Availability

The data analyzed here and scripts are available at https://osf.io/
g7nbw/.

Table 2
Descriptive Information for DVs Used (Prestandardization)

Subscale/facet Items n Scale
Aggregated scores

αM (SD)

Balanced Inventory of Desirable Reporting
Self-deception enhancement 20 564 7-point 3.98 (0.60) .71
Impression management 20 564 7-point 4.09 (0.79) .77

Balanced Inventory of Desirable Reporting (Short Version)
Self-deception enhancement 8 564 7-point 3.75 (0.82) .67
Impression management 8 564 7-point 4.04 (0.91) .70

Big Five Inventory
Agreeableness 9 564 5-point 3.68 (0.60) .75
Conscientiousness 9 564 5-point 3.58 (0.65) .81
Extraversion 8 564 5-point 2.92 (0.84) .87
Neuroticism 8 564 5-point 3.3 (0.83) .86
Openness 10 564 5-point 3.48 (0.63) .80

Epistemic Curiosity Scale
Deprivation-type 5 564 4-point 2.39 (0.67) .84
Interest-type 5 564 4-point 2.88 (0.61) .80

Short Index of Self-actualization
Short index 15 564 7-point 3.68 (0.63) .61

Go/No-Go Tasks
Shapes RT 25 564 0–2,000 ms 457.89 (85.99) a .94
Pictures RT 25 564 0–2,000 ms 578.84 (103.37) a .94

Note. DV= dependent variable. RT= reaction time.
a Aggregated RT across trials where participants responded only.

Table 3
Descriptive Information for IVs (Prestandardization)

Variable Type Scaled/coded n M (SD) Categories

Birth order Continuous Scaled 564 1.82 (1.11) a

Total siblings Continuous Scaled 564 1.73 (1.43)
Height Continuous Scaled 563 b 169.26 (9.67)
Age Continuous Scaled 564 32.08 (12.01)
Condition Dichotomous Effect coded 564 Neutral, n= 248

Positive, n= 316
Gender Dichotomous Effect coded 562 c Female, n= 382

Male, n= 180

Note. IV= independent variable.
a 1= first born, 2= second born, and so on. b One outlier removed for reporting a height of 60 cm. c Variable
dichotomized (male/female), removed n= 2 that gave different responses.
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Results and Discussion

We investigated models with every combination of IV and DV
(single predictor models), using random item slope regression in
Equation 4 on the full sample. Table 4 shows the size of the ran-
dom item slope estimated by random item slope regression,
expressed as a percentage of relevant error variance for each
DV� IV relationship.
Table 4 shows that we did not observe random item slopes at

the large sizes in our simulation (e.g., 4.737%–6.207%).
However, random item slopes were estimated to be present in
real-world data using commonly used scales. Furthermore, for
some DV� IV relationships, variance in random item slopes
was estimated to be higher than the percentage of the relevant
error variance that is known from our simulations to cause
Type I error inflation (0.549%). Note that the percentage of the
relevant error variance smaller than 0.549% is not a “cutoff”;
this is an arbitrary value that we used in the simulation and
smaller random item slope variance still produces inflated Type
I error rates (as mathematically demonstrated in Appendix A).
We chose 0.549% simply because the consequences were well
quantified in our simulation.
The two largest item slopes estimated from the data were for

Self-actualization�Age, and Interest-Type Curiosity�Age. To
understand how different model specification changes the results,
Table 5 shows the results from the three models represented by
Equations 1, 3, and 4 for these two relationships, along with the rela-
tionship between Agreeableness and Age (with a random item slope
estimated to be near zero) for comparison.
Table 5 shows that for the larger item slopes (Interest-Type

Curiosity�Age and Self-actualization�Age), error variance
that is considered residual by models that ignore random item
slopes (Equations 1 and 3) could be due to random item slopes,
which, if modeled (Equation 4), affects the estimate of SE around
the fixed effect. This, in turn, affects whether a relationship is found
to be significant or not. When there is a negligible random item
slope (Agreeableness�Age), SE is effectively identical (after
rounding) for Equations 1, 3, and 4, that is, the underestimation
is small, with only a marginal affect on t and p. Note that b̂1

does not differ across the models, with the exception of some dif-
ferences for common factor regression. As discussed earlier, aggre-
gation regression (Equation 1) is mathematically equivalent to
random intercepts regression (Equation 3), and fixed effects of
these models are not biased (see Footnote 5). Therefore, we
expected equivalent fixed effects among aggregation, random
intercepts, and random item slope regression. The difference
between these models and common factor regression is also
expected because, as discussed earlier, aggregation regression is
equivalent to a constrained common factor regression model, not
the commonly used unconstrained common factor regression
model tested here. As illustrated by McNeish and Wolf (2020),
these different models could produce nonnegligible differences
in parameter estimates. For interested readers, we also included
the figure comparing the estimated slopes of each item based on
random item slope and common factor regression in Figure S1
online supplemental materials.
Figure 5 shows the relationship between the aggregated scores

from the Short Index of Self-actualization as predicted by age
(the relationship with the second largest random item slope

estimate). Figure 6 (bottom) then shows the relationship of each
item from the Index with age (the red dotted line indicates the
overall relationship from Figure 5). This shows the large variance
in the slopes across different items on the scale; while around
seven out of 15 of the items show a smaller (or indeed opposite)
slope to the aggregated slope with two items contributing large
negative slopes. Aggregation regression found a significant rela-
tionship between age and self-actualization (b=−0.062, SE=
0.015, t=−4.182, p, .001) while random item slope regression
did not (b=−0.062, SE= 0.032, t=−1.957, p= .066) due to a
smaller se(b̂1) for aggregation regression. In addition, common
factor regression also found a significant relationship (b=
−0.129, SE= 0.023, z=−5.547, p, .001). The self-actua-
lization scale had poor scale reliability (Cronbach’s α= .607).
Furthermore, common factor regression showed poor model fit
(χ2= 762.168, df= 104, p, .001, CFI= 0.447, RMSEA=
0.106).

