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Two-point boundary value problems for linear evolution equations

By A. S. FOKAS and B. PELLONI*

Department of Mathematics, Imperial College, London SW7 2BZ.
e-mail: a.fokas@damtp.cam.ac.uk, b.pelloni@ic.ac.uk

(Received 20 January 2000; revised 28 February 2001)

Abstract

We study boundary value problems for a linear evolution equation with spatial
derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T , with L and
T positive finite constants. We present a general method for identifying well-posed
problems, as well as for constructing an explicit representation of the solution of
such problems. This representation has explicit x and t dependence, and it consists
of an integral in the k-complex plane and of a discrete sum. As illustrative examples
we solve some two-point boundary value problems for the equations iqt + qxx = 0
and qt + qxxx = 0.

1. Introduction

A new method for solving boundary value problems for linear and for integrable
nonlinear PDEs in two dimensions has been recently introduced (see review [4]). In
this paper we apply this method, and in particular the results of [7], to solve two-
point boundary value problems for a general linear dispersive evolution equation.
Let the scalar function q(x, t) satisfy(

∂t + i
n∑
j=0

αj(−i∂x)j
)
q(x, t) = 0, 0 < x < L, 0 < t < T, (1·1)

where αj are real constants, αn� 0, and L, T are positive constants. Let q(x, t) also
satisfy the initial condition

q(x, 0) = q0(x), 0 < x < L, (1·2)

where q0(x) is a sufficiently smooth function.
The dispersion relation of equation (1·1) is given by

ω(k) =
n∑
j=1

αjk
j . (1·3)

The method we present identifies the set of boundary conditions that must be
prescribed at x = 0 and at x = L in order for the resulting initial boundary value
problem for equation (1·1) to be well posed. This method also yields the construction
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of an explicit representation of the solution of such problems. This representation
has explicit x and t dependence, and it consists of an integral in the k-complex plane,
and of a discrete sum.

In order to describe the results proved in this paper,we define the following con-
tours and domains in the k-complex plane.

Definition 1·1. Let D, D+ and D− be the domains in the k-complex plane defined
by

D = {k ∈ C: Imω(k) > 0}, D+ = D w C+, D− = D w C−, (1·4)

where C+ and C− indicate the upper and lower half plane, respectively.

∂D+, ∂D− are the oriented boundaries of D+, D−, (1·5)

where the orientation is such thatD is on the left-hand side of the increasing direction
of ∂D.

It is shown in [7] that the components of D are simply connected and unbounded,
and that there exists an R > 0 such that, outside the curve |ω(k)| = R, ∂D is the
union of smooth disjoint simple contours that approach asymptotically, as k →∞,
the rays of the variety Im(k+α)n = 0, where α = αn−1/(nαn). Moreover, the following
lemma holds [7].

Lemma 1·1. Let DR be defined by

DR = {k ∈ D: |ω(k)| > R}. (1·6)

Let DR,+ and DR,− denote the part of DR in C+ and C− respectively, i.e.

DR,+ = DR w C+, DR,− = DR w C−.

If R is sufficiently large, DR has n components, DR,+ has N components, and DR,− has
n−N components, where N is given by

N =


n/2 n even,
(n + 1)/2 n odd, αn > 0,
(n− 1)/2 n odd, αn < 0.

(1·7)

Definition 1·2. We denote by DR,1, DR,2, . . ., DR,N the N components of DR,+.
We denote by DR,N+1, DR,N+2, . . ., DR,n the n−N components of DR,−.

The method discussed here has as its starting point the observation that any linear
PDE in two dimensions, with constant coefficients, can be written as the condition
that a certain differential 1-form w(x, t, k), k ∈ C, is closed. Its implementation
involves the following three steps.

Step 1. Assume the existence of a solution q(x, t) of (1·1), which is sufficiently
smooth up to the boundary of the domain. By performing the spectral analysis of
the 1-form associated with equation (1·1):
(1·a) Construct an integral representation of the solution q(x, t) in terms of certain

functions of k called the spectral functions. This is an immediate consequence
of the closure of w(x, t, k). For the case of equation (1·1), the spectral functions
are defined in terms of q0(x) = q(x, 0), ∂jxq(0, t) and ∂jxq(L, t), 0 6 j 6 n− 1.

(1·b) Obtain the global relation satisfied by the spectral functions.
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For equation (1·1), the implementation of this step yields (see Section 2):

Proposition 1·1 (Representation of solutions of equation (1·1)). Assume that
q(x, t) is a sufficiently smooth solution of (1·1). Then q(x, t) is given by

q(x, t) =
1

2π

{∫ ∞
−∞

eikx−iω(k)tq̂0(k)dk

+
∫
∂D+

eikx−iω(k)tQ̂(0, k)dk +
∫
∂D−

eik(x−L)−iω(k)tQ̂(L, k)dk

}
, (1·8)

where

q̂0(k) =
∫ L

0
e−ikxq0(x)dx, k ∈ C, (1·9)

and the spectral functions Q̂(0, k), Q̂(L, k) are defined by

Q̂(α, k) =
n∑
j=1

αj
(
Q̂j−1(α, k) + kQ̂j−2(α, k) + · · · + kj−1Q̂0(α, k)

)
,

Q̂j(α, k) =
∫ T

0
eiω(k)t(−i∂x)jq(α, t)dt, j = 0, . . . , n− 1, k ∈ C, (1·10)

with α = 0, L.
Moreover, the boundary values of q(x, t) satisfy the global relation

Q̂(0, k)− e−ikLQ̂(L, k) = −q̂0(k) + eiω(k)T q̂T (k), k ∈ C, (1·11)

where

q̂T (k) =
∫ L

0
e−ikxq(x, T )dx. (1·12)

Step 2. Given q0(x) ∈ C∞[0, L], assume the existence of an admissible set of func-
tions {fj(t), gj(t)}n−1

j=0 , with respect to q0. A set is called admissible if the associated
spectral functions, defined in terms of q0, fj , and gj , 0 6 j 6 n−1, satisfy the global
relation of Step (1·b).

Define q(x, t) in terms of these spectral functions by the formula of Step (1·a). Prove
that q(x, t) satisfies the given PDE, and that q(x, 0) = q0(x), (−i∂x)jq(0, t) = fj(t),
(−i∂x)jq(L, t) = gj(t), 0 6 j 6 n− 1.

For equation (1·1), the precise definition of admissible functions is given below.

Definition 1·3 (Admissible functions). Let q0(x) ∈ C∞[0, L], and let ω(k) be
defined by equation (1·3). Let {f0(t), . . . , fn−1(t), g0(t), . . . , gn−1(t)} be a set of
2n sufficiently smooth functions such that (−i∂x)jq0(0) = fj(0), (−i∂x)jq0(L) =
gj(0), j = 0, . . ., n− 1.

Let

F̂ (k) =
n∑
j=1

αj
(
f̂j−1(k) + kf̂j−2(k) + · · · + kj−1f̂0(k)

)
, (1·13)

Ĝ(k) =
n∑
j=1

αj
(
ĝj−1(k) + kĝj−2(k) + · · · + kj−1ĝ0(k)

)
, (1·14)
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where

f̂j(k) =
∫ T

0
eiω(k)tfj(t)dt, j = 0, . . . , n− 1, k ∈ C, (1·15)

ĝj(k) =
∫ T

0
eiω(k)tgj(t)dt, j = 0, . . . , n− 1, k ∈ C. (1·16)

The set of smooth functions {f0(t), . . . , fn−1(t), g0(t), . . . gn−1(t)} is called admissible
with respect to q0(x) if and only if the functions F̂ (k) and Ĝ(k) satisfy the following
relation:

F̂ (k)− e−ikLĜ(k) = −q̂0(k) + eiω(k)T â(k), k ∈ C, (1·17)

where

â(k) =
∫ L

0
e−ikxa(x)dx,

and a(x) is some function belonging to the space C∞[0, L].

