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The results of an experimental study into the oxidative degradation of

proxies for atmospheric aerosol are presented. We demonstrate that the

laser Raman tweezers method can be used successfully to obtain

uptake coefficients for gaseous oxidants on individual aqueous and

organic droplets, whilst the size and composition of the droplets is

simultaneously followed. A laser tweezers system was used to trap

individual droplets containing an unsaturated organic compound in

either an aqueous or organic (alkane) solvent. The droplet was

exposed to gas-phase ozone and the reaction kinetics and products

followed using Raman spectroscopy. The reactions of three different

organic compounds with ozone were studied: fumarate anions, benzoate

anions and a-pinene. The fumarate and benzoate anions in aqueous

solution were used to represent components of humic-like substances,

HULIS; a-pinene in an alkane solvent was studied as a proxy for biogenic

aerosol. The kinetic analysis shows that for these systems the diffusive

transport and mass accommodation of ozone is relatively fast, and

that liquid-phase diffusion and reaction are the rate determining steps.

Uptake coefficients, g, were found to be (1.1 � 0.7) � 10�5, (1.5 � 0.7) � 10�5

and (3.0–7.5) � 10�3 for the reactions of ozone with the fumarate, benzoate

and a-pinene containing droplets, respectively. Liquid-phase bimolecular

rate coefficients for reactions of dissolved ozone molecules

with fumarate, benzoate and a-pinene were also obtained: kfumarate =

(2.7 � 2) � 105, kbenzoate = (3.5 � 3) � 105 and ka-pinene = (1–3) � 107 dm3

mol�1 s�1. The droplet size was found to remain stable over the course

of the oxidation process for the HULIS-proxies and for the oxidation of

a-pinene in pentadecane. The study of the a-pinene/ozone system is
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the first using organic seed particles to show that the hygroscopicity

of the particle does not increase dramatically over the course of the

oxidation. No products were detected by Raman spectroscopy for the

reaction of benzoate ions with ozone. One product peak, consistent

with aqueous carbonate anions, was observed when following the oxidation

of fumarate ions by ozone. Product peaks observed in the reaction of

ozone with a-pinene suggest the formation of new species containing

carbonyl groups.

Introduction

Particulate matter is abundant in the troposphere and significantly influences both
its chemical and physical characteristics.1 The effect of aerosol on radiative
properties and cloud formation was identified by the intergovernmental panel on
climate change, IPCC, to be the largest uncertainty in assessing the impact of
particulate matter on climate change.2 The impacts of inorganic aerosol on cloud
formation has been examined and that of organic aerosol has started to be addressed
(indirect aerosol effects were recently reviewed3), but are yet to be well explored.
Atmospheric aerosol is not chemically inert; particles and droplets may provide sites
for chemical reaction. Reactions will alter the chemical and physical properties of
cloud droplets (and hence potentially their size, in line with adapted Köhler theory4)
consequently altering how the droplets interact with solar radiation and thus
influence the climate.
We explore the reactions between a ubiquitous pollutant, ozone, and aerosol

droplets containing unsaturated organic species in aqueous and non-aqueous
solutions. The oxidation of fumarate (1) and benzoate (2) ions in aqueous solution,
as proxies for HUmic-LIke Substances, HULIS, and the terpenoid compound
a-pinene (3) in organic aerosol, as a proxy for biogenic non-aqueous aerosol, were
studied:

This research builds on our previous work studying droplet size and composition
during the oxidation of a film of oleic acid on aqueous aerosol.5

The term HULIS has been used to describe the organic material found in rain, fog
and aerosol that resembles the organic material in river/sea water and soils. HULIS
are probably formed in aerosol by chemical reactions as opposed to humic material
which is produced in river water and soils by the breakdown of biological
substances. HULIS may be present in as much as 20–50% of aerosol particles.6

The reports of HULIS in clouds, fog and aerosol have been reviewed by Graber and
Rudich.6 Humic and HULIS material can be difficult to chemically characterise,
because it defies speciation and molecular definition owing to its complexity, size and
non-uniformity. However, consensus is now forming on a model HULIS structure
consisting of an aromatic core bearing substituted aliphatic chains with �COOH,
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�CH2OH, �COCH3 groups.
7 Indeed one study found that HULIS was composed

of n-alkanoic acids, o-alkenoic, benzoic mono- di- and tri-carboxylic acids, methoxy
and acetic and methoxy benzoic acid and a few nitrogen containing glycerine
derivatives.8 Kiss et al.9 attempted to determine the ‘‘size’’ of a HULIS ‘‘molecule’’
and suggested 40–520 Da (where 1 Da is equal to 1/12 of the mass of an
unbound atom of 12C at rest and in its ground state). HULIS is produced from
marine, biomass burning and small terrestrial sources, and in secondary
aerosol formation (condensation, reaction and oligomerization). An oligomer is a
molecule that consists of a finite number identical monomer units. The latter route to
HULIS formation is intriguing and HULIS has been shown to be formed by
reaction of OH radical with 3,5-dihydroxybenzoic acid on the time scale of
hours to days10 by oligomerization. The presence and/or oxidation of HULIS in
clouds, fog and aerosol may lead to droplet activation (cloud formation):11

droplets containing HULIS were found to activate at lower diameters and thus
make cloud formation more facile. Dinar et al.11 also found that HULIS extracted
from daytime filter samples has a lower critical supersaturation diameter than
night-time samples; strongly suggesting the reaction with daytime atmospheric
oxidants to be important in oxidising HULIS and to increase the hygroscopic
properties of cloud droplets. Thus the reactions between HULIS and atmospheric
oxidants such as ozone need to be studied to determine if they (1) lower the critical
supersaturation required for cloud formation and (2) lead to the formation of
oligomers. The rate for these reactions must be quantified to establish if they
are atmospherically important.
The biosphere produces the large majority of volatile organic compounds, VOCs,

emitted into the atmosphere.12 Oxidation of these biogenic VOCs tends to produce
low vapour pressure compounds that partition to particulate matter to form
secondary organic aerosol, SOA,13–15 although some large biogenic VOCs (e.g.
sesquiterpenes) may partition directly to aerosol particulate matter. Secondary
organic aerosol may affect the critical saturation ratios of clouds, lead to global
dimming and provide a surface for further heterogeneous chemistry to occur.16 The
surface chemistry on SOA leads to the formation of large compounds and oligomers
with very low vapour pressures.17–22 The precursor biogenic VOC typically contains
a carbon–carbon double bond or an aromatic moiety. The composition and aqueous
oxidation chemistry of a SOA particle influences subsequent oligomer formation.23