A strength of random item slope regression is that it can allow us
to identify when items differently relate to a predictor. Figure 5
shows that items measuring self-actualization have different direct
relationships with age. For example, two items showing strong
negative relationships with age both relate to fears (Item 8: I fear
failure” and Item 14: “I am bothered by fears of being inade-
quate”). Other items do not mention fear at all, so we may specu-
late on why age is related to the fear element of self-actualization,
while having less of an (or an opposite) effect on other elements. If
we can quantify these item-specific properties, we can even incor-
porate them in the model to see whether item-specific characteris-
tics can indeed predict the differential regression slopes (see also
General Discussion). Additionally, there was negative covariance
between random item intercepts and slopes (see Table 5). Note
that mean age in the sample was 32.08 (SD= 12.01; see
Table 3) and age was standardized before the analysis. The results
mean that items with larger negative slopes (e.g., Items 8 and 14)
also had higher intercepts, suggesting that items that participants
aged 32 tended to more strongly agree with showed stronger neg-
ative relationships with age (Figure 5). One potential interpretation
is that items relating to fear were more highly endorsed than other
items, but this difference disappears as people age. An alternative
interpretation is that this negative covariance reflects a measure-
ment artifact, for example, items with higher intercepts have
more room to decrease with age. We feel the alternative interpreta-
tion is unlikely because this pattern is only observed for this par-
ticular IV–DV pair among many different combinations, and
results for interest-type curiosity and age showed the opposite
(positive) covariance (Table 5). In any case, the relationship
between intercept and slopes should also provide useful informa-
tion to interpret findings.

The next largest item slope was for the Interest-Type Curiosity
subscale from the Epistemic Curiosity scale. Figure 6 shows the
relationship between aggregated scores and age and the by-item
slopes. Item 9 has a stronger negative relationship with age
than all other items, causing the aggregated slope to be more neg-
ative than 4/5 of the items. While aggregation and common factor
regression found a significant relationship between age and
interest-type curiosity (aggregation: b=−0.120, SE= 0.030, t=
−4.034, p, .001; common factor: b=−0.089, SE= 0.027,
z=− 3.283, p= .001), random item slope regression did not (b=
−0.120, SE= 0.054, t=−2.216, p= .063). The Interest-Type

DONNELLAN, USAMI, AND MURAYAMA12

https://doi.org/10.1037/met0000587.supp
https://doi.org/10.1037/met0000587.supp


Curiosity scale showed acceptable scale reliability (Cronbach’s
α= .797). Furthermore, common factor regression showed
good model fit according to CFI and only marginally poor fit on
RMSEA (χ2= 47.442, df= 9, p, .001, CFI= 0.956,
RMSEA= 0.087).
Again, by inspecting Figure 6, we can see that age has a stronger

effect on one item (Item 5: “I enjoy discussing abstract concepts”)
relating to interest-type curiosity. This is the only item to mention
abstract concepts, and the others relate to acquisition of new or

unfamiliar information. Age could therefore be particularly nega-
tively related to the element of interest-type curiosity concerning
interest in abstract concepts, in comparison to the elements captured
by the remaining items (e.g., enjoyment of learning about new infor-
mation). Positive covariance between random item intercepts and
slopes (see Table 5) suggests that while the abstract concepts item
had a stronger negative relationship with age, participants aged
32 also tended to agree less with this item when compared to
other items.

Table 4
Random Item Slopes (Expressed as a Percentage of Relevant Error Variance, Estimated by Random Item Slope Regression)

Measures/facets

Random item slope

Birth order Age Condition Gender Height Total siblings

Balanced Inventory of Desirable Reporting
Self-deception enhancement 0.017% 0.545%a 0.071% 0.836%a 0.228%a 0.192%a

Impression management 0.095%a 1.060%a 0.015% 0.608%a 0.187%a 0.109%a

Balanced Inventory of Desirable Reporting (short version)
Self-deception enhancement 0.030% 0.070% 0.008% 0.942%a 0.257% 0.089%
Impression management 0.073% 0.276%a 0.120% 0.952%a 0.467%a 0.046%

Big Five Inventory
Agreeableness 0.021% 0.002% 0.069% 0.321%a 0.125% 0.013%
Conscientiousness 0.018% 0.306%a 0.000% 0.167% 0.025% 0.088%
Extraversion 0.043% 0.296%a 0.013% 0.388%a 0.225%a NA
Neuroticism 0.002% 0.268%a 0.046% 1.00%a 0.488%a 0.007%
Openness 0.054% 0.492%a 0.038% 0.702%a 0.203%a 0.017%

Epistemic Curiosity Scale
Deprivation-type 0.050% 0.309%a NA 0.301%a 0.230% 0.006%
Interest-type 0.058% 1.120%a 0.000% 0.220%a 0.090% 0.043%

Short Index of Self-actualization
Short index 0.007% 1.430%a 0.003% 0.781%a 0.181%a 0.000%

Go/No-Go Task
Shapes RT 0.070% 0.065% 0.000% 0.090%a 0.035%a 0.049%
Pictures RT 0.014% 0.135%a 0.001% 0.022% 0.116%a 0.001%

Note. Bold text denotes when a random item slope was above 0.549% of relevant error variance (i.e., the smallest size slope tested in simulations that showed
Type I inflation). NA= not applicable; RT= reaction time.
a Indicates where the random item slope was significant, as tested by a likelihood ratio test comparing the random intercepts and random slope model.