For equation (1·1), the implementation of Step 2 yields (see Section 3):

Theorem 1·1 (Existence of solutions associated with an admissible set). Assume
that q0(x) ∈ C∞[0, L], and that the set of smooth functions {fj(t), gj(t)}, 0 6 j 6 n− 1,
is admissible with respect to q0(x), see Definition 1·3.

Let q̂0(k) be defined by equation (1·9), and let F̂ (k) and Ĝ(k) be defined by equations
(1·13) and (1·14), respectively.

Define q(x, t) as follows:

q(x, t) =
1

2π

{∫ ∞
−∞

eikx−iω(k)tq̂0(k)dk

+
∫
∂D+

eikx−iω(k)tF̂ (k)dk +
∫
∂D−

eik(x−L)−iω(k)tĜ(k)dk

}
, (1·18)

where ω(k) is given by (1·3), and D+ and D− are defined by (1·4).
Then:
(i) q(x, t) is the unique solution of equation (1·1) such that t → q(·, t) is a C∞ map

from [0, T ] into C∞[0, L];
(ii) q(x, 0) = q0(x);
(iii) (−i∂x)jq(0, t) = fj(t), 0 6 j 6 n− 1;
(iv) (−i∂x)jq(L, t) = gj(t), 0 6 j 6 n− 1.

Step 3. Given an appropriate set of boundary conditions at x = 0 and x = L, prove
the existence of an admissible set, and compute F̂ (k) and Ĝ(k) in terms of the given
initial and boundary conditions.

As a particular concrete example, we prove in Section 4 the existence of an admis-
sible set if the following set of boundary conditions are given:

(−i∂x)jq(0, t) = uj(t), 0 < t < T, 0 6 j 6 N − 1,
(−i∂x)lq(L, t) = vl(t), 0 < t < T, 0 6 l 6 n−N − 1,

}
(1·19)

with N given by (1·7).
In order to state our result, we give some definitions.
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Definition 1·4. The map λl,m:DR,m → DR,l is the biholomorphic map defined by

ω(λl,m(k)) = ω(k),∀ k ∈ DR,m; (1·20)

the polynomials ωn−j(k), j = 0, . . . , n, are defined by

ωn−j(k) = αj + kαj+1 + · · · + αnk
n−j . (1·21)

If 1 6 m 6 N then λl,m(k) satisfies the following:

1 6 m 6 N :
{
λl,m(k) ∈ D+ if 1 6 l 6 N,
λl,m(k) ∈ D− if N + 1 6 l 6 n. (1·22)

The definition of λl,m implies

f̂j(k) = f̂j(λl,m(k)), ĝj(k) = ĝj(λl,m(k));

λl,m(λm,j(k)) = λl,j(k); λl,m(k) ∼ ei(l−m)2π/nk, k →∞.
In order to state the main theorem, we need one further definition.

Definition 1·5. The n× n matrix A is defined by

E1ωn−N−1(λ1,m) . . . E1ω0(λ1,m) −ωN−1(λ1,m) . . . −ω0(λ1,m)
E2ωn−N−1(λ2,m) . . . E2ω0(λ2,m) −ωN−1(λ2,m) . . . −ω0(λ2,m)

. . . . . . . . . .

. . . . . . . . . .
ENωn−N−1(λN,m) . . . ENω0(λN,m) −ωN−1(λN,m) . . . −ω0(λN,m)
ωn−N−1(λN+1,m) . . . ω0(λN+1,m) −E−1

N+1ωN−1(λN+1,m) . . . −E−1
N+1ω0(λN+1,m)

. . . . . . . . . .

. . . . . . . . . .
ωn−N−1(λn,m) . . . ω0(λn,m) −E−1

n ωN−1(λn,m) . . . −E−1
n ω0(λn,m)


(1·23)

where El = eiλl,mL, and λl,m = λl,m(k) is the map given by (1·20).

Theorem 1·2 (Representation of the solution of the problem (1·1)–(1·2)–(1·19)).
Let q(x, t) satisfy equation (1·1), the initial condition (1·2) and the boundary
conditions (1·19). Assume that q0(x) ∈ C∞[0, L], uj , vl ∈ C∞[0, T ] and moreover that
(−i∂x)jq0(0) = uj(0), j = 0, . . . , N − 1, and (−i∂x)lq0(L) = vl(0), l = 0, . . . , n−N − 1.

Then q(x, t) is given by equation (1·18), where q̂0(k) is given by (1·9), and the spectral
functions F̂ (k), Ĝ(k) are defined by the formulas (1·13) and (1·14), in which f̂j(k), ĝj(k)
are constructed as follows:

f̂j(k) = ûj(k), 0 6 j 6 N − 1, k ∈ C,
ĝl(k) = v̂l(k), 0 6 l 6 n−N − 1, k ∈ C,

}
(1·24)

where ûj(k) and v̂l(k) are given by

ûj(k) =
∫ T

0
eiω(k)tuj(t)dt, v̂l(k) =

∫ T

0
eiω(k)tvl(t)dt.

f̂j(k), for N 6 j 6 n−1, and ĝl(k), for n−N −1 6 l 6 n−1, are given for k ∈ DR,m,
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1 6 m 6 N , by

f̂N+j−1(k) =
detBj(λ1,m(k), . . . , λn,m(k))−∑h∈Z detBj(λ1,m(kh), . . . , λn,m(kh))

∆(λ1,m(k), . . . , λn,m(k))
1 6 j 6 n−N, (1·25)

ĝj−1(k) =
detBj(λ1,m(k), . . . , λn,m(k))−∑h∈Z detBj(λ1,m(kh), . . . , λn,m(kh))

∆(λ1,m(k), . . . , λn,m(k))
n−N + 1 6 j 6 n. (1·26)

In the above formulas, R > 0 is sufficiently large, so that DR,+ has N components;
the map λl,m:DR,m → DR,l is defined by (1·20); the polynomials ωn−j(k) are defined
by (1·21); Bj(λ1,m, . . . , λn,m) is the matrix obtained by replacing the jth column of the
n× n matrix A, defined by (1·23), by the vector b(λ1,m, . . . , λn,m), whose lth component
is given by

bl =



∑n−N
j=1 ωn−j(λl,m)v̂j−1(k)− eiλl,mL

[∑N
j=1 ωn−j(λl,m)ûj−1(k) + q̂0(λl,m)

]
,

1 6 l 6 N,
e−iλl,mL

∑n−N
j=1 ωn−j(λl,m)v̂j−1(k)−∑N

j=1 ωn−j(λl,m)ûj−1(k) + q̂0(λl,m),
N + 1 6 l 6 n;

(1·27)

∆ is the determinant of the n×n matrix A, and kh are the zeros of ∆ in the region DR,m.

Remarks

1. In order to minimize technical difficulties, we have assumed that the given
functions q0(x), uj(t) and vl(t) are C∞ functions. Actually the formulae presented
in Proposition 1·2 are valid even if the above functions belong to the functional
Sobolev spaces discussed in [7]. The analysis for such spaces is substantially more
complicated but it is similar to that presented in [7].