Two of the largest components of the biogenic VOC budget are isoprene and
a-pinene.12 In this study we use a-pinene in a long chain alkane to represent a
biogenic VOC in an ‘‘organic’’ particle. We selected a-pinene as its oxidation in the
gas-phase has been previously studied.23–27

Some of the first studies were performed by Thurn and Kiefer, Biswas et al. and
Omori et al.28–30 Zellner and co-workers have used optical levitation to study the
phase behaviour of inorganic acids relevant of the atmosphere31–34 and recently
employed optical levitation to measure hygroscopic growth curves for ammonium
sulfate and glutaric acid solutions in an aqueous droplet.35 The optical leviatation
technique traps a particle by balancing the gravitational and the scattering/radiation
pressure forces on the particle. The optical tweezers traps a particle using the
gradient force and provide a ‘‘3-D’’ trap unlike optical levitation. The history and
recent developments of optical tweezers techniques in relation to aerosol trapping
has been reviewed by McGloin36 and will not be repeated in the framework of this
paper. Reid, Ward and co-workers have used laser tweezers to study hygroscopic
growth,37,38 and coagulation of two droplets.39,40 Reid has also studied morpholo-
gical Raman resonances (cavity enhanced Raman scattering) to size particles41,42

and together with McGloin to develop new optical traps.43 Ward and co-workers
have also used laser tweezers to study aerosol chemistry relevant to atmospheric
chemistry.5

In the work presented here we used the laser Raman optical-tweezers technique to
trap aqueous or organic droplets containing benzoate ions, fumarate ions or

Faraday Discuss., 2008, 137, 173–192 | 175This journal is �c The Royal Society of Chemistry 2007

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

R
ea

di
ng

 o
n 

12
 J

ul
y 

20
11

Pu
bl

is
he

d 
on

 3
0 

A
ug

us
t 2

00
7 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/B
70

21
99

B
View Online

http://dx.doi.org/10.1039/b702199b


a-pinene in a gaseous flow of humidified oxygen. The particles were subjected to a
flow of ozone (ppm range) whilst the particle size was monitored using optical
microscopy and changes in particle composition were detected with Raman
spectroscopy. Particles of 2–10 microns were trapped in the focus of an Ar-ion laser
and could be held for up to 6 h during oxidation, scattered laser light was collected
and analysed to produce a Raman spectrum of the organic reactant and products.
The aim of this work was to demonstrate the performance of laser-Raman
optical-tweezers for studying atmospheric reactions relevant to cloud droplet size
and dynamics.

2. Experimental

2.1 Laser Raman tweezers

The set-up of the laser Raman tweezers consisted of an Ar-ion laser source
(Coherent Innova 90-5-UV), with an emission wavelength of 514.5 nm. The beam
is passed through two sets of beam expansion optics44 which are anti-reflection
coated for the laser wavelength. The optics expand the laser beam to slightly overfill
the aperture of the water-immersion objective lens (�63, NA 1.2, Leica Micro-
systems) and also creates a conjugate focal plane at a steering mirror that is used to
manipulate the optical trapping position. Before entering the Leica DM-IRB
microscope the beam is passed through a custom-made dichroic (Ingcrys Ltd) that
transmits 514.5 nm but reflects from 520 nm to 630 nm (i.e. the Stokes Raman
scattering). The laser beam is directed upwards into the objective lens, using a second
dichroic mirror that reflects 500 nm to 630 nm (i.e. laser and Raman lines) and
transmits the remaining visible light for optical imaging. The laser beam is tightly
focused, forming the optical trap, and backscattered Raman shifted light from the
trapped aerosol droplet is collimated by the objective lens and passes back along the
same optical pathway. The signal is reflected from both dichroic mirrors and
through a 514.5 nm notch filter (Kaiser Optical Systems, HNF-5145) to remove
any traces of the Rayleigh scattering. It is then focussed into a spectrograph (Acton
Research Corporation SP500i, 1200 groove blazed at 500 nm) and imaged onto a
deep depletion CCD camera (Princeton Instruments Spec10:400 BR/LN). In a
typical experiment, the power of the source was attenuated to 12 mW at laser focus
and Raman spectra were collected continuously with a 10 s scan time for each
trapped droplet. In all cases, background spectra were obtained when the droplet
was released from the trap, and these signals were subtracted from the droplet
spectra. To allow observation of the trapped particles, visible light from the
microscope lamp is used to obtain brightfield images of the sample, recorded using
a CCD camera.

2.2 Aerosol generation and reaction

The droplets were trapped inside a small aluminium cell that had two cover-slip glass
windows to allow the passage of the laser beam from below and to image the particle
from above. The cell had a simple stainless steel tube exhaust and entrance. Three
gas streams were combined and entered the cell: a flow of dry oxygen that passed
through an ozone generator (where oxygen was exposed to the emission from a
mercury pen-ray lamp), a flow of dry nitrogen which was humidified by bubbling
through pure water, and a flow from an ultrasonic nebulizer which provided the
source of the initial droplet. All flows were at atmospheric pressure and controlled by
needle valves. The oxygen and nitrogen flows, typically in the range 0.1–1 cm3 s�1,
were altered to change the relative humidity and ozone concentration in the cell, but
were kept constant during any one experiment. The relative humidity was measured
at the entrance and exhaust of the reaction chamber. The ozone concentration
(B0.5–2 ppm in the cell) was calibrated by bubbling through potassium iodide
solutions and titrating the molecular iodine formed with thiosulfate.
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Aerosol was generated by nebulizing aqueous solutions of sodium benzoate,
sodium fumarate, or solutions of a-pinene in dodecane or in pentadecane, using a
commercial ultrasonic nebulizer. The nebulizer was switched on until a droplet was
trapped in the optical tweezers and then the flow from the nebulizer was switched off.
The droplet was allowed to equilibrate with the relative humidity in the cell.
Collisions with the cell walls removed other droplets. The sodium benzoate solutions
(0.086 mol dm�3) were prepared by dissolving sodium benzoate in pure water.
Sodium fumarate solutions (0.086 mol dm�3) were prepared by dissolving fumaric
acid in a dilute solution of sodium hydroxide. The pH of the solutions of sodium
benzoate and sodium fumarate were 8.6 and 10.
A typical experiment would start with trapping a particle within the reaction