Table 5
Regression Model Results for Three Example Relationships (Agreeableness∼ Age, Interest-Type Curiosity∼ Age, Self-actualization∼ Age)

Regression model

Fixed effects Random effects

b̂1 SE t p v2
00 t200 t211 σ2 τ10

Agreeableness�Age
Aggregation in Equation 1 0.034 0.023 1.507 .132 0.536
Random intercepts in Equation 3 0.034 0.023 1.507 .132 0.214 0.142 0.660
Random item slope in Equation 4 0.034 0.023 1.504 .136 0.214 0.142 ,0.001 a 0.660 .−0.001 b (−0.264)
Common factor 0.023 0.020 1.125 .261

Interest-Type Curiosity�Age
Aggregation in Equation 1 −0.120 0.030 −4.034 ,.001 0.705
Random intercepts in Equation 3 −0.120 0.030 −4.034 ,.001 0.394 0.093 0.520
Random item slope in Equation 4 −0.120 0.054 −2.216 .063 0.396 0.093 0.010 0.509 0.026 (0.842)
Common factor −0.089 0.027 −3.283 .001

Self-actualization�Age
Aggregation in Equation 1 −0.062 0.015 −4.182 ,.001 0.351
Random intercepts in Equation 3 −0.062 0.015 −4.182 ,.001 0.073 0.188 0.747
Random item slope in Equation 4 −0.062 0.032 1.957 .066 0.074 0.188 0.012 0.736 −0.029 (−0.617)
Common factor −0.129 0.023 −5.547 ,.001

Note. τ10 is reported as covariance and as the standardized correlation coefficient in parentheses. For common factor regression, we provide z values instead
of t values.
a 0.00002. b 0.0004.
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Figure 5
Self-Actualization Scores Predicted by Age

Note. Top (aggregated score): Blue line represents the slope, red dashed line represents the 95%
confidence interval from aggregation regression in Equation 1, and blue dotted line represents the
95% confidence interval from random item slope regression in Equation 4. Bottom (by-item score):
Red dashed line indicates the slope of the Aggregated Scores�Age (as in Figure 5), with intercept
adjusted for comparability. See the online article for the color version of the figure.
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Figure 6
Interest-Type Curiosity Scores Predicted by Age

Note. Top (aggregated score): Blue line represents the slope, red dashed line represents the 95% confidence interval from aggregation regression in Equation
1, and blue dotted line represents the 95% confidence interval from random item slope regression in Equation 4. Bottom (by-item scores): Red dashed line
indicates the slope of the Aggregated Scores�Age (as in Figure 5), with intercept adjusted for comparability. See the online article for the color version
of the figure.
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Without knowing the true model, we cannot say that the signifi-
cant result found by aggregation regression for Self-actualization�
Age is a Type I error. However, we can still demonstrate that as
the sample size increases (larger number of participants), the chance
of finding a significant result with aggregation regression increases
relative to the chance of finding a significant result with random
item slope regression for the two cases discussed above (where ran-
dom item slope regression estimated large variation in random item
slopes). Figure 7 shows the absolute t value for the estimated slope of
Agreeableness�Age, Interest-Type Curiosity�Age, and
Self-actualization�Age, for 100, 200, 400, and 564 participants
(for 100, 200, and 400 participants, the data were averaged over
1,000 resamples). This shows that for the two relationships with
high random item slopes (Figures 5 and 6), as the sample increases,
these show the characteristic pattern observed in the simulations for
random item slopes (i.e., an increasingly higher likelihood of finding
a significant relationship when the sample size increases when ran-
dom item slopes are not controlled for; see Figure 2). Comparatively,
when there are no random item slopes (for Agreeableness�Age)
the t values remain the same for aggregation regression, random
intercepts regression, and random item slope regression, that is,
the interaction between sample size and model misspecification
does not increase the chance of finding a significant result (simply
sample size, suggesting simply a small effect of age on
Agreeableness). These results indicate that ignoring random item
slopes when they are present becomes particularly problematic
when sample size is larger.