2. The important requirement for well posedness is that N boundary conditions
are prescribed at x = 0 and n−N boundary conditions are prescribed at x = L. In
this paper, for the sake of concreteness, we have assumed that ∂jxq(0, t), 0 6 j 6 N−1,
and ∂lxq(L, t), 0 6 l 6 n − N − 1, are given. It is straightforward to derive similar
formulas for any otherN different values of j and n−N different values of l. It is also
possible to derive similar formulas if linear combinations with constant coefficients
of ∂jxq(0, t) and of ∂lxq(L, t) are given (see Example 5·1·2).

3. We recall that the method reviewed in [4] can also be applied to integrable
nonlinear PDEs. Indeed, the method presented here, appropriately extended, can
be applied to the nonlinear Schrödinger equation in 0 < x < L, 0 < t < T . It
is interesting that the classical result of the initial value problem of the nonlinear
Schrödinger equation with periodic boundary conditions is reproduced as a particular
case of this analysis [6].

4. It is straightforward to generalise the formulas presented here to the case of
forced equations, i.e. to the case that the right-hand side of equation (1·1) is replaced
by a given function F (x, t), see [7] for the case of 0 < x < ∞. Thus the results
presented here can be useful for the investigation of nonlinear non-integrable PDEs.
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Indeed, in this case the nonlinear terms can be thought of as a forcing and hence
at least for short time, or small data, it should be possible to obtain well posedness
results.

5. The main difference between the results obtained here and those obtained for
0 < x < ∞ appears in the analysis of the global relation satisfied by the boundary
values of q(x, t) and of its derivatives. In our case, this analysis yields a system
involving the matrix A which, in contrast to the case of 0 < x <∞, can be singular.
This gives rise to a contribution in the integral representation of q(x, t) which takes
the form of sums over the relevant singular points. This can be interpreted as the
contribution of the discrete spectrum. The explicit representation of q(x, t) in terms
of integrals and of sums is given in Proposition 4·1.

6. It can be shown that the solution representation is independent of T . Indeed,
all formulae are valid, if T is replaced by t in the definition of Q̂(k) (the proof is
analogous to the one given in [7]).

2. The spectral analysis

In this section we prove Proposition 1·1.
Equation (1·1) is the compatibility condition of

(µ(x, t, k)e−ikx+iw(k)t)x = e−ikx+iw(k)tq(x, t),
(µ(x, t, k)e−ikx+iw(k)t)t = −e−ikx+iw(k)tq∗(x, t, k),

}
(2·1)

where

q∗(x, t, k) =
n∑
j=1

αj((−i∂x)j−1 + k(−i∂x)j−2 + · · · + kj−1)q(x, t).

Equation 2·1 can be written in the form

d[e−ikx+iω(k)tµ] = w(x, t, k), w(x, t, k) = e−ikx+iω(k)t[qdx− q∗dt], (2·2)

where the differential 1-form w is closed. Step (1·a) of the method of [4] is to perform
the spectral analysis of equation (2·2). This means finding a solution µ(x, t, k) of
equation (2·1) bounded in k ∈ C for all (x, t) in [0, L]× [0, T ].

Proof of Proposition 1·1. We start by showing that a solution of (2·1) bounded in
k ∈ C has the form

µ =


µ1, k ∈ E+

µ2, k ∈ D+

µ3, k ∈ D−
µ4, k ∈ E−,

(2·3)

where

E = {k: Imω(k) < 0}, E± = E w C±, (2·4)

and µj(x, t, k) are defined below in equation (2·5).

Let z = t+ix. If z0 is an arbitrary constant, then by
∫ z
z0

we denote the line integral
from z0 to z. The function∫ z

z0

eik(x−x′)−iω(k)(t−t′)[q(x′, t′)dx′ − q∗(x′, t′, k)dt′],
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is a particular solution of equation (2·1). Moreover, since w is a closed form, this
solution does not depend on the choice of the smooth curve between z0 and z.

It is shown in [5] that there exists a canonical way of choosing z0, namely, the
corners of the polygon. Thus we define the following ‘canonical’ particular solutions
[5]:

µj(x, t, k) =
∫ z

zj

eik(x−x′)−iω(k)(t−t′)[q(x′, t′)dx′ − q∗(x′, t′, k)dt′], j = 1, . . . , 4, (2·5)

where z1 = 0, z2 = T , z3 = T +iL and z4 = iL. The functions µj are entire functions of
k; the general theory presented in [5] implies that these functions are also bounded
as k →∞ provided that as k →∞, µj are defined in the domains indicated in (2·3).
This also follows from computing the integrals in (2·5) along paths parallel to the x
and t axis:

µ1 =
∫ x

0
eik(x−x′)q(x′, t)dx′ − eikx

∫ t

0
e−iω(k)(t−t′)q∗(0, t′)dt′,

µ2 =
∫ x

0
eik(x−x′)q(x′, t)dx′ + eikx

∫ T

t

e−iω(k)(t−t′)q∗(0, t′)dt′,

µ3 = −
∫ L

x

eik(x−x′)q(x′, t)dx′ + eik(x−L)
∫ T

t

e−iω(k)(t−t′)q∗(L, t′)dt′,

µ4 = −
∫ L

x

eik(x−x′)q(x′, t)dx′ − eik(x−L)
∫ t

0
e−iω(k)(t−t′)q∗(L, t′)dt′.

(2·6)

Equation (2·5) implies

µi − µj = eikx−iω(k)tρij(k), i� j.
ρij(k) =

∫ zj
zi
e−ikx+iω(k)t[q(x, t)dx− q∗(x, t, k)dt].

}
(2·7)

Computing the integrals in (2·7) along paths parallel to the x and t axes, we find

µ1 − µ4 = eikx−iω(k)tq̂0(k), k ∈ E+ w E−,
µ2 − µ1 = eikx−iω(k)tQ̂(0, k), k ∈ D+ w E+,

µ2 − µ3 = eikx−iω(k)t[Q̂(0, k)− e−ikLQ̂(L, k) + q̂0(k)], k ∈ D+ wD−,
µ2 − µ4 = eikx−iω(k)t[q̂0(k) + Q̂(0, k)], k ∈ D+ w E−,
µ3 − µ4 = eikx−iω(k)te−ikLQ̂(L, k), k ∈ D− w E−,
µ3 − µ1 = eikx−iω(k)t[−q̂0(k) + e−ikLQ̂(L, k)], k ∈ D− w E+,


(2·8)

where q̂0(k), Q̂(0, k) Q̂(L, k) are given by equations (1·9)–(1·10). The expression for
µ(x, t, k) yields the estimate

µ = O(1/k), k →∞. (2·9)

In addition, µ is a sectionally holomorphic function of k, as each of its representa-
tions µj is holomorphic. Equation (2·8) represents the jumps of µ along the curve
separating the domains of analyticity of the various µj . Thus these equations and
the asymptotic estimate (2·9) determine a well defined RH problem for µ; the unique
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solution of this problem is given by [1]

µ(x, t, k) =
1

2πi

{∫ ∞
−∞

eik
′x−iω(k′)t q̂0(k′)

k′ − kdk
′

+
∫
∂D+

eik
′x−iω(k′)t Q̂(0, k′)

k′ − k dk′ +
∫
∂D−

eik
′(x−L)−iω(k′)t Q̂(L, k′)

k′ − k dk′
}
.