cell and the scattered laser light would be collected over 10 or 30 s to obtain the
Raman spectrum. A digital image of the particles was also collected every 10 or 30 s.
The laser power and optics would be adjusted to bring the particle into focus,
so that it was optimally trapped. The humidity in the reaction chamber was allowed
to equilibrate with the entering gas-flows for 5–30 minutes to allow the particle
size to stabilise. A constant humidified gas stream ensured the particle quickly
attained its equilibrium size. The particle was normally held about 50 mm above the
surface of the cell. The relative humidity 50 mm above the cell surface was assumed to
be the same as that of the humidified gas stream. The ozone was then allowed to
enter the cell. Some experiments were conducted with the ozone present before the
equilibration. At the end of the experiment the particle was released from the optical
trap by blocking the laser beam momentarily and Raman spectra were continued to
be collected in case of any spurious measurement—this was never the case. The
digital photography was size-calibrated by photographing a microscope stage
graticule with 10 mm spacing. Seven pixels on the CCD camera approximately
correspond to 1 mm, thus the precision of the particle sizing may be as good as
0.13 mm, however we quote an error in the size of the particle of B0.25 mm. The
particle images were sized manually using in-house image analysis software. The
Raman spectra were used to follow the loss of benzoate, fumarate and a-pinene and
the growth of any products. The amount of benzoate, fumarate and a-pinene was
measured by subtraction of a proportion of a reference spectrum for these
compounds. Subtraction of a complete spectrum overcomes the interfering effect
of morphological Raman resonances (or cavity-enhanced Raman scattering) that
sometimes appear in the spectra and affect the intensity of the peaks (NB Fig. 4
demonstrates such a peak). Morphological Raman resonances (or cavity-enhanced
Raman scattering)30,45–47 were not used to size the particles as they were observed in
some spectra but not all.

3. Results

From the laser Raman tweezers experiments we obtained information on
reaction kinetics, particle size and products, and shall report each set of results
separately.

3.1 Reactive uptake model and kinetic analysis

The reaction of gas-phase ozone with an organic molecule in an aqueous
droplet proceeds via several consecutive and simultaneous processes. The
ozone must first diffuse to the droplet, accommodate at the surface of the particle,
and then incorporate itself within the bulk phase of the droplet, or alternatively
ozone may react with the organic molecule at the surface of the droplet. The
system can be described by a set of coupled differential equations which can be
solved for limiting cases.48–51 A resistance model is commonly used to analyse
gas-particle reactions in laboratory studies of atmospheric chemistry.52–55 Each
process is treated as a ‘‘conductor’’ and can be added in series or parallel like
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resistors in an electronic circuit to give the overall uptake coefficient, g, of a gas-
phase species (i.e. ozone) on a particle or droplet. This approach assumes that the
processes can all be treated independently. Each conductance, G, is normalised to the
rate of gas-particle collisions. The conductances are gas-phase transport to the
surface, Gg, accommodation at the surface of the particle, a, solubility/incorporation
into the bulk of the particle, Gsol, and reaction in the bulk aqueous phase of the
particle, Grxn. The conductances yield the following equation:

1

g
¼ 1

Gg
þ 1

a
þ 1

Grxn þ Gsol
ðIÞ

Table 1 demonstrates that in our experimental conditions, the diffusive transport of
ozone to the surface of the particle and mass accommodation of ozone on
the aqueous droplet are typically fast, not rate-limiting processes, and can be
neglected in the determination of the uptake coefficient, g. The aqueous-phase
diffusion and reaction are the rate-determining steps. Table 1 lists characteristic
times for the separate process described above. The characteristic time of gas-phase
transport of ozone to the particle can be calculated for a particle of radius, r= 4 mm,
and a gas-phase diffusion constant of ozone in air, Dg(O3) = 1.78 � 10�5 m2 s�1 at
T = 293 K.56 The mass accommodation characteristic time is given by the mass
accommodation coefficient for ozone on water, a = 1 � 10�2,57 Henry’s law
constant, H, for O3 in the solution, the gas constant, R = 8.205 � 10�5 m3 atm
K�1 mol�1, the temperature, T = 293 K, the liquid-phase diffusion constant,
Dl(O3) and the average molecular speed in the gas-phase, �v. For ozone in aqueous
solution H = 12.17 mol m�3 atm�1 was used taking into account ionic strength and
temperature corrections57 to replicate experimental conditions. Two values of
Henry’s law constant for ozone in organic liquid were found in the literature: 80
and 480 mol m�3 atm�1. A value of Dl(O3) = 1.19 � 10�9 m2 s�1 was used for the
liquid-phase diffusion constant of ozone in an aqueous droplet and a value of Dl(O3)
= 1.0 � 10�9 m2 s�1 was employed for the organic liquid media.58 The mass
accommodation coefficient for ozone on an organic droplet has not been reported,
we thus had to use the value of a = 10�2 reported for aqueous droplets.57 It is likely
that the mass accommodation coefficient has a larger value for organic liquids as
ozone is typically a factor of seven more soluble in organic compounds than in
water.59

Table 1 considers the characteristic time for reaction of ozone in the bulk liquid
phase of the droplet. Rate coefficients considered for the reaction of ozone with
fumarate ions in aqueous solutions are k1 4 1 � 105 dm3 mol�1 s�1 60 and for
reaction with benzoate ions k2 = 1.2 dm3 mol�1 s�1,61 and 3.5 � 105 dm3 mol�1 s�1