General Discussion

The current paper proposes random item slope regression as an
alternative to commonly used approaches predicting the DV, which
consists of a multiitem scale (aggregation regression, common factor
regression). We discussed the conceptual and theoretical implications
of the model, especially from the perspective of measurement models.
Then to evaluate the statistical and practical implications of the pro-
posed model, we conducted the statistical simulations and empirical
study. The results demonstrate three points. First, when random
item slopes are not controlled for, they can cause Type I error inflation
(as predicted by the mathematical derivation in Appendix A). This is
the case even when the magnitude of random item slope variance is
small (0.549% of relevant error variance), if sample size (number of
participants) is large. Second, in real-world data, using commonly
used survey measures, we found evidence that random item slopes
may exist at levels known from simulations to cause Type I error infla-
tion. Finally, we have shown that measures of scale reliability and
SEM fit statistics are not sufficient to warn of the presence of random
item slopes. It should be noted that, while our empirical example uti-
lized data from social and personality psychology, the practical risk of
Type I error inflation that can be averted by using random item slope
regression is not limited to just these subdisciplines of psychology;
any DV that consists of multiple measurements sampled from a
pool of possible items could be susceptible, regardless of discipline
(see Judd et al., 2012; Kajimura et al., 2023; Westfall et al., 2017;
Wolsiefer et al., 2017).

Figure 7
Absolute t Values Estimated by Aggregation Regression in Equation 1 and Random Item Slope Regression in Equation 4 for Example
Relationships

Note. Facets are labeled with the size of the item slope as a percentage of relevant error variance in parentheses. Horizontal lines indicate significance where
α= .05 (z= 1.96: dotted line), α= 0.01 (z= 2.326: short-dashed line), and α= 0.001 (z= 3.291: longer-dashed line). See the online article for the color
version of the figure.
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One may ask why our proposed model is necessary given that, in
many cases, random item slope regression and the standard analyt-
ical approach based on latent variables (e.g., common factor regres-
sion) show similar regression coefficients (see Table 5), and that
one could also use seemingly related existing models within the
latent variable framework (e.g., SUR). In response, we cannot stress
more strongly that switching to the proposed model has much
broader theoretical and practical implications than those that arise
from simply switching to existing models. Crucially, random
item slope regression represents a new alternative measurement
model that does not posit latent variables. This provides a qualita-
tively different way of theoretically understanding psychological
constructs from the standard analytical approach. Even if models
show similar regression coefficients, random item slope regression
is different in that we do not interpret the coefficients as the mag-
nitude of the effects on a single latent construct. The model rather
supposes that there is no such latent causal entity and instead posits
that a psychological construct is an emergent property from indi-
vidual items (as in network models, discussed below). Thus, this
focuses on the direct causal effects from IVs on individual
items, as opposed to indirect effects entirely through a single
hypothetical latent variable. In practice, item-specific effects
are not uncommon in psychological measurements (McClure
et al., 2021; VanderWeele, 2022) and should not be ignored.
Furthermore, no existing latent variable model considers generaliz-
ability to the item population and, as we have demonstrated in the
current paper, therefore sometimes commits to considerable inflated
Type I error rates when making this natural inference (even using
SUR, see Appendix B). The proposed model, on the other hand,
is immune to such errors as it naturally incorporates random varia-
tion of items.

The Ubiquity of Random Item Slopes

In the real-world data that we examined, random item slopes exist,
and in some cases exist to an extent that would increase Type I error
rates to a considerable degree. We should be aware of this, especially
when dealing with small but significant relationships found across a
large sample of participants. However, the good news is that large ran-
dom item slopes were not ubiquitous in the current data. Although we
only tested a small set of scales, these results suggest that many find-
ings based on aggregation regression or common factor regression
may not suffer from this issue. If there are no random item slopes,
we could safely return to aggregation or common factor models for
reasons of parsimony. However, we stress that from a practical per-
spective, nothing prevents us at this point in time (or far less prevents
us) from testing for the presence of random item slopes. When item-
specific effects are important or expected (see discussion below), it is
worth examining data to see if random item slopes exist in the first
place before proceeding to common factor models.
Four things should be noted. First, even when random item slope

variance is statistically significant (i.e., model comparison shows
that random item slope regression is a significantly better fit than ran-
dom intercept regression for some data), this does not necessarily
mean that random item slope regression is the true model for the
data. As noted earlier, different associations may be accounted for
by the differences in factor loadings in common factor regression.
As discussed in the introduction, the final decision should be based
on a substantive theory as well as empirical data. Second, while

large random item slopes may not be ubiquitous, we should remain
vigilant to the reality that even small random item slopes can have a
substantial impact on Type I error rates. In our real-world data, few
measures showed truly negligible estimates of random item slopes.
While the impact of these slopes is greater when combined with a
larger number of participants, our simulations demonstrated that
small random item slopes showed some Type I error inflation with
as few as 100 participants when not controlled for. Therefore while
SE underestimation undoubtedly gets worse for large samples of par-
ticipants, they should not be ignored even by researchers who are col-
lecting from smaller samples. Third, while random item slope
regression may be particularly advantageous to draw a correct inferen-
tial conclusion when N is large and effects are small, in these situa-
tions, regardless of the modeling approach, researchers should of
course rely on effect sizes and other information to identify practically
significant effects over a reliance on statistical significance. The pro-
posed method should be seen as having a complementary advantage
with effect size approach to fight against spurious statistically signifi-
cant effects. Finally, in the literature of mixed-effects modeling, it is
well known that SE is underestimated when cluster size is small
(McNeish & Stapleton, 2016). In such cases, it is recommended
that researchers use correction methods such as Kenward–Roger cor-
rection (Kenward & Roger, 1997), which is implementable using R
package pbkrtest (Halekoh & Højsgaard, 2014). This recommenda-
tion also applies to the proposed model.

