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[1] In this paper, data from spaceborne radar, lidar and infrared radiometers on the
“A‐Train” of satellites are combined in a variational algorithm to retrieve ice cloud
properties. The method allows a seamless retrieval between regions where both radar and
lidar are sensitive to the regions where one detects the cloud. We first implement a cloud
phase identification method, including identification of supercooled water layers using the
lidar signal and temperature to discriminate ice from liquid. We also include rigorous
calculation of errors assigned in the variational scheme. We estimate the impact of the
microphysical assumptions on the algorithm when radiances are not assimilated by
evaluating the impact of the change in the area‐diameter and the density‐diameter
relationships in the retrieval of cloud properties. We show that changes to these
assumptions affect the radar‐only and lidar‐only retrieval more than the radar‐lidar
retrieval, although the lidar‐only extinction retrieval is only weakly affected. We also show
that making use of the molecular lidar signal beyond the cloud as a constraint on optical
depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them
entirely, improves the retrieved extinction. When infrared radiances are available, they
provide an extra constraint and allow the extinction‐to‐backscatter ratio to vary linearly
with height instead of being constant, which improves the vertical distribution of retrieved
cloud properties.

Citation: Delanoë, J., and R. J. Hogan (2010), Combined CloudSat‐CALIPSO‐MODIS retrievals of the properties of ice clouds,
J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

1. Introduction

[2] On 28 April 2006, two satellites, CloudSat (a 94 GHz
cloud profiling radar [Stephens et al., 2002]) and CALIPSO
(Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite
Observations [Winker et al., 2003]) were launched. They
joined Aqua, hosting MODIS (Moderate Resolution Imag-
ing Spectroradiometer) and a large number of radiometers as
part of the “A‐Train”. Instruments on board on these
satellites can be used separately or together to derive the
properties of clouds and aerosols. A number of single‐
instrument cloud products have been released, for example
the CloudSat Radar‐Only Cloud Water Content Product
(2B‐CWC‐RO) contains retrieved estimates of cloud liquid
and ice water content, effective radius, and related quantities
for each radar profile. Regarding CALIPSO, NASA Langley
Research Center Atmospheric Science Data Center provides
ice clouds properties such as optical depth, visible extinc-
tion, ice water path and ice particle size. MODIS can be
used to estimate effective radius and optical depth from
visible or infrared channels, [King et al., 1998].
[3] Although each instrument individually can be used

to retrieve ice cloud properties, each has weakness. For

instance radar alone cannot accurately estimate particle size
and is less sensitive to small particles. On the other hand, the
lidar is more sensitive to optically thin clouds but suffers
from attenuation. Radiometers only sense integrated prop-
erties; moreover, infrared radiances are mainly sensitive to
the top of moderately thick ice cloud.
[4] The subject of this paper is the retrieval of ice cloud

properties exploiting radar, lidar and infrared radiometer
synergy. If we combine these instruments we have access to
the vertical distribution of detailed cloud properties since the
radar and lidar backscatter are proportional to very different
powers of particle size, so in principle the combination
provides accurate particle size with height. Furthermore,
infrared radiances ensure that the retrieved profiles can be
used for radiative transfer studies: use of a single infrared
channel provides information on extinction near cloud top
and a pair of infrared channels gives particle size informa-
tion near cloud top [Inoue, 1985; Chiriaco et al., 2004].
[5] Delanoë and Hogan [2008a] (hereafter DH08) pro-

posed a variational method to use the synergy of radar,
lidar and infrared radiometer to retrieve the ice cloud water
content, visible extinction coefficient and effective radius,
from the ground. This algorithm overcame some of the
limitations of previous radar‐lidar ice retrieval schemes
[Wang and Sassen, 2002; Donovan et al., 2001; Okamoto et
al., 2003; Mitrescu et al., 2005; Tinel et al., 2005], which
only work in regions of cloud detected by both radar and
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lidar, and are difficult or impossible to adapt to use other
measurements, e.g. passive radiances.
[6] Early work on combining radar and visible optical

depth derived from passive measurement in optimal esti-
mation framework has been done, for instance by Benedetti
et al. [2003], but does not use the lidar signal and only
applicable during day‐time.
[7] The DH08 algorithm retrieves cloud properties