(this work). For the examples listed here [benzoate] = 0.086 mol dm�3,
and [fumarate] = 0.086 mol dm�3. Table 1 lists another important quantity: the
diffuso-reactive length, l. This parameter indicates how far an ozone molecule
may diffuse before it reacts in the liquid phase. Large diffuso-reactive lengths suggest
fast diffusion and/or slow kinetics, whereas small diffuso-reactive lengths indicate
that reaction dominates over diffusion.51 For the systems studied here, eqn (I)
reduces to

1

g
¼ 1

Grxn þ Gsol
ðIIÞ

i.e. the uptake of ozone on aqueous particles containing the organic compounds
considered here will depend predominantly on the rate of change of the ozone
concentration in the particle by reaction and diffusion. Smith et al.58 have described
this situation using the equation

@½O3�
@t
¼ Dr2½O3� � k½O3�; ðIIIÞ
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where r2 represents the Laplace operator. Smith et al.58 demonstrated that two
analytical solutions can be found to eqn (III), based on work by Worsnop et al.51

One solution (eqns (IV) and (V)) is obtained for fast diffusion of ozone in the particle
(i.e. the uptake is controlled by a ‘slow’ reaction):

[organic]t = [organic]t=0e
�P(O3)Hkt (IV)

and

g ¼ 4HRTrk

3�n
½organic�; ðVÞ

where P(O3) is the partial pressure of ozone in the gas-phase and [organic] is the
concentration of the organic compound in the liquid-phase droplet, all other
variable are as before. This solution is valid when the diffuso-reactive length is
greater than the particle radius (l 4 r).
A second solution has been suggested51,58 for a situation when the diffusion of

ozone in the droplet is the rate-limiting step and the uptake is controlled by
‘fast’ reaction, i.e. the diffuso-reactive length is small compared to the droplet radius
(l { r):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�

p
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�

p
t¼0 �

3PðO3ÞH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDlðO3Þ

p
2r

t ðVIÞ

and

g ¼ 4RT

�n
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDlðO3Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�

p
ðVIIÞ

As noted by Smith et al.58 a plot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t
½organic�t¼0

q
as a function of time, t, has an intercept

of unity and a gradient of
3PðO3ÞH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kDlðO3Þ
p

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t¼0
p . The quantity H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDlðO3Þ

p
may thus be

obtained and then used in eqn (VII) to calculate the experimental uptake coefficient
for the reaction with ozone without having to determine the Henry’s law or diffusion
constant for ozone in a concentrated solution, or determine the rate coefficient for
reaction of ozone with organic. If H and Dl(O3) are known, it is possible to calculate
the bimolecular rate coefficient, k, for reaction of ozone with the organic species in
solution, although this was not the primary aim of the work presented here.
Table 1 lists the diffuso-reactive lengths for the chemical systems studied

(fumarate, benzoate and a-pinene). A comparison of the diffuso-reactive lengths
with the particle radius suggests that the concentration-time data for fumarate and

a-pinene should be fitted to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t
½organic�t¼0

q
versus t and the concentration-time data for

benzoate to ln
½Organic�t
½Organic�t¼0

� �
versus t for k2 = 1.2 dm3 mol�1 s�1 and to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t
½organic�t¼0

q
versus t for k2 = 3.5 � 105 dm3 mol�1 s�1. In practice, the concentration-time data

were fitted both to ln
½Organic�t
½Organic�t¼0

� �
versus t and to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t
½organic�t¼0

q
versus t and the best fit

was then analyzed.

3.1.1 Fumarate-ozone system. Fig. 1 shows a plot of particle radius andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fumarate½ �t
Fumarate½ �t¼0

q
as a function of time, t, obtained when a droplet containing aqueous

fumarate ions is exposed to gas-phase ozone. From the gradient of the plot offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fumarate½ �t
Fumarate½ �t¼0

q
versus t, the uptake coefficient, g = (1.1 � 0.7) � 10�5, and the rate

coefficient for reaction (1), k1 = (2.7 � 2) � 105 dm3 mol�1 s�1, were determined
using eqn (VI). Table 2 gives the experimental conditions for the different systems
investigated. The literature rate coefficient is 1 � 105 dm3 mol�1 s�1 for a
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bulk aqueous solution at pH = 5 and the lower limit for pH = 8 was reported to be
41 � 105 dm3 mol�1 s�1.60 We consider these values to be in good agreement with
our result and this gives us confidence in our application of laser Raman
tweezers for studying aerosol–gas-phase reactions. This finding also confirms

Fig. 1 A typical plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fumarate�t
½Fumarate�t¼0

q
and the radius of levitated droplet as a function of time.

The 4.5 mm radius particle was subjected to a relative humidity of 80% and an ozone mixing

ratio of 1ppm. The scatter in the points representing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fumarate�t
½Fumarate�t¼0

q
at t =700–1200 s is due

interference in the Raman spectrum from large intensity morphological Raman resonances.

The error bars on the radius data represent 0.25 mm error in sizing the particle. The error on the

values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fumarate�t
½Fumarate�t¼0

q
originates from the precision in the determination of [fumarate] by

spectral stripping.

Table 2 Uptake coefficients, g, for the heterogeneous reaction between gaseous O3 and

aqueous droplets of sodium fumarate, sodium benzoate and organic droplets of a-pinene/
dodecane and a-pinene/pentadecane mixtures. The second-order rate coefficients, k, for the

solution-phase reaction between ozone and aqueous sodium fumarate, sodium benzoate and

organic-phase a-pinene are also reported

System r/mm
P(O3)

(ppm)

Relative

humidity

(%)

Initial

mole

fraction g k2/dm
3 mol�1 s�1

Fumarate 4–5 1.0 80 40.0015 (1.1 � 0.7) � 10�5 (2.7 � 2) � 105

Benzoate 3–4 1.0 60 40.0015 (1.5 � 0.7) � 10�5 (3.5 � 3) � 105

H = 80

mol m�3 s�1
H = 480

mol m�3 s�1

a-pinene/
Dodecane

4–8 0.7 30 B0.59 (4.0 � 0.7) � 10�3 (1.6 � 0.6) � 107 (5 � 2) � 105

a-pinene/
Pentadecane

4.7–4.9 0.4 60 B0.66 (3.0 � 0.9) � 10�3 (1 � 0.5) � 107 (3 � 1) � 105

a-pinene/
Pentadecane

5–7.5 0.9 10 B0.93 (7.5 � 1.3) � 10�3 (3 � 1) � 107 (9 � 3) � 105
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Fig. 2 A typical plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Benzoate�t
½Benzoate�t¼0

q
and the radius of levitated droplet as a function of time.