The current manuscript focuses on Type I error rate but it is also
worth noting the effects of random item slopes on statistical power.
In Appendix C, we showed additional simulation results to examine
the effect of random item slopes on statistical power in the presence
of different sized fixed effects slopes for aggregation and random
item slope regression (Appendix C). Generally, when random item
slopes are present and aggregation regression is used (red line), statis-
tical power is higher than when applying random item slope regression
(green line) due to SE underestimation. However, this does not mean
that aggregation regression is better as aggregation regression gains
high statistical power by paying an important (and unacceptable)
price of inflated Type I error rates, the extent of which we cannot cal-
ibrate from the data. In terms of the effects of various factors on stat-
istical power of random item slope regression (i.e., comparison within
the green lines), generally, power increases as the number of partici-
pants and items increases, which is consistent with our common intu-
ition. In addition, larger magnitudes of random item slope variance
generally decrease statistical power because increased random item
slope variance adds “noise” to the data, increasing sampling error.

When Should We Use Random Item Slope Regression?

There are some potential empirical clues of the presence of random
item slopes, whichmay indicatewhen random item slope regression is
a more appropriate choice than common factor regression or aggrega-
tion regression, e.g., poor fit of common factor regression. However,
our results showed that simply checking traditional reliability or fit
indices is not sufficient grounds on which to disregard random item
slope regression; we have demonstrated that they are not sufficiently
diagnostic for random item slopes. Thus, when random item slopes
are present but small, there is a possibility that the data may be well
approximated by a common factor regression model (i.e., the model
shows acceptable fit). These observations suggest that random item
slope regression and common factor regression are sometimes
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empirically indistinguishable. Another complication is that, in prac-
tice, poor fit could be caused by a number of different factors (e.g.,
multidimensionality of the scale), and thus the observation of poor
fit alone does not immediately indicate the presence of random item
slopes. For example, without knowledge of the true model, it is
unclear whether poor fit of the SEM observed in our real-world
data example (e.g., predicting Self-actualization from Age) resulted
from (a) random item slopes (which according to random item
slope regression were significant), (b) the scale not being unidimen-
sional (indicated by poor Cronbach’s α and poor fit statistics for the
SEM), (c) something else, or (d) a combination of a, b, and/or c.
As such, while researchers should be wary of empirical clues that

random item slopes are present, their judgment should also be based
on a substantive theoretical perspective about the construct that they
are assessing. That is to say that their decision should rest on how
they construe the measurement model for their data. If researchers
believe that the construct is best described by a common factor,
that is, the commonality of items exactly represents the construct
of interest such that item-specific effects are irrelevant, and common
factor regression is a reasonable choice (unless there is strong evi-
dence of model misfit). On the other hand, if researchers believe
that the construct is not strictly defined by such a model, and item-
specific slopes reflect the important part of the construct, random
item slope regression is a viable choice.
We believe that there are a number of situations in which random

item slope regression is a more attractive practical alternative to com-
mon factor regression. Specifically, random item slope regression
aligns with the typical strategy for developing psychological scales,
whereas common factor regression does not. A good scale with sub-
stantial predictive validity tends to consist of a comprehensive set of
items covering the broad spectrum of the psychological construct as
a whole (e.g., Big Five personality scales). As such, researchers are
often encouraged to generate heterogeneous, nonredundant sets of
items to develop a scale (e.g., starting from a large pool of heteroge-
neous items; Loevinger, 1957). Random item slope regression is
well suited to scales developed in this way. This is because random
item slope regression captures common as well as unique (heteroge-
neous) construct-relevant elements of items in relation to the IV,
acknowledging that idiosyncratic components of individual items
are also an important part of the construct. In fact, while fixed effects
slopes give the relationship between an IV and the commonality
between items, inspection of the individual item slopes can provide
more insight into what element(s) of the construct is related to exter-
nal variables. For example, as discussed above, in our data, age could
be particularly related to certain elements of self-actualization (e.g.,
relating to fear of failure or inadequacy) or interest-type curiosity
(e.g., relating to enjoying discussion of abstract concepts) over
other elements.
In contrast, common factor regression is not well suited to scales

developed in way described above. As discussed, the latent factor in
common factor regression only represents the “conjunction” between
items (Figure 2, left) with item-specific elements considered irrelevant
and modeled as measurement error (see Introduction). Furthermore,
even elements that are shared by multiple, but not all items can also
be regarded as a source of model misfit. In good scale design, increas-
ing the number of items aims to increase the conceptual coverage of
items, incorporating items that capture unique elements of the concept
that is being assessed. However, common factor regression assesses
the common component only, diluting the effects of item-specific

effects, that is, marginalizing unique elements of the concept captured
by individual items. In short, as noted in the introduction, when
researchers are interested in assessing a relatively broad construct
with heterogeneous set of items, we believe random item slope regres-
sion would be a valuable choice, well reflecting the nature of the psy-
chological construct in focus.