Since q = µx − ikµ, differentiating the above expression for µ, with respect to x,
yields equation (1·8).

Since w is a closed form, its integral along the boundary of the polygon vanishes.
Writing this relation explicitly for the polygon with vertices z1, . . . ,z4, we obtain
equation (1·11).

3. Proof of Theorem 1·1
We start by making a few technical simplifications, which we summarise in the

following lemma. The proof is similar to the one presented in [7].

Lemma 3·1. Given a set of functions {fj(t), gj(t)}n−1
j=0 , admissible with respect to q0(x),

let f̂j(k), ĝj(k) be defined as in equations (1·15), (1·16).

(b) For k ∈ DR,m, 1 6 l 6 n, and 1 6 m 6 N ,
n∑
j=1

ωn−j(λl,m)f̂j−1(k)− e−iλl,mL
n∑
j=1

ωn−j(λl,m)ĝj−1(k) = 0,

while for N + 1 6 m 6 n,

eiλl,mL
n∑
j=1

ωn−j(λl,m)f̂j−1(k)−
n∑
j=1

ωn−j(λl,m)ĝj−1(k) = 0.

(a) There is no loss of generality in studying the reduced initial boundary value
problem obtained when (1·2) is replaced by

q(x, 0) = 0, x ∈ [0, L],

and when it is assumed that the admissible functions fj(t), gj(t), 0 6 j 6 n− 1,
vanish to all orders at t = 0.

(c) There is no loss of generality in extending fj(t), gj(t) to belong to the space
C∞[0, T + 1], and to vanish to all orders at t = T + 1.

(d) If each of the functions fj(t), gj(t) is in C∞[0, T ], and vanishes to all order at
t = 0 and t = T , then the functions kα(dβFj/dkβ), kα(dβGj/dkβ) are bounded as
k →∞ for all α, β positive integers, j = 0, . . . , n− 1.

Proof of Theorem 1·1. Given the set of admissible functions {fj(t), gj(t)}n−1
j=0 , define

F̂ (k), Ĝ(k) by equations (1·13), (1·14). Using the polynomials defined by (1·21), we
can write F̂ (k) and Ĝ(k) as

F̂ (k) =
n∑
j=1

ωn−j(k)f̂j−1(k), Ĝ(k) =
n∑
j=1

ωn−j(k)ĝj−1(k). (3·1)
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Define the function q(x, t) as

q(x, t) =
1

2π

n∑
j=1

×
{∫

∂DR,+

eikx−iω(k)tωn−j(k)f̂j−1(k)dk +
∫
∂DR,−

eik(x−L)−iω(k)tωn−j(k)ĝj−1(k)dk

}
.

(3·2)

1. q(x, t) solves the equation
The verification that q(x, t) is in C∞[0, L]×C∞[0, T ] and that it satisfies equation

(1·1) follows immediately from the results of Lemma 3·1.

2. The initial value
From (3·2) we obtain

q(x, 0) =
1

2π

n∑
j=1

×
{∫

∂DR,+

eikxωn−j(k)f̂j−1(k)dk +
∫
∂DR,−

eik(x−L)ωn−j(k)ĝj−1(k)dk

}
,

and since the exponential terms are analytic and bounded in DR,+ and DR,− respec-
tively, it follows that q(x, 0) = 0.

3. The boundary values
We show that (−i∂x)jq(0, t) = fj(t), 0 6 j 6 n−1; the verification for the boundary

values at x = L is analogous. Evaluating the representation (3·2) at x = 0, we find

q(0, t) =
1

2π

n∑
j=1

×
{∫

∂DR,+

e−iω(k)tωn−j(k)f̂j−1(k)dk +
∫
∂DR,−

e−ikL−iω(k)tωn−j(k)ĝj−1(k)dk

}
.

(3·3)

Using the property (a) of Lemma 3·1 we can show that

e−ikL
n∑
j=1

ωn−j(k)ĝj−1(k)−
n∑
j=1

ωn−j(k)f̂j−1(k) = 0, k ∈ DR,−.

Thus equation (3·3) becomes

q(0, t) =
1

2π

n∑
j=1

∫
∂DR

e−iω(k)tωn−j(k)f̂j−1(k)dk.

Computing its derivatives with respect to x, we obtain

(−i∂x)lq(0, t) =
1

2π

n∑
j=1

∫
∂DR

e−iω(k)tklωn−j(k)f̂j−1(k)dk.
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The same argument used in [7] now yields that

(−i∂x)jq(0, t) =
1

2π

∫
CR

e−itz f̃j(z)dz, 0 6 j 6 n− 1,

where f̃j(z) =
∫ T+1

0 eiztfj(t)dt, Cr is the contour in the z complex plane, oriented
from right to left, given by

Cr = {z ∈ R, |z| > R} x {Re z > 0, |z| = R},
and k(z) is the solution of the equation z = ω(k) which, for z ∈ CR, lies in ∂DR,1.
The Fourier inversion formula yields the claim.

4. Uniqueness

Suppose q1 and q2 are two solutions as in the statement of the theorem. Let u =
q1 − q2. As in [7], it is easy to show that

d

dt

∫ L

0
|u(x, t)|2dt 6 0, 0 6 t 6 T.

Thus u = 0 and q1 = q2.

4. Proof of Theorem 1·2 and an alternative representation

We now use the definition and properties of an admissible set to show that, if the
boundary conditions (1·19) are prescribed, then it is possible to compute explicitly
the spectral functions F̂ (k) and Ĝ(k). Once these spectral functions are known,the
solution q(x, t) can be defined by equation (1·18).

Proposition 4·1. Let

fj(t) = uj(t), 0 6 j 6 N − 1,

gl(t) = vl(t), 0 6 l 6 n−N − 1,

with uj(t), vl(t) as in (1·19).

Then there exist smooth functions {fj(t)}, j = N, . . . , n − 1 and {gl(t)}, l = n −N,
. . . , n− 1, such that the set {fj(t), gj(t)}n−1

j=0 is a set of admissible functions with respect
to q0(x). Associated with these admissible functions, there exist the following spectral
functions:

f̂j(k) =
∫ T

0
eiω(k)tfj(t)dt, j = 0, . . . , n− 1, k ∈ C, (4·1)

ĝj(k) =
∫ T

0
eiω(k)tgj(t)dt, j = 0, . . . , n− 1, k ∈ C. (4·2)

The solution q(x, t) admits the representation (1·18), where the functions f̂j and ĝj
are given by equations (1·24)–(1·26). Alternatively, this representation can be written in
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the form

q(x, t) =
1

2π

{∫ ∞
−∞

eikx−iω(k)tq̂0(k)dk +
∫
∂DR,+

eikx−iω(k)t
N∑
j=1

ωn−j(k)f̂j−1(k)dk

+
∫
∂DR,−

eik(x−L)−iω(k)t
n−N∑
j=1

ωn−j(k)ĝj−1(k)dk

}

+
N∑
m=1

n−N∑
j=1

[∫
∂DR,m

eikx−iω(k)tdet Bj(λ1,m(k), . . . , λn,m(k))
2π∆(λ1,m(k), . . . , λn,m(k))

dk

+ −i
∑
h

eikhx−iω(kh)tdet Bj(λ1,m(kh), . . . , λn,m(kh))
∆′(λ1,m(kh), . . . , λn,m(kh))

]

+
n∑

l=N+1

n∑
j=n−N+1

[∫
∂DR,l

eik(x−L)−iω(k)tdet Bj(λ1,l(k), . . . , λn,l(k))
2π∆(λ1,l(k), . . . , λn,l(k))

dk

−i
∑
h

eik̃h(x−L)−iω(k̃h)tdet Bj(λ1,l(k̃h), . . . , λn,l(k̃h))

∆′(λ1,l(k̃h), . . . , λn,l(k̃h))

]
, (4·3)

where:

(i) f̂j , 0 6 j 6 N , and ĝl, 0 6 l 6 n−N , are given by equation (1·24);
(ii) Bj(λ1,m, . . . , λn,m) is the matrix obtained by replacing the jth column of

A(λ1,m, . . . , λn,m) by the vector b(λ1,m, . . . , λn,m) defined in (1·27);
(iii) ∆ is the determinant of the n× n matrix A defined below by (1·23);
(iv) {kh} are the zeros of ∆ in the region DR,m;
(v) k̃h = λl,m(kh);
(vi) ∆′ denotes the derivative of ∆ with respect to k.