The 3.8 mm radius particle was subjected to a relative humidity of 60% and [O3] of 1ppm. The

error bars on the radius data represent 0.25 mm error in sizing the particle. The error on the

values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Benzoate�t
½Benzoate�t¼0

q
originates from the precision in the determination of [benzoate] by

spectral stripping.

Fig. 3 A typical plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a-pinene�t
½a-pinene�t¼0

q
and the radius of levitated droplet as a function of time.

The 6.1 mm radius particle was subjected to a relative humidity of 10% and [O3] of 0.9 ppm. The

error bars on the radius data represent 0.25 mm error in sizing the particle. The error on the

values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a-pinene�t
½a-pinene�t¼0

q
originates from the precision in the determination of [a-pinene] by

spectral stripping.
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that the reaction between fumarate and ozone occurs in the bulk of the droplet and
can be described by eqn (VI) and (VII). Our results are based on the analysis of four
experiments in detail; altogether we studied 20 droplets, with each showing similar
behaviour and giving similar values. The errors in the uptake coefficient and the
value of k1 are equal to a standard deviation of all the measurements of these
quantities.

3.1.2 Benzoate-ozone system. The uptake of ozone on aqueous droplets contain-
ing benzoate ions was measured as g = (1.5 � 0.7) � 10�5. The uptake coefficient
was obtained from analysing six droplets in detail and using eqn (VI) and (VII) in

conjunction with a plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Benzoate�t
½Benzoate�t¼0

q
as a function of time, exemplified in Fig. 2. In

all 25 droplets were studied. Eqn (VI) also allows the aqueous bimolecular rate
coefficient for reaction (2) to be calculated as k2 = (3.5 � 3) � 105 dm3 mol�1 s�1.
There is one reported literature value for the rate coefficient for reaction (2):
k2 = (1.2 � 0.2) dm3 mol�1 s�1.61 The difference between our value for k2 and
the published value is considered in the Discussion section. The errors in the uptake
coefficient and the value of k2 are equal to a standard deviation of all the
measurements of these quantities.

3.1.3 a-pinene-ozone system. The uptake coefficient of ozone on a droplet which
is a mixture of long-chain alkane and a-pinene was measured to be 3.0–7.5 � 10�3.
Table 2 lists the values obtained when the organic solvent was changed from
dodecane to pentadecane and the mole fraction of a-pinene was altered. Fig. 3

gives a typical plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a-Pinene�t
½a-Pinene�t¼0

q
as a function of time for the reaction (3). Eqn (VI)

was used to extract a rate coefficient for reaction (3), k3, from plots such as Fig. 3.
Table 2 lists the rate coefficients measured in a series of experiments studying
30 droplets, 10 droplets in detail. Values of k3 were determined to be 3–9 � 105 dm3

mol�1 s�1, using a value for the Henry’s law coefficient of H = 80 mol m�3 atm�1.59

For H = 480 mol m�3 atm�1,58 k3 was found to be 1–3 � 107 dm3 mol�1 s�1. The
values of the rate coefficient k3 and the uptake coefficient are reported as ranges to
reflect the values measured over particles with different sizes and compositions, i.e. it
may not be meaningful to simply average these values.

3.2 Particle size changes

During the oxidation of aqueous fumarate ions by ozone the droplet radius was not
found to change significantly. The maximum size change was 12%. Size changes are
not correlated with the amount of fumarate in the droplet or the extent of the
reaction. This result implies the hygroscopicity of the droplet, as described by Köhler
theory,4 has changed very little over the course of the oxidation of the aqueous
organic anion.
Aqueous benzoate droplets trapped in the laser tweezers also showed no dramatic

change in size upon oxidation by ozone. Over the course of the reaction about half of
the experiments demonstrated a very slow monotonic decrease in droplet radius
(typically o5%). This decrease was not considered to be significant. It was
concluded that, similar to the fumarate system, the oxidation of benzoate in solution
did not cause a large change in the hygroscopicity of the droplet.
The kinetics of the reaction of pure a-pinene droplets with gas-phase ozone could

not be studied as pure a-pinene droplets (3–10 mm radius) evaporated rapidly.
Reactions of droplets of a-pinene/dodecane mixtures with gas-phase ozone showed a
gentle decrease in radius (about 1–2 mm) with time but monitoring the droplet size of
a-pinene/dodecane droplets and pure dodecane droplets in the absence of ozone also
gives a decrease in radius with time. Monitoring the Raman spectra with time for the
a-pinene/dodecane mixtures demonstrates that the volatile a-pinene is being lost by
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evaporation. The droplets of a-pinene and the larger alkane pentadecane were
subject to significantly lower evaporation rates. For all the experimental runs
analysed, the loss of a-pinene due to reaction with ozone was at least a factor of
four larger than the loss due to evaporation. Reactions of ozone with a-pinene/
pentadecane droplets show no discernable size change ({0.5 mm) during the
oxidation process.

3.3 Products

In all cases exposure to gas-phase ozone caused a loss in the amount of organic
reactant present in the trapped droplet, as followed by Raman spectroscopy. The
products of the reactants that remained in the droplet were observed by Raman
spectroscopy.

3.3.1 Fumarate-ozone system. Only one product peak was observed for oxidation
of fumarate ions by ozone in aqueous droplets. The peak (at 1065 cm�1) was small
and consistent with aqueous carbonate anions; other carbonate peaks (expected at
B1436 and 684 cm�1) are less intense and were not observed.62 No other product
peaks were observed suggesting that either volatilisation or consumption by
secondary reactions may have occurred, as discussed later.