Note that, when item-specific effects are present which cannot be
explained by common factor regression, random item slope regres-
sion is not the only option. For example, studies using network mod-
els as a way to describe the relationships of multiple items from a
scale are increasing. According to the network model, a psycholog-
ical construct (e.g., depression) is an emergent property of the inter-
action of constituent elements such as behavioral symptoms
assessed with individual items (Borsboom & Cramer, 2013; Fried
et al., 2017). Elements assessed by individual items are supposed
to have dynamic causal relationships with each other. Importantly,
a network model assumes that each element has its own functions,
underscoring the importance of item-specific effects. Network mod-
els and random item slope regression have similarities in that indi-
vidual items are supposed to have differential relationships with an
external variable (e.g., the IV). In fact, if a network model is the cor-
rect measurement model, we can imagine that substantive random
item slope variance would be observed in random item slope regres-
sion.7 In a way, random item slope regression could be seen as a con-
venient, theory-free model which allows researchers to examine the
relationship between IV and constituent elements of DV without
directly specifying the causal network structure of the elements.
However, the fundamental difference is that, in network models,
each element has its own functionality that is not exchangeable
with other elements. As a result, it is essential to have a comprehen-
sive set of items in order to correctly understand the dynamics
between the items. On the other hand, random item slope regression
assumes that items are exchangeable. That is, items are a small sam-
ple from the large item population, and the model accounts for this
by correcting for statistical precision (i.e., increasing SE; see
Appendix A). As such, there is no need for the scale to be compre-
hensive: One can still make an inference about the item population
even from a limited set of items (although a larger number of
items would improve statistical precision). Ultimately, the choice
between using a network model and random item slope regression
depends substantively on a researcher’s theoretical perspective
about the psychological constructs under examination as well as
researcher’s confidence in the comprehensiveness of the items in
the assessment.

Extensions and Limitations

Although the current study covered a simple case in which a con-
tinuous multiitem DV is predicted by IVs, we propose several exten-
sions of random item slope regression. First, the model is easily
extended to cases in which the DV consists of noncontinuous multi-
item DV. Examples include binary behavioral checklists such as the
Biographical Inventory of Creative Behaviours (Batey, 2007; used
as a DV in Furnham & Bachtiar, 2008). In this situation, researchers

7 In this case, associations between the IV and individual items represent
the total effect. For example, the item-specific slope between an IV and
Item 1 represents the direct causal relationship between the IV and Item 1
as well as the sum of indirect effect through other items.
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can use generalized linear mixed-effects models (Stroup, 2012) to
explicitly model the nonlinear relationship between IVs and DV.
Second, we can extend the model to deal with the case in which
an IV consists of multiple items. Although mixed-effects models
are applicable only when a DV (but not IV) has a nested/crossed
structure, cross-classified SEM in the framework of multilevel
SEM (Asparouhov & Muthén, 2016; González et al., 2008; Rabe-
Hesketh et al., 2004) should allow researchers to model random
item slopes with regard to the IV. As such, multilevel SEM can fur-
ther extend the model to include both multiitem IVs and DVs. In this
case, the model takes into account the slopes of every combination of
the items between the IV and DV. Third, the model can also be
extended to include item-specific covariates (i.e., characteristics of
the items) to explain random item slopes (for a discussion on item
level covariates see Rijmen et al. 2003). Such a model provides us
with a great opportunity to understand why there are some variations
in the slopes between items.
Fourth, while the proposed model in this article assumes homog-

enous error variances across items, that is, we assumed
1ij � N(0, s2), this assumption can be relaxed in away that individ-
ual items have different error variance, that is, 1ij � N(0, s2

j ). There
are already several statistical models that relax this assumption, such
as the heterogeneous variance model and mixed-effects location-
scale model (see Lester et al., 2021 for an overview). Such a
model can be easily implemented using a Bayesian framework
(e.g., brms package in R; see Bürkner, 2017; see also McNeish,
2021 for implementation in Mplus). When we see large differences
in item variance, it may be better to use such a less-constrained
model, although more investigation on the effects of heterogeneous
error variance is needed. We have reanalyzed the example relation-
ships considered in Table 5 using Bayesian linear mixed-effects
models that allow for heterogeneous error variances for each item,
and included this analysis in Appendix D. We observed only slight
changes in SE about the fixed effect compared to random item slope
regression proposed in this manuscript (i.e., with no heterogeneous
error variance), suggesting that the relaxed model offers marginal
advantages in this particular context.
Finally, one limitation of random item slope regression is that it

cannot control for measurement errors. As the model assumes that
item-specific components constitute the important part of the con-
struct, it cannot dissociate measurement errors in the same way as
common factor regression. However, if researchers can collect the
same data more than once (e.g., using test–retest design), we can
explicitly model time as an additional random effect, which would
represent measurement errors (defined as time-varying elements).
This essentially makes it possible for us to draw an inference after
correcting for measurement errors. Future studies should examine
the model properties of these potential extensions.
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Appendix A

Let I be the number of participants and J be the number
of items. In Equation 4, we posit u0i � N(0, v00),

uj = (u0j, u1j)′ � MVN
0
0

[ ]
,

t00 t01
t01 t11

[ ]( )
, 1ij � N(0, s2),

and assume that these random effects and residuals are uncorrelated
with each other. We also assume that these random effects and resid-
uals are uncorrelated with the IV xi. Then the variance of the DV yij
[= Var(yij|xi)], its covariance between participants for the same item j
[= Cov(yij, yi′j|xi, xi′ )], its covariance between items for the same
participant i [= Cov(yij, yij′ |xi)], and its covariance between different
items and participants [= Cov(yij, yi′j′ |xi, xi′ ) ] can be expressed as
follows, respectively:

Var(yij|xi) = v00 + t00 + 2xit01 + x2i t11 + s2, (A1)