seamlessly between regions of the cloud detected by both
radar and lidar, and regions detected by just one of these two
instruments. For instance, when the lidar signal is unavail-
able (such as due to strong attenuation), the variational
framework ensures that the retrieval tends toward an
empirical relationship using radar reflectivity factor and
temperature [e.g., Liu and Illingworth, 2000; Hogan et al.,
2006b; Protat et al., 2007], and when the radar signal is
unavailable (such as in optically thin cirrus), accurate
retrievals are still possible from the combination of lidar and
infrared radiometer. In this paper we demonstrate the
application of this algorithm to the A‐Train. We added the
following improvements to the DH08 algorithm: (1) adapted
to Cloudsat/CALIPSO instrument settings, (2) rigorous
calculation of forward model errors, including errors in
the temperature profile, (3) allowing retrieval of variable
extinction‐to‐backscatter ratio, (4) using the lidar molecular
signal beyond the cloud as a constraint on optical depth
(5) phase classification adapted to space.
[8] The structure of the paper is as follows. In section 2,

the preprocessing of the radar, lidar and radiometer data set
is described, including a brief presentation of the method
used to discriminate cloud phase from the lidar. We outline
the DH08 algorithm and some improvements to it in section
3. In a variational scheme, the specification of measurement
and forward model error plays a key role and is described in
section 4. Some examples of application of the variational
method on A‐Train data are shown in section 5.

2. Radar, Lidar, and Radiometer Data Set
and Preprocessing

[9] In this section we describe the data set used and its
preprocessing. The first step is to merge radar and lidar
measurements on to the same grid, followed by classifica-
tion of the nature of the targets into liquid droplets, ice
particles, aerosol, insects, melting ice and rain. The nature of
data used is described in section 2.1 and the way the target
classification is carried out in section 2.2. This work leads to
an intermediate product, similar in role to what was done
from the ground in Cloudnet [Illingworth et al., 2007],
which facilitates the implementation of subsequent syner-
getic algorithms.

2.1. Radar, Lidar, and Radiometer Data Set

[10] The first step is to merge all the data available, to
ensure that the radar and lidar are coordinated such that they
are observing the same column of the atmosphere, and to
ensure that the nearest Infrared radiometer pixel to each
radar and lidar footprint is selected. This work is achieved
using the official CloudSat and CALIPSO products. The
94 GHz radar reflectivity, Z, is obtained from the CloudSat
“2B‐GEOPROF” product (including correction for gaseous
attenuation, which is available in the same data set) and the

lidar backscatter coefficient at 532 nm, b, from the
CALIPSO Lidar Level 1B profile data [Anselmo et al.,
2006]. The “MODIS‐AUX” product (in the CloudSat
archive) provides three infrared channels at 8.55 mm, 11.0 mm
and 12.0 mm from MODIS, subset to each CloudSat ray.
The MODIS‐AUX radiances and uncertainties are obtained
from a subset of the original MODIS level 1B radiance
product, consisting of a 3 × 5 grid of MODIS pixels for each
CloudSat profile. In order to get an unique value for each
CloudSat profile, a simple mean is taken of radiance and
uncertainty values in the 3 × 5 grid. We could also use
infrared radiances provided by the Infrared Imaging Radi-
ometer (IIR) at 8.65 mm, 10.6 mm and 12.05 mm on‐board
CALIPSO. We assume that all instruments have been
accurately calibrated and that the nature of the random errors
in the measurements is known. The thermodynamic vari-
ables needed (temperature, pressure, specific humidity,
ozone, skin temperature and surface pressure) are given by
the “ECMWF‐AUX” data set, another product of the
CloudSat Data Center that contains ECMWF (European
Centre for Medium‐Range Weather Forecasts) variables
interpolated to each CloudSat cloud profiling radar bin.
[11] Unfortunately, CloudSat and CALIPSO products are

not on the same vertical and horizontal grid. We colocate the
lidar and IIR products with the radar beam using the geo-
location data from the “2B‐GEOPROF” product as the
reference data set; we calculate the separation between each
footprint and if the distance is greater than 1 km the colo-
cated profile is not used. A 60 m vertical grid is also used to
regrid both radar and lidar products; radar measurements
and ECMWF variables are interpolated and lidar measure-
ments averaged horizontally in the CloudSat footprint
(typically 3 lidar beams are averaged). The result is lidar,
radar, MODIS, IIR and ECMWF interpolated or averaged to
the same time grid.