3.3.2 Benzoate-ozone system. No products were observed for the reaction
between ozone and aqueous droplets containing the benzoate anion. The final
products of the reaction must have volatilised, be Raman inactive, or present in
concentrations beneath the detection limit for the compound by Raman spectro-
scopy with the experimental set-up employed. To preserve electrical neutrality in the
system one of the products must be an anion and hence non-volatile.

3.3.3 a-pinene-ozone system. The Raman spectrum recorded for a a-pinene/
pentadecane droplet before and after oxidation with ozone is given in Fig. 4. The
figure shows product peaks for new functional groups between 1600 and 1800 cm�1.
In this region there are several new bands associated with the CQO bond deforma-
tion. Comparison of spectra (c) and (a) also demonstrates that the CQC bond
stretch of a-pinene has been removed in oxidation by ozone. The bands associated
with CH2 and CH3 deformation (o1500 cm�1) have similar wavenumbers similar to
those observed for a-pinene suggesting that the product structure may not be too
different from the starting material.

4. Discussion

4.1.1 Uptake coefficients

To the Authors’ knowledge the uptake coefficients for ozone on for aqueous droplets
of fumarate and benzoate solutions have not been previously measured. It should be
noted that the uptake coefficients reported here do not take into account any uptake
of ozone owing to hydroxide anions in solution and should thus be interpreted as
upper limits. Uptake coefficients for a-pinene have been determined previously.63

Measurements of the uptake of ozone on a-pinene films at temperatures lower than
�30 1C gave values of g = 2–2.5 � 10�3.63 The values measured here (reported in
Table 2) are broadly in agreement with the earlier determination giving us confidence
in our method.

4.1.2 Liquid-phase bimolecular rate coefficients

The kinetic scheme used to measure the uptake coefficients allows the liquid-phase
bimolecular rate coefficient for the reaction between ozone and fumarate, benzoate
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or a-pinene to be measured. This analysis is a secondary aim of the work presented
here. It should be noted that the precision (and accuracy) with which such a rate
coefficient can be determined relies on precise (and accurate) measurement or
knowledge of the particle size, ozone partial pressure, Henry’s law constant and
diffusion constant for ozone in the droplet, i.e. the parameters in eqn (VI). From the

slope of a graph such as Fig. 2, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t
½organic�t¼0

q
versus t, the bimolecular rate

coefficient can be determined as,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½organic�t¼0

p
DlðO3Þ

2r� slope

3PðO3ÞH

� �2

: ðVIIIÞ

The Henry’s law coefficient for ozone and the partial pressure of ozone near the
particle may not be well known and the determination of k depends on the square of
these values. With these caveats in mind, it is worth recording that the value of
the rate coefficient for the aqueous-phase reaction of fumarate with ozone determine
in this work (k1 = (2.7 � 2) � 105 dm3 mol�1 s�1) is consistent with the
previous measurement k1 4 1 � 105 dm3 mol�1 s�1.60 It should be noted that in
order to obtain uptake coefficients from our data, it is not required to calculate
H, Dl(O3) or k.
The bimolecular rate coefficient measured for the aqueous-phase reaction between

ozone and benzoate, k2 = 3.5 � 105 dm3 mol�1 s�1, does not agree with the

Fig. 4 Raman spectra (intensity as a function of the relative wavenumber) of (a) a pure
pentadecane droplet, (b) a droplet of a-pinene and pentadecane before reaction with ozone,
mole fraction of a-pinene is B0.66, and (c) the Raman spectrum obtained after reaction with
ozone, from which the reactants (a-pinene and pentadecane) have been subtracted. Spectrum
(c) has several product peaks in the region 1600–1800 cm�1 characteristic of CQO stretches.
The peaks characteristic of the carbon–carbon double bond stretches in a-pinene can be found
in spectrum (b) at 1640 cm�1, and the two peaks between 3000 and 3100 cm�1 are gone in
spectrum (c). The broad feature centered on 2200 cm�1 in spectrum (c) is stray light used to
image the droplet/particle and can be removed by subtraction of background signal. The sharp
feature at 2850 cm�1 in spectrum (c) is a morphological Raman resonance, and is included to
demonstrate its occurrence in some spectra. The particle studied had 4.7 mm radius, the relative
humidity was 10% and [O3] was at 0.4 ppm.

Faraday Discuss., 2008, 137, 173–192 | 185This journal is �c The Royal Society of Chemistry 2007

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

R
ea

di
ng

 o
n 

12
 J

ul
y 

20
11

Pu
bl

is
he

d 
on

 3
0 

A
ug

us
t 2

00
7 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/B
70

21
99

B
View Online

http://dx.doi.org/10.1039/b702199b


literature value of 1.2 dm3 mol�1 s�1.61 However, it is not clear if the literature value
is for the reaction of ozone with benzoic acid rather than the benzoate anion.61 The
rate coefficient for the reaction of an oxidant with the carboxylate anion in solution
is often several orders of magnitude larger than that for the corresponding
carboxylic acid, i.e. the reaction kinetics of organic acids are extremely pH
dependent.60,61 Inspection of Table 1 shows that for the literature value, the
diffuso-reactive length would be much larger than the particle radius (i.e. fast
diffusion of O3 would occur throughout the particle). The work of Smith et al.58

would then suggest that the loss of benzoate should be fitted to the following
equation

[benzoate]t = [benzoate]t=0 e
(P(O3)Hkt) (VIII)

and not to eqn (VI). However, eqn (VI) provides a better fit to the data than eqn
(VIII), although both equations can be fitted. Using eqn (VIII) to obtain the rate
coefficient, k2, for the reaction between ozone and benzoate gives values ofB1 � 105

dm3 mol�1 s�1 and diffuso-reactive lengths that are smaller than the particle radius,
so that application of eqn (VIII) becomes invalid. We thus conclude that the
large value for the rate coefficient we derived for the reaction between ozone and
benzoate is not an error due to incorrect application of the equations suggested by
Smith et al.58