Cov(yij, yi′ j|xi, xi′ ) = t00 + (xi + xi′ )t01 + xixi′t11, (A2)

Cov(yij, yij′ |xi) = v00, (A3)

Cov(yij, yi′j′ |xi, xi′ ) = 0. (A4)

We then define the vector of the DV with size IJ as
Y = (Yt

1, Y
t
2, . . . , Y

t
i, . . . , Y

t
I)
t Yi= (yi1, yi2, …, yij…, yiJ)

t, the
vector of regression coefficients with size 2 as β= (β0, β1)

t, and
the matrix of the IV with size IJ× 2 as X= (1IJ, X+),
X+ = (X+t

1 , X+t
2 , . . . , X+t

i , . . . , X+t
I )t, X+

i = xi1J (1a is a vector
of ones with size a), and vector of random effects with size IJ as
ɛ. Then Equation 4 can be expressed in a matrix form as follows:

Y = Xb+ 1. (A5)

Here Cov(X, ε)= 0 and 1 � MVN(0, S). Elements of Σ (which is
a nondiagonal matrix) can be derived from Equations A1 to A4.
Specifically, sij,i′ j′ , which is the covariance of ith participant in jth
item and i

′
th participant in j′th item can be generally written as

follows.

sij,ij = v00 + t00 + 2xit01 + x2i t11 + s2 (i = i′& j = j′), (A6)

sij,i′j = t00 + (xi + xi′ )t01 + xixi′t11 (j = j′), (A7)

sij,ij′ = v00 (i = i′), (A8)

sij,i′j′ = 0. (A9)

Considering the current case in which the IV does not depend on
j (X+

i = xi1J), the point estimate of the generalized least squares
(GLS) of the regression coefficient is the same as the point estimate
of OLS (see Amemiya, 1985), which is the proportion between the
covariance and the variance of the IV. Specifically,

b̂1 =
Cov(yij, xi)

s2x
. The SE of the GLS estimator of the regression

coefficient can be analytically computed as:

se(b̂1) =
���������������
(XtS−1X)−1

[2,2]

√
=

���������������������
It11s2x + s2 + Jv00

IJs2x

√
. (A10)

Here A[m,n] refers to (m, n) element in the matrix A. We can see
that se(b̂1) is not dependent of τ00, τ01.

Note that the derived formula makes it clear that random item
slope variance τ11 adds to the SE, as It11s2x =.0. As such, if the
model in Equation 4 is true and a researcher mistakenly applied a
model in Equation 3, we can expect underestimation of the SE. To
show the consequence of this model misspecification more specifi-
cally, let us consider the elements of Σ when we apply a model in
Equation 3:

sij,ij = v∗
00 + t∗00 + s∗2 (i = i′& j = j′), (A11)

sij,i′j = t∗00 (j = j′), (A12)

sij,ij′ = v∗
00 (i = i′), (A13)

sij,i′j′ = 0. (A14)

Here,v∗
00, t

∗
00, and σ

*2 are the parameters in Equation 3, which are
similarly defined as ω00, τ00, and σ2. By comparing these elements
with those obtained under the assumption that the model in
Equation 4 is true (i.e., the elements described above), we can derive
the asymptotic parameter estimates v̂∗

00, t̂
∗
00, ŝ

∗2 if one mistakenly
applied the model in Equation 3 when Equation 4 is the true
model. Specifically, by comparing the elements, we can derive the
following relations:

v̂∗
00 + t̂∗00 + ŝ∗2 = 1

IJ

∑
j

∑
i

[
v00 + t00 + 2xit01 + x2i t11 + s2

]

= v00 + t00 + 2x̄t01 + (x̄2 + s2x )t11 + s2,

(A15)

t̂∗00 =
1

I(I − 1)J

∑
j

∑
i

∑
i′=i

[t00 + (xi + xi′ )t01 + xixi′t11]

= t00 + 2x̄t01 + x̄2 − 1
I − 1

s2x

( )
t11,

(A16)

v̂∗
00 = v00. (A17)

Here x̄ is the sample mean of x. By solving the equations with
regard to ŝ∗2, we have

ŝ∗2 = I

I − 1
t11s

2
x + s2. (A18)

Accordingly, if one mistakenly applied the model in
Equation 3 when Equation 4 is the true model, the SE of the
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GLS estimator of the regression coefficient se(b̂∗
1) can be

expressed as:

se(b̂∗
1) =

�������������
ŝ∗2 + Jv̂∗

00

IJs2x

√
=

��������������������������
I

I − 1
t11s

2
x + s2 + Jv00

IJs2x

√√√√√

=,

���������������������
It11s2x + s2 + Jv00

IJs2x

√
= se(b̂1).