Proof. We start by observing that, by deforming the contours ∂D− and ∂D+,
equation (1·18) can be rewritten in the form

q(x, t) =
1

2π

{∫ ∞
−∞

eikx−iω(k)tq̂0(k)dk

+
N∑
m=1

∫
∂DR,m

eikx−iω(k)tF̂ (k)dk +
n∑

l=N+1

∫
∂DR,l

eik(x−L)−iω(k)tĜ(k)dk
}
, (4·4)

with F̂ , Ĝ given by (1·13) and (1·14), respectively. Thus it is enough to determine the
spectral functions F̂ (k), Ĝ(k) for k ∈ DR, where DR is the domain defined in (1·6).

Write F̂ (k) and Ĝ(k) in the form (3·1). Equation (1·17) can be written in the form

eikLF̂ (k)− Ĝ(k) = −eikLq̂0(k) + eikL+iω(k)T â(k). (4·5)

We observe that every term of equation (1·17) is bounded in the closure of the domain
D−, which we denote by D−; similarly, every term of equation (4·5) is bounded if
k ∈ D+. Let λl,m(k): DR,m → DR,l be defined by equation (1·20). Using the definition
of the spectral functions F̂ and Ĝ, the evaluation of global relation (4·5) in D+ and
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of (1·17) in D− yields

eiλl,mL
∑n

j=1 wn−j(λl,m)f̂j−1(k)−∑n
j=1 wn−j(λl,m)ĝj−1(k)

= −eiλl,mLq̂0(λl,m) + eiλl,mL+iw(k)T â(λl,m), 1 6 l 6 N,∑n
j=1 wn−j(λl,m)f̂j−1(k)− e−iλl,mL∑n

j=1 wn−j(λl,m)ĝj−1(k)
= −q̂0(λl,m) + eiw(k)T â(λl,m), (N + 1) 6 l 6 n.

(4·6)

Equation (4·6) relates the 2n functions f̂0(k), . . . , f̂n−1(k), ĝ0(k), . . . , ĝn−1(k); how-
ever, they also contain the arbitrary function â(k).

Moving to the right-hand side the terms containing the known data f̂j−1(k), j =
1, . . . , N , and ĝj−1(k), j = 1, . . . , n − N , we obtain the following system for the
spectral functions f̂j , j = N, . . . , n− 1 and ĝl(k), l = N − n, . . . , n− 1:

eiλl,mL
∑n

j=N+1 wn−j(λl,m)f̂j−1(k)−∑n
j=n−N+1 wn−j(λl,m)ĝj−1(k)

= bl + eiλl,mL+iw(k)T â(λl,m), 1 6 l 6 N,∑n
j=n−N+1 wn−j(λl,m)f̂j−1(k)− e−iλl,mL∑n

j=N+1 wn−j(λl,m)ĝj−1(k)
= bl + eiw(k)T â(λl,m), (N + 1) 6 l 6 n,

(4·7)

where {bl}nl=1 is given by equation (1·27). It is important to note that all terms in
this system are holomorphic functions, bounded for k ∈ DR,m, 1 6 m 6 N .

We now write the system (4·7) in matrix form as

A(λ1,m, . . . , λn,m)
(
f̂N (k), . . . , f̂n−1(k), ĝn−N (k), . . . , ĝn−1(k)

)τ
= b(λ1,m, . . . , λn,m) + eiω(k)T c(λ1,m, . . . , λn,m).

Here:

(i) A is the n× n matrix defined by (1·23);
(ii) b = (b1, . . . , bN , bN+1, . . . , bn)τ is the n-vector whose components are defined

in (1·27);
(iii) c(λ1,m, . . . , λn,m) is an n-vector whose lth component is given by

cl =
{
eiλl,mL+iω(k)T â(λl,m), 1 6 l 6 N,
eiω(k)T â(λl,m), N + 1 6 l 6 n;

(4·8)

(iv) (·)τ denotes transposition.

Let ∆ = det (A). By induction, one can show that this determinant is always of the
form

p(E1, E2, . . . , EN , E
−1
N+1, . . . , E

−1
n ) + r(k),

where p is a polynomial in the exponentials E1, . . . , EN , E−1
N+1, E

−1
n with coefficients

depending on k, and r(k) is a polynomial function of k of degree at most n(n+ 1)/2,
with zero-th order term r0� 0. Since the exponentials E1, . . . , EN , E−1

N+1, E
−1
n are

analytic, bounded and decay as k →∞, for k ∈ DR,m, 1 6 m 6 N , the term 1/∆ is
bounded for k ∈ DR,m, except possibly for poles. We can use Cramer’s rule, to solve
this system explicitly for the functions f̂N (k), . . . , f̂n−1(k), ĝn−N (k), . . . , ĝn−1(k), for
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k ∈ DR,m:

f̂N+j−1(k) =
det Bj(λ1,m, . . . , λn,m)

∆(λ1,m, . . . , λn,m)
+ eiω(k)T det Cj(λ1,m, . . . , λn,m)

∆(λ1,m, . . . , λn,m)
,

1 6 j 6 n−N, (4·9)

ĝj−1(k) =
det Bj(λ1,m, . . . , λn,m)

∆(λ1,m, . . . , λn,m)
+ eiω(k)T det Cj(λ1,m, . . . , λn,m)

∆(λ1,m, . . . , λn,m)
,

n−N + 1 6 j 6 n, (4·10)

where Bj(λ1,m, . . . , λn,m) is the matrix obtained by replacing the jth column of
A(λ1,m, . . . , λn,m) by the vector b(λ1,m, . . . , λn,m), and Cj(λ1,m, . . . , λn,m) is the
matrix obtained by replacing the jth column of A(λ1,m, . . . , λn,m) by the vector
c(λ1,m, . . . , λn,m).

The spectral functions f̂N+j−1(k) and ĝj−1(k) on the left-hand side of equations
(4·9)–(4·10) are holomorphic, bounded functions in DR,m; moreover, since they are
the Fourier transform of C∞ functions, they must have at least O(|k|−j) decay as
k → ∞. Equations (4·9) and (4·10) define these functions as the unique solution
of the well defined system (4·7); thus the right-hand side of both equations (4·9)
and (4·10) must have the same analyticity and boundedness properties. However
the determinant ∆(k) may have zeroes in DR,m, 1 6 m 6 N . For equations (4·9)–
(4·10) to be meaningful, we must subtract the contribution of the associated poles.
Namely, suppose that ∆(λ1,m(k0), . . . , λn,m(k0)) = 0, k0 ∈ DR,m. Since ∆f̂N+j−1 =
det Bj + eiω(k)Tdet Cj , and similarly for ĝj−1, it must be that, for 1 6 j 6 n,

det Bj(λ1,m(k0), . . . , λn,m(k0)) + eiω(k0)Tdet Cj(λ1,m(k0), . . . , λn,m(k0)) = 0.