The bimolecular rate coefficient, k3, for a-pinene reacting with ozone determined
here depends on the value of Henry’s law coefficient taken for ozone in the
organic solvent. There is no previously reported measured value of k3 for compar-
ison. However, using the methodology of structure-activity relationships for pre-
dicting gas-phase kinetic rate coefficients64–66 the value of k3 should be similar or
greater than that for ozone reacting with 2-methyl-2-butene. Williamson and
Cvetanoic67 report a value of k = 2.6 � 105 dm3 mol�1 s�1 for this reaction in a
solvent of carbon tetrachloride, suggesting that H = 480 mol m�3 atm�1 is the most
sensible choice of value of H for our system and the rate coefficient k3 = 3–9 � 105

dm3 mol�1 s�1.
For the analysis of the decay of fumarate, benzoate and a-pinene with time, we

have assumed a bulk reaction of ozone with these compounds, since ozone is
reasonably soluble in water and alkanes. However, for completeness it is valuable
to illuminate why the reaction may not be happening at the surface of the droplet.
Provided that ozone diffusion and mass accommodation of ozone are not rate-
limiting, the appropriate equation to describe the loss of organic species in the
particle with time (due to reaction with ozone) is58

½Organic�t ¼ ½Organic�t¼0e
�3d2
r PðO3ÞHksurf t

� �
; ðIXÞ

where d is the depth of the surface layer and ksurf is the second-order surface rate
coefficient for reaction between organic species and ozone. In contrast to eqn (VI),
the temporal decay of the reactant in the particle is exponential. For the reactions of
benzoate and fumarate, eqn (VI) provides a convincingly better fit to the experi-
mental data than eqn (IX). For a-pinene eqn (VI) only provides a slightly better fit
than eqn (IX). However, although the droplet sizes studied form a reasonably
narrow size distribution (see Table 2), there is no dependence of the uptake
coefficients on droplet size for the any of the reactions studied here, strong evidence
that bulk reactions as opposed to surface reactions are occurring. The diffusion of
the co-reactant (i.e. benzoate, fumarate, and a-pinene) in the droplet has not been
considered in this work and may have a slight effect on the value obtained for the
uptake coefficients, as discussed by Smith et al.58,68
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4.2.1 Size changes

The particles studied here did not undergo a large size change during reaction. In our
previous work the same laser Raman tweezers technique recorded a striking size
change following the oxidation of a thin layer of oleic acid on a saltwater droplet.5

Reactions in aerosol particles can alter the chemistry and thermodynamics of the
particles and they might lose or gain water vapour from the atmosphere in line with
Köhler theory.4 For the reactions of ozone with aqueous droplets of benzoate or
fumarate, a large size change is not expected from Köhler theory as the number of
anionic solutes is not changing and only the mass of these solutes is decreasing. A
large change in size of the droplet during the oxidation of a-pinene might have been
expected, as the production of carboxylic acids would have likely caused a hydro-
philic layer to form at the organic–air interface of the particle. However, a size
change was not recorded and this finding gives some evidence that there may be
some oligomerisation occurring within the particle. Oligomerisation reactions would
prevent the formation of free hydrophilic carboxylic acids.
Very recently submitted work by Reid et al. [in press69] suggests the occurrence

of possible errors in measuring particle size by bright-field microscopy owing to
uncertainties in the position of the trapped aerosol in the optical trap.
These potential errors were minimised in this work by ensuring that a proportion
of the measurements of the particle size were recorded on sharply focussed images of
the particles. By making small adjustments in the collimation optics, used in
conditioning the laser beam prior to optical trapping, the particle was brought into
the focal plane (calibrated with a graticule) ensuring that sizing had no optical
artefact.
It should be noted that a series of ‘‘blank’’ experiments were undertaken to

characterise chemical and size changes of the particles. The nascent aqueous particles
of fumarate and benzoate in the absence of ozone would normally shrink
(or occasionally grow) in size as water evaporated (or condensed) from (onto) the
particles to equilibrate the relative humidity within the cell in line with Köhler
theory.4 This equilibration normally took a few minutes, and the particle size would
remain stable for 90 minutes i.e. for time scales greater those required for a kinetic
experiment. The intensity of the Raman signal would stay constant whilst the size
was stable (in the absence of morphologic Raman resonances). The particle in the
cell may experience a local relative humidity that is higher than the relative humidity
of the gas entering the cell as some particles held for extended periods of time
(43 hours) tended to shrink further. For these particles it is assumed that the
particle size initially responds to a local relative humidity in the cell that is wet from
aerosol impacting on the cell walls. On long time scales the cell equilibrates with the
lower relative humidity of the gas flow through the cell and thus the particle
experiences a lower relative humidity and evaporates accordingly. On the time
scales of the kinetics experiment this was not a detrimental effect. However, no work
is presented here using Köhler theory as the relative humidity is not accurately
known. Problems originating from the measurement of the relative humidity in laser
tweezers cells have been reported before.37

4.3.1 Products and mechanism of fumarate oxidation by ozone

The liquid-phase reaction between the fumarate ions and ozone has been previously
studied70 and the direct products of the ozonolysis have been shown to be the
glyoxylate anion and the 2-hydroperoxy-2-hydroxyacetate anion:
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The 2-hydroperoxy-2-hydroxyacetate decays rapidly to formic acid (and hence
formate in basic solutions) and carbon dioxide:

or overall

CO2CHQCHCO2
2� + O3 - CHOCO2

� + CO2 + HCO2H + OH� (6)

The Raman spectra of glyoxylate and formate are not observed in our experiments, but
there is a small sharp feature in the product spectrum that has been tentatively assigned
to the carbonate anion, CO3

2�. The 2-hydroperoxy-2-hydroxyacetate may also decom-
pose to hydrogen peroxide and glyoxylate, but these two products can react rapidly to
form formic acid, and carbon dioxide. Test experiments with nonanoic acid on a
seawater particle with a 4 mm radius demonstrated that the nonanoic acid could
evaporate to below the detection limit on the time scale of minutes. However, in the pH
conditions of these experiments any formic acid formed will exist as formate and not be
volatile. Thus it appears that the formic acid or formate ion is consumed in a secondary
reaction. Glyoxylate and formate are unlikely to react with ozone.