(A19)

As I is a positive constant, Equation A19 indicates that SE would
be underestimated unless τ11= 0. This also shows that the underes-
timation is larger when (a) I is larger, (b) t11s2x is larger, and (c) σ

2 +
Jω00 is smaller. It should be noted that the point estimate of the GLS

of the regression coefficient is b̂∗
1 =

Cov(yij, xi)
s2x

= b̂1, meaning that

the model misspecification would not bias parameter estimate itself.
Next, we consider the case where we aggregated item scores for

each participant to apply a model in Equation 1. First, assume that
Equation 4 is true. Given that

∑J
j u0j = 0 and

∑J
j u1j = 0, we

can derive yi, the aggregated score for each participant as follows:

yi =
∑J
j

yij =
∑J
j

(b0 + u0i + u0j + (b1 + u1j)xi + eij)

= b∗∗
0 + b∗∗

1 x∗∗i + e∗∗i

. (A20)

The equation takes a similar form with Equation 1. Here,
b∗∗
0 = Jb0, b

∗∗
1 = b1, x∗∗i = Jxi, e∗∗i = Ju0i +

∑J
j eij. Also, we

can derive that Var(e∗∗i ) = J2v∗
00 + Js∗2. Accordingly, consider-

ing that Var(x∗∗i ) = s∗∗2x = J2s2x , SE of the OLS estimator for

Equation 1, se(b̂∗∗
1 ), can be derived as follows:

se(b̂∗∗
1 ) =

����������
Var(e∗∗i )
Is∗∗2x

√
=

���������������
J2v̂∗

00 + Jŝ∗2

IJ2s2x

√
=

�������������
Jv̂∗

00 + ŝ∗2

IJs2x

√

= se(b̂∗
1).

(A21)

This is equivalent to Equation A19. Therefore, when the model in
Equation 4 is true, SE of the GLS estimator of regression coefficient
in Equation 3 [se(b̂∗

1)] is mathematically identical to that of the OLS
estimator of regression coefficient in Equation 1 [se(b̂∗∗

1 )].
Importantly, regardless of the true regression model that
explains outcome from IV, the aforementioned relations
Var(e∗∗i ) = J2v∗

00 + Js∗2 and Var(x∗∗i ) = s∗∗2x = J2s2x always hold
because these equations do not include any parameters of the true
model. As such, the equivalence of the SE holds for any empirical
data.

As noted earlier, the variance of the IV in Equation 1 is
Var(x∗i ) = J2s2x . In other words, by aggregating the variable across
items, the variance increased by J2 times. Similarly, the covariance
between the IVs and DVs in Equation 1 also increases by J2 times,
that is, Cov(yi, x∗i ) = J2Cov(yij, xi)). The estimator of the regression
coefficient is equal to the proportion between the covariance and
the variance of the IV, regardless of whether one uses GLS
(in Equation 3, b̂∗

1) or OLS (in Equation 1, b̂∗∗
1 ). Accordingly,

b̂∗∗
1 = Cov(yi, x∗∗i )

Var(x∗∗i )
= J2Cov(yij, xi)

J2s2x
= Cov(yij, xi)

s2x
= b̂∗

1, meaning

that the point estimates of the regression coefficient are also equiv-
alent between Equations 1 and 3. Therefore, for any empirical
data, the regression coefficient estimate and its SE from Equation
1 are always equivalent with those from Equation 3.
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Appendix B

We tested an SEMversion of an extended SURmodel (described in
the introduction, depicted in Figure B1) on the same simulated data
sets as reported in the Simulation Study. To obtain an estimate of

the DV� IV relationship, we averaged across Individual Item� IV
relationships (e.g., β11, β12,…, β15 in Figure B1) and statistically tested
it. This model also demonstrates Type I error inflation (Figure B2).

Figure B1
SEM Version of a SUR Model

Note. var (e1)= var (e2)=…= var (e5). SEM= structural equation modeling; SUR= seemingly unrelated regression.

Figure B2
Simulation Results Showing Type I Error of the SEM Version of a SUR (Figure B1) on Data With Varying Participant Intercepts and Item
Slopes

Note. SEM= structural equation modeling; SUR= seemingly unrelated regression. See the online article for the color version of the figure.
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Appendix C

Figure C1 shows the result of a simulation using the same param-
eters as in the main simulation, but introducing different sized fixed

effects slopes (0, 0.1, 0.2, 0.3) for both aggregation and random item
slope regression.

Figure C1
Simulation Results Showing Proportion of Simulations With Significant Results for Aggregation and Random Item Slope Regression on Data
With Varying Participant Intercepts, Item Slopes, and Fixed Effects Slopes

Note. See the online article for the color version of the figure.
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Appendix D

Using brms (Bürkner, 2017) in R, we ran a Bayesian multilevel
model equivalent to Equation 4, but where 1ij � N(0, s2

j ), that
is, allowing the variance across items to be heterogeneous
for the three example relationships in Table 5. The models
used default priors, four chains with 2,000 iterations (including
1,000 warm-up iterations). Estimated population-level effects

(equivalent to fixed effects) and group-level effects (equivalent
to random effects) are shown in Table D1. Note that σj is
assumed to follow a log-normal distribution: log(σj)�N(μ, ν2),
where the mean = exp(μ + ν2/2) and variance= exp(2μ +
ν2)(exp(ν2)− 1). This means that μ can take a negative value
(as seen in Table D1).
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Table D1
Bayesian Multilevel Model Results for Three Example Relationships (Agreeableness∼ Age, Interest-Type Curiosity ∼ Age,
Self-actualization∼ Age)

Model

Population-level effects Group-level effects

b̂1 SE μ SE v2
00 t200 t211 ν2

Agreeableness�Age 0.031 0.025 −0.226 0.071 0.206 0.220 0.001 0.040
Interest-Type Curiosity�Age −0.119 0.087 −0.358 0.121 0.410 0.227 0.026 0.059
Self-actualization�Age −0.063 0.035 −0.160 0.027 0.071 0.234 0.014 0.009
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