As the function â(k) in the definition of the matrix C is unspecified, we can choose
it in such a way that the latter equation is satisfied. Hence, we can subtract the
resulting zero term, divided by ∆, from the expressions (4·9) and (4·10), and obtain

f̂N+j−1(k) =
det Bj(λ1,m(k), . . . , λn,m(k))− det Bj(λ1,m(k0), . . . , λn,m(k0))

∆(λ1,m(k), . . . , λn,m(k))

+eiω(k)T det Cj(λ1,m(k), . . . , λn,m(k))− det Cj(λ1,m(k0), . . . , λn,m(k0))
∆(λ1,m(k), . . . , λn,m(k))

,

1 6 j 6 n−N, (4·11)

ĝj−1(k) =
det Bj(λ1,m(k), . . . , λn,m(k))− det Bj(λ1,m(k0), . . . , λn,m(k0))

∆(λ1,m(k), . . . , λn,m(k))

+eiω(k)T det Cj(λ1,m(k), . . . , λn,m(k))− det Cj(λ1,m(k0), . . . , λn,m(k0))
∆(λ1,m(k), . . . , λn,m(k))

,

n−N + 1 6 j 6 n. (4·12)

The terms appearing on the right-hand side of equations (4·11)–(4·12) are non-
singular at k = k0, and define holomorphic functions in DR,m, 1 6 m 6 N ; moreover,
because of the presence of the nonzero polynomial term r(k) in the expression of the
determinant ∆(k), all these terms are also bounded and decaying. Hence equations
(4·11)–(4·12) are compatible with the known properties of the spectral functions.
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We now show that the terms containing â(k) do not contribute to the representa-

tion of q(x, t). Indeed, the exponential term eikx+iω(k)(T−t) is bounded and analytic
for k ∈ DR,+, 1 6 m 6 N ; thus it follows that the integral∫

∂DR,m

eikx−iω(k)tωn−j(k)eiω(k)T det C(λ1,m, . . . , λn,m)
∆(λ1,m, . . . , λn,m)

dk

vanishes, except if the function ∆ has zeroes inside the domain DR,+, and the inte-
gration of the terms containing the exponential eikx−iω(k)(t−T ) is zero. Thus the term
containing the function â(k) can be dropped from the system (4·7), and we can write
the representation of the solution in the form (1·18).

We also note that computing explicitly in the integral representation (1·18) the
contribution of the poles of 1/∆, we obtain the explicit representation (4·3). Namely,
consider the integral along ∂DR,m, 1 6 m 6 N , of the function f̂N+j−1(k) multiplied
by the exponential eikx+iω(k)(T−t); for 1 6 j 6 n−N , we obtain∫
DR,+

eikx−iω(k)tf̂N+j−1(k)dk =
N∑
m=1

[ ∫
DR,m

eikx−iω(k)tdet Bj(λ1,m(k), . . ., λn,m(k))
∆(λ1,m(k), . . ., λn,m(k))

dk.

−2πi eik0x−iω(k0)tdet Bj(λ1,m(k0), . . ., λn,m(k0))
∆′(λ1,m(k0), . . ., λn,m(k0))

]
. (4·13)

Similarly, for n−N + 1 6 j 6 n, if k0 is a zero of ∆ in DR,l,∫
DR,−

eik(x−L)−iω(k)tĝj−1(k)dk =
n∑

l=N+1

[ ∫
DR,l

eik(x−L)−iω(k)tdetBj(λ1,l(k), . . ., λn,l(k))
∆(λ1,l(k), . . ., λn,l(k))

dk

−2πi eik0(x−L)−iω(k0)tdet Bj(λ1,l(k0), . . ., λn,l(k0))
∆′(λ1,l(k0), . . ., λn,l(k0))

]
.

(4·14)

The generalization of this case to any finite number of poles in straightforward.
This representation is valid also in the case of infinitely many poles, provided that
the relevant sums converge.

Remark 4·1. It is important to stress that the proof given above depends crucially
on the fact that the term 1/det (A) is bounded for k ∈ DR,m. This is not the case for
all sets of n given boundary conditions (see Remark 5·2·2 below for an example).

5. Examples

We compute explicitly the representation of the solution of some illustrative bound-
ary value problems for a second and a third order equation.

Example 5·1.

iqt + qxx = 0, 0 < x < L, 0 < t < T. (5·1)

The closed 1-form associated to this equation is given by

w(x, t, k) = e−ikx+ik2t[qdx + (iqx + kq)dt]
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Fig. 1. The domains D+ = D1 and D− = D2 for the equation iqt + qxx = 0.

Thus ω(k) = k2, and D+ = D1, D− = D2 are the domains shown in Fig. 1 and defined
by

D1 =
{
k: 0 6 arg(k) 6 π

2

}
, D2 =

{
k: π 6 arg(k) 6 3π

2

}
.

The biholomorphic maps λl,m(k) are given by

λ1,1(k) = k, λ2,1(k) = −k.
A set of admissible functions with respect with the given initial data q0(x) = q(x, 0)

contains four functions, f0(t), f1(t), g0(t), and g1(t). The spectral functions are given
by

F̂ (k) =
∫ T

0
eik

2t[f1(t) + kf0(t)]dt = f̂1(k) + kf̂0(k),

Ĝ(k) =
∫ T

0
eik

2t[g1(t) + kg0(t)]dt = ĝ1(k) + kĝ0(k).

Hence, for k ∈ D1, the global relation yields

eikL
[
f̂1(k) + kf̂0(k)

]
− [ĝ1(k) + kĝ0(k)] = −eikLq̂0(k) + eik

2T+ikLâ(k),[
f̂1(k)− kf̂0(k)

]
− eikL [ĝ1(k)− kĝ0(k)] = −q̂0(−k) + eik

2T â(−k).

 (5·2)

These are two equations for the four functions f̂0(k), ĝ0(k), f̂1(k) and ĝ1(k). By
assigning appropriately two boundary conditions, these equations yield a system
of two equations for two unknowns, admitting a unique solution.