O3 + HCO2
� - products, k7 = 100 dm3 mol�1 s�1 61 (7)

O3 + HC(O)CO2
� - products, k8 = 1.9 dm3 mol�1 s�1.61 (8)

However, the reaction of ozone with hydroxyl anions can produce OH radicals:71

O3 + OH� - HO2
� + O2 (9)

HO2
� + O3 - HO2 + O3

�d (10)

O3
�d - O�d + O2 (11)

O�d + H2O -OHd + OH� (12)

Hydroxyl radicals react rapidly with formate and may react rapidly with glyoxylate ions,

OH + HCO2
� - products, k13 = 2–5 � 109 dm3 mol�1 s�1 72 (13)

OH + HC(O)CO2
� - products (14)

and thus the presence of hydroxyl radical would reduce the concentration of formate
and glyoxylate in the droplet to below the detection limit of our system. It should be
noted that the first-order loss of ozone owing to reaction with the hydroxyl anion in
the basic solution is slow compared to first-order loss with the fumarate anion. This
secondary chemistry does thus not affect the determination of the kinetics of the
reaction between ozone and formate, as shown below:

O3 + CO2CHQCHCO2
2� - products,

k1 = 1 � 105 dm3 mol�1 s�1,60 [CO2CHQCHCO2
2�] B0.09 mol dm�3,

k1 � [CO2CHQCHCO2
2�] B9000 s�1 (1)

O3 + OH� - HO2
� + O2, k9 = 48 dm3 mol�1 s�1,70

[OH�] B1 � 10�4 mol dm�3, pH = 10,
k9 � [OH�] B 0.005 s�1 (9)

4.3.2 Products and mechanism of benzoate oxidation by ozone

No products were observed for the reaction between ozone and benzoate. The
oxidation of phenolic and benzoic species in aqueous solution by ozone produces
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intermediate compounds of fumaric and maleic acids and the resulting compounds
are glyoxylic and formic acids.73–78 These species were not detected. Rate coefficients
for reaction of fumarate and maleate with ozone are five orders of magnitude larger
than that for reaction of benzoate with ozone, so that fumarate and maleate are
unlikely to be observed. Reasons for the lack of product peaks in the Raman spectra
owing to formate or glyoxylate production have been discussed earlier for the
reaction of fumarate with ozone.

4.3.3 Products and mechanism of a-pinene oxidation by ozone

The liquid-phase reaction between a-pinene and ozone has been studied pre-
viously79,80 and the major product detected was a hydroperoxide followed by
verbenol, verbonone and pinoic acid. The Raman spectrum presented in
Fig. 4 is not pinoic acid. Our investigation of the reaction of a-pinene in
pentadeacane with ozone is analogous to work performed by Mochida et al.81

who studied the oxidation of methyl oleate in a mixture of dioctyl adipate and
myristic acid. Mochida et al.81 found that the products of these reactions were
hydroperoxides, secondary ozonides, peroxides and oligomers generating high
molecular weight species. The product peaks in Fig. 4(c) around 1600–1800 cm�1

are indicative of several CQO carbonyl stretches. Not shown in Fig. 4 is the region
of the spectrum between 800 and 1000 cm�1. This region was investigated in
separate experiments to test for the presence of the peroxide stretch around
900 cm�1—a strong signal was not observed, but in a few experiments there was a
weak peak that may be tentatively assigned to peroxide. Our results are consistent
with other studies of alkene oxidation by ozone suggesting the formation of several
different carbonyl species and possibly peroxides. A study of the gas-phase oxidation
of a-pinene by ozone in the presence of aqueous inorganic particles has been
undertaken by Gao et al.27 The study by Gao et al.27 has parallels with our work
with respect to the production distribution but differs from our study in two aspects:
(a) Gao et al. study examined the gas-phase oxidation followed by partitioning of the
product to the aerosol phase and then by further reaction; and (b) the particle phase
was inorganic whereas ours is organic. Gao et al.27 found by mass spectral analysis
that four types of organic compounds were formed: organic acids, di-acid alkyl
esters and hydroxy di-acids. They also obtained evidence for oligomer formation.
Formation of oligomers was enhanced by an increase in particle acidity. In our
study, we observe several different bands associated with CQO stretches that may be
indicative of groups similar to those seen by Gao et al. The occurrence of the
tentative O–O stretch may suggest secondary ozonide or peroxide formation.
Czoschke et al.20 present FTIR spectra of the aerosol products of the oxidation of
a-pinene by ozone. They report that CH2 and CH3 stretches of the product species
are similar to those found for a-pinene and the existence of CQO stretches and OH
carboxylic stretches was also reported.

Conclusions

In this work we have shown that laser Raman tweezers can be used to measure
uptake coefficients of gaseous oxidants on aqueous and organic droplets,
whilst monitoring the size and composition of the droplet. Laser Raman tweezers
are thus a powerful technique for the investigation of oxidation processes of
atmospheric importance. The ability to study single droplets and not the average
kinetics and chemistry of a distribution of droplets is a unique advantage of this
technique.
The uptake of ozone on aqueous droplets containing benzoate or fumarate ions

was found to be small. The droplets did not appear to change size following
oxidation, suggesting cloud droplet sizes will not be influenced by these reactions,
although the Authors fully acknowledge that only a limited range of relative
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humidities were probed. No evidence was found for oligomerization leading to
HULIS formation at these high pHs. We have demonstrated that the laser Raman
tweezers can be used successfully to study gas-aerosol reactions and we intend to
study more complicated systems, such as those involving substituted phenols in the
future.
The ozone-initiated oxidation of a-pinene in an alkane was the first study

using organic seed particles. The products did not differ from those found in
earlier gas-phase studies of this reaction. Interestingly, no water uptake was
observed, so that the hygroscopicity of the particle does not seem to have
dramatically increased over the course of the reaction. Further studies are
required to determine if the products formed are water-soluble or if oligomerisation
is the dominant process.
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