Although we have only shown this for the particular case that the value of the
equation is given as boundary condition both at x = 0 and x = L, the same holds for
other sets of boundary conditions (see Example 5·1·2 below).
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5·1·1 The boundary value problem for equation (5·1) defined by the initial and

boundary conditions

q(x, 0) = q0(x), 0 < x < L, (5·3)

q(0, t) = u0(t), q(L, t) = v0(t) 0 < t < T, (5·4)

where q0(x), u0(t) and v0(t) are smooth functions, compatible at x = t = 0 and at
x = L, t = 0, is well posed. Its unique solution is given by

q(x, t)=
1

2π

{∫ ∞
−∞
eikx−ik

2tq̂0(k)dk +
∫
∂D1

eikx−ik
2tkû0(k)dk +

∫
∂D2

eik(x−L)−ik2tkv̂0(k)dk
}

+
[ ∫

∂D1

eikx−ik
2t b2(k)− eikLb1(k)

2π(1− e2ikL)
dk +

∑
h∈Z

eikhx−ik
2
ht
b2(kh)− eikhLb1(kh)

2L e2ikL

]
+
[ ∫

∂D2

eik(x−L)−ik2t e
−ikLb2(−k)−b1(−k)

2π(1−e−2ikL)
dk

+
∑
h∈Z

e−ikh(x−L)−ik2
ht
eikhLb2(kh)−b1(kh)

2L e2ikhL

]
, (5·5)

where q̂0(k) is defined by (1·9), the functions û0(k), v̂0(k), b1(k), b2(k) are given by

û0(k) =
∫ T

0
eik

2tu0(t)dt, v̂0(k) =
∫ T

0
eik

2tv0(t)dt, (5·6)

b1 = −eikLq̂0(k)− k eikLû0(k) + kv̂0(k), b2 = −q̂0(−k) + kû0(k)− eikLkv̂0(k), (5·7)

and kh are given by

kh = hπ/L, h ∈ Z. (5·8)

Indeed, let E = eikL. The known functions f̂0(k) and ĝ0(k), are given by

f̂0(k) = û0(k), ĝ0(k) = v̂0(k).

For k ∈ D1, the system (5·2) can be used to define f̂1(k) and ĝ1(k)(
E −1
1 −E

)(
f̂1(k)
ĝ1(k)

)
=
(
b1

b2

)
+
(
a1

a2

)
,

where b1(k), b2(k) are given by (5·7), and

a1 = E eik
2T â(k), a2 = eik

2T â(−k). (5·9)

The determinant ∆ of this system is given by

∆(k) = 1− E2 = 1− e2ikL, (5·10)

and its solution is given by

f̂1(k) =
b2 + a2 − E(b1 + a1)

∆

ĝ1(k) =
E(b2 + a2)− (b1 + a1)

∆
, k ∈ D1.

The terms containing a1 and a2 can be used to subtract the contribution of the poles
arising from the zeros kh of 1 − E2, given by (5·8). Indeed, choose a1 and a2 such
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that ai(kh) = −bi(kh), i = 1, 2; then f̂1 and ĝ1 can be written as

f̂1(k) =
b2 + a2 − E(b1 + a1)− [b2 + a2 − E(b1 + a1)] (kh)

∆

ĝ1(k) =
E(b2 + a2)− (b1 + a1)− [E(b2 + a2)− (b1 + a1)] (kh)

∆
, k ∈ D1.

 (5·11)

The expressions (5·11) now represent two bounded holomorphic functions.
Multiplying f̂1(k) by eikx−ik

2t, and integrating along ∂D1, and similarly, multiply-
ing ĝ1(k) by eik(L−x)−ik2t, and integrating along ∂D2, it is easy to show that the terms
containing a1 and a2 give no contribution, as the overall exponential is bounded in
the whole of the region. We can also compute explicitly the residues due to the poles
in the remaining terms; this gives

i

∞∑
h=−∞

eikhx−ik
2
nt
b2(kh)− E(kh)b1(kh)

∆′(kh)
, i

∞∑
h=−∞

e−ikh(x−L)−ik2
nt
b1(kh)− E(kh)b2(kh)

∆′(kh)
.

(5·12)

Replacing the above functions in the representation (4·3), we obtain (5·5). Note that
the two sums in (5·12) can be rewritten as

− 1
2L

[ ∞∑
h=−∞

eiπhx/L−i(πh/L)2tb2

(
hπ

L

)
−

∞∑
h=−∞

eiπhx/L−i(πh/L)2t(−1)hb1

(
hπ

L

)]
,

and

1
2L

[ ∞∑
h=−∞

e−iπh(x−L)/L−i(πh/L)2tb1

(
hπ

L

)
−
∞∑

h=−∞
e−iπh(x−L)/L−i(πh/L)2t(−1)hb2

(
hπ

L

)]
.

Since the functions b1(k), b2(k) depend only on the Fourier coefficients q̂0(k), û0(k2),
v̂0(k2), if the given data q0(x), u0(t), u0(t) are sufficiently smooth both the trigono-
metric series in (5·12) converge.

5·1·2 The boundary value problem for equation (5·1) defined by the initial con-
dition (5·3) and by the boundary condition

qx(0, t) + βq(0, t) = u0(t),
qx(L, t) + βq(L, t) = v0(t), 0 < t < T,

}
(5·13)

where β is a constant, is well posed. The solution, for the case that u0 = v0 = 0, is
given by

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ik
2tq̂0(k)dk +

2βeiβ
2t

e−2βL − 1

[
e−βxq̂0(−iβ)− eβx+2βLq̂0(iβ)

]
+
∑
h∈Z

eikhx−ik
2
ht

[
e2ikhLq̂0(kh)− (iβ + kh/iβ − kh)q̂0(−kh)

]
2L e2ikhL

−
∑
h∈Z

e−ikh(x−2L)−ik2
ht

[q̂0(−kh)− (iβ − kh/iβ + kh)q̂0(kh)]
2L e2ikhL

, (5·14)

where q̂0(k) is defined by (1·9) and kh are given by (5·8). A similar expression is found
when u, v� 0.
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Let E be defined as in 5·1·1. The boundary condition implies that

f̂1(k) = iβf̂0(k) + û0(k), ĝ1(k) = iβĝ0(k) + v̂0(k);

thus the system (5·2) becomes(
E(iβ + k) −(iβ + k)
(iβ − k) −E(iβ − k)

)(
f̂0(k)
ĝ0(k)

)
=
(
b1

b2

)
+
(
a1

a2

)
,

where

b1(k) = v̂0(k)− Eû0(k)− Eq̂0(k), b2(k) = Ev̂0(−k)− û0(−k)− q̂0(−k),

a1, a2 are given by equation (5·9), and q̂0(k) is given by (1·9). The determinant of
this system is given by

∆ = (E2(k)− 1)(β2 + k2).

Since limk→∞ 1/∆ = 0, the system can be solved uniquely; its solution is given by

f̂0(k) =
1
∆

[(iβ + k)(b2 + a2)− E(iβ − k)(b1 + a1)] ,

ĝ0(k) =
1
∆

[E(iβ + k)(b2 + a2)− (iβ − k)(b1 + a1)] , k ∈ D1.

Substituting these spectral functions in the general representation (1·18), and drop-
ping the terms containing a1 or a2, we find that the integrand of the integral along
∂D1 is

eikx−ik
2t

1− E2(k)

[
E2(k)(q̂0(k)− û0(k))− Ev̂0(k)

+
iβ + k

iβ − k (Ev̂0(−k)− û0(−k)− q̂0(−k))
]

+ eikx−ik
2tû0(k),

while the integrand of the integral along ∂D2 is

eik(x−L)−ik2t

E2(−k)− 1

[
E(−k)(q̂0(k)− û0(−k))− v̂0(−k)

+
iβ + k

iβ − k (E(−k)v̂0(−k)− û0(−k)− q̂0(−k))
]

+ eik(x−L)−ik2tv̂0(−k).

The zeros of the functions E2−1 and iα−k insideD1 occur at the points k = kh, with
kh given by (5·8), and at the point k = iα. Computing the contribution due to these
zeros, and simplifying the result when u0 = v0 = 0, we obtain the representation
(5·14).

Example 5·2.

qt + qxxx = 0, 0 < x < L, 0 < t < T. (5·15)

The closed 1-form associated to this equation is given by

w(x, t, k) = e−ikx−ik
3t[qdx− (qxx + ikqx − k2q)dt].
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Fig. 2. The domains D+ = D1 and D− = D2 xD3 for the equation qt + qxxx = 0.

Thus ω(k) = −k3, and D+ = D1, D− = D2 xD3 are the domains shown in Fig. 2 and
defined by

D1 =
{
k:
π

3
6 arg(k) 6 2π

3

}
,

D2 =
{
k: π 6 arg(k) 6 4π

3

}
, D3 =

{
k:

5π
3
6 arg(k) 6 2π

}
.

The biholomorphic maps λl,m(k) are given by

λ1,1(k) = k, λ2,1(k) = ζk, λ3,1(k) = ζ2k; ζ = e−2πi/3.

A set of admissible functions with respect with the given initial data q0(x) = q(x, 0)
contains six functions, f0(t), f1(t), f2(t), g0(t), g1(t) and g2(t). The spectral functions
are given by

F̂ (k) =
∫ T

0
e−ik

3t[f2(t) + ikf1(t)− k2f0(t)]dt

= f̂2(k) + kf̂1(k)− k2f̂0(k),

Ĝ(k) =
∫ T

0
e−ik

3t[g2(t)− ikg1(t)− k2g0(t)]dt

= ĝ2(k) + kĝ1(k)− k2ĝ0(k).

Hence for k ∈ D1, the global relation yields

eikL
[
f̂2(k) + kf̂1(k) + k2f̂0(k)

]
− [ĝ2(k) + kĝ1(k) + k2ĝ0(k)

]
= eikLq̂0(k) + e−ik

3T+ikLâ(k),[
f̂2(k) + ζkf̂1(k) + ζ2k2f̂0(k)

]
−e−iζkL [ĝ2(k) + ζkĝ1(k) + ζ2k2ĝ0(k)

]
= q̂0(ζk) + e−ik

3T â(ζk),[
f̂2(k) + ζ2kf̂1(k) + ζk2f̂0(k)

]
−e−iζ2kL

[
ĝ2(k) + ζ2kĝ1(k) + ζk2ĝ0(k)

]
= q̂0(ζ2k) + e−ik

3T â(ζ2k).


(5·16)
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This is a system of three equations for six unknowns. Assigning appropriately three
boundary conditions, this becomes a system of three equations for three unknowns,
admitting a unique solution. Although we have only proved this claim for the par-
ticular case that the boundary conditions q(0, t), q(L, t) and qx(L, t) are assigned,
the same holds true for other sets of boundary conditions, but not all set of three
boundary conditions will yield a well defined system (see Example 5·2·2).

5·2·1 The boundary value problem for equation (5·15) defined by the initial and
boundary conditions

q(x, 0) = q0(x), 0 < x < L, (5·17)

q(0, t) = u0(t), q(L, t) = v0(t), qx(L, t) = v1(t), 0 < t < T, (5·18)

where q0(x), u0(t), v0(t) and v1(t) are smooth functions, compatible at x = t = 0 and
at x = L, t = 0, is well posed. The unique solution q(x, t) ∈ C3[0, L] × C1[0, T ] is
given by

q(x, t) =
1

2π

{∫ ∞
−∞

eikx+ik3tq̂0(k)dk

+
∫
∂D1

eikx+ik3t(−k2û0(k))dk +
∫
∂D2x∂D3

eik(x−L)+ik3t(−kv̂1(k)− k2v̂0(k))dk
}

+
∫
∂D1

eikx+ik3t−kB̃1(k)− B̃2(k)
2π∆(k)

dk +
∫
∂D2

eik(x−L)+ik3t−B̃3(ζk)
2π∆(ζk)

dk

+
∫
∂D3

eik(x−L)+ik3t−B̃3(ζ2k)
2π∆(ζ2k)

dk − i
∑
h

eik
3
ht
eikhx(−khB̃1(kh)− B̃2(kh))

∆′(kh)

−i
∑
h

eik
3
ht
eiζkh(x−L)(−B̃3(kh)) + eiζ

2kh(x−L)(−B̃3(kh))
∆′(kh)

, (5·19)

where q̂0(k) is defined by (1·9),

û0(k) =
∫ T

0
e−ik

3tu0(t)dt,

v̂0(k) =
∫ T

0
e−ik

3tv0(t)dt, v̂1(k) =
∫ T

0
e−ik

3t(−iv1(t))dt,

the functions B̃1(k), B̃2(k) and B̃3(k) are explicitly expressed in terms of the given
data, see equations (5·22) and (5·24), the determinant ∆(k) is given by

∆ =
(ζ − 1)eikL

ζ2
k(e−ikL + ζ2e−iζ

2kL + ζe−iζkL), ζ = e−2πi/3, (5·20)

kh are the zeros of ∆ in the region D1, and ∆′(k) denotes the derivative with respect
to k.

Indeed, let E, E2, E3 be defined by

E = eikL, E2 = e−iζkL, E3 = e−iζ
2kL, (5·21)
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with ζ given in (5·20). For k ∈ D1, the system (5·16) can be used to define the
unknown functions f̂1(k), f̂2(k) and ĝ2(k): Ek E −1

ζk 1 −E2

ζ2k 1 −E3

 Q̂1(0, k)
Q̂2(0, k)
Q̂2(L, k)

 =

 b1

b2

b3

 +

 a1

a2

a3

 ,

where

b1 = Eq̂0(k)− k2Ef̂0(k) + k2ĝ0(k) + kĝ1(k),
b2 = q̂0(ζk)− ζ2k2f̂0(k) + E2

(
ζ2k2ĝ0(k) + ζkĝ1(k)

)
,

b3 = q̂0(ζ2k)− ζk2f̂0(k) + E3
(
ζk2ĝ0(k) + ζ2kĝ1(k)

)
,

 (5·22)

and

a1 = e−ik
3T+ikLâ(k),

a2 = e−ik
3T â(ζk),

a3 = e−ik
3T â(ζ2k).

 (5·23)

The determinant ∆ of this system is given by equation (5·20), and its unique
solution is given by

Q̂1(0, k) =
B̃1(k)
∆(k)

,

B̃1(k) = (b1 + a1)(E2 − E3) + (b2 + a2)(EE3 − 1)− (b3 + a3)(EE2 − 1),

Q̂2(0, k) =
B̃2(k)
∆(k)

,

B̃2(k) = (b1 + a1)ζk(E3 − ζE2) + b2 + a2)k(ζ2 − EE3) + (b3 + a3)k(EE2 − ζ),

Q̂2(L, k) =
B̃3(k)
∆(k)

,

B̃3(k) = (b1 + a1)ζk(1− ζ) + b2 + a2)Ek(ζ2 − 1)− (b3 + a3)Ek(ζ − 1).


(5·24)

The determinant ∆(k) vanishes at k = 0 and at the roots of the equation

e−ikL + ζ2e−iζ
2kL + ζe−iζkL = 0.

The convergence of the series corresponding to these zeros depends as before on the
smoothness of the given data.

Remark 5·2·2. It is noted in [8] that if in Example 5·2·1, the conditions (5·18) are
replaced by

q(0, t) = u0(t), qx(0, t) = u1(t), q(L, t) = v0(t), 0 < t < T,

the resulting initial boundary value problem appears not to be well posed. This is
due to the fact that, in this case, the determinant of the resulting system is such
that 1/∆ is not bounded at infinity inside the region Di, i = 1, 2, 3; hence the system
cannot be solved.
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