2.2. Target Categorization and Cloud Phase

[12] An important issue, once the data are merged and
colocated, is to determine the nature of the targets in each
observed pixel. The variational algorithm is currently
restricted to retrieve ice cloud properties (liquid water
properties will be included in the future). The retrieved
visible extinction for ice particles (see section 3) can be
contaminated by the presence of supercooled droplets, their
concentration and optical properties being very different
from ice. Therefore, lidar measurements in and below
supercooled layers must be excluded due to lidar’s sensi-
tivity to very small liquid droplets. However, the radar can
still be used as its return is dominated by ice particles and
hence in such situations the retrieval will tend toward a
radar‐only retrieval. The cloud phase information is also
crucial for the radiance calculation (see section 5.4). The
presence of liquid layers, optically thick in the infrared
spectrum, can lead to a significant reduction in the top‐of‐
atmosphere infrared radiance compared to when only ice is
present. Thus, simulated infrared radiances will be over-
estimated if we do not take account of the liquid part of the
profile, and this effect will increase with optically thin ice
clouds. When profiles contain liquid at any height we do not
assimilate the infrared radiance. So we need to identify
clearly the location of clouds and their phase.
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[13] In order to facilitate the application of retrieval
algorithms, both the CloudSat Data Center and the CALIPSO
NASA Langley Center provide level‐2 products providing
some information on the nature of the targets, which we use
as starting point for our target categorization. A radar mask
is available from 2B‐GEOPROF [Mace, 2004] that contains
a value between 0 and 40 for each range bin, with values
greater than 5 indicating the location of likely hydrometers.
We interpolate this mask vertically to the new grid. The
“Lidar Level 2 Vertical Feature Mask” [Anselmo et al.,
2006] for each lidar pixel identifies five categories: clear
air, cloud, aerosols, surface and no signal (totally attenu-
ated). It is converted to the new horizontal grid by taking the
closest value of the original grid.
[14] For the cloud identified by radar or lidar (when radar

cloud mask greater than 30 and/or when lidar mask indicates
cloud), we still have to distinguish the phase of hydrometeors.
To do that we follow the methodology implemented byHogan
and O’Connor [2004] in the Cloudnet project [Illingworth et
al., 2007]. Hogan et al. [2004] used a similar method to
estimate the global distribution of supercooled liquid water
clouds using the spaceborne lidar “LITE”. First we define
the “cold” pixels within the profile. This cold pixel is
defined to be where the wet‐bulb temperature Tw is less than
0°C. Tw is calculated from the model temperature, pressure
and humidity, and is where ice particles falling through sub‐
saturated air will melt. We initially assume that all cloud

pixels assigned to “cold” will be ice and the rest liquid
water. As described by Hogan and O’Connor [2004], we
cope with inversions in the vicinity of the melting layer by
considering all pixels above the highest 0°C isotherm in the
profile to be “cold”, i.e. it is assumed that falling melted ice
is unlikely to refreeze. The next step is to locate any
supercooled liquid in the region of Tw < 0°C and T > −40°C
in the profile.
[15] In principle this could be achieved using the lidar

depolarization ratio [Sassen, 1991]. Unfortunately, even
though depolarization ratio is available from CALIPSO in
contiguous layers [Hu et al., 2009], the signal is too noisy to
allow a confident identification of supercooled droplets at
each radar‐lidar pixel. So we prefer to use the lidar back-
scatter signal, since to lidar the top of liquid clouds appears
as a strong echo that is typically confined over only a few
hundred meters [Hogan et al., 2003b, 2004].
[16] We exploit this behavior to distinguish supercooled

water within the profile. Figures 1a and 1b show a latitude‐
height representation of a cloud sampled by both the
CloudSat radar and CALIPSO lidar over the Atlantic ocean
(from Iceland toward the Azores), respectively. The over-
plotted isotherms from ECMWF in Figure 1c show that
almost all the cloud was colder than −10°C, implying that
this cloud is mainly composed of ice particles. However, red
boxes exhibit probable supercooled layers, where a strong
lidar echo is observed while the radar echo is weak. These

Figure 1. Latitude‐height representation of an ice cloud observed by both (a) the CloudSat radar and
(b) CALIPSO lidar 13 October 2006 between 03:52 and 03:58 UTC. The presence of supercooled layers
is indicated by red boxes, where a strong lidar echo is observed while the radar echo is very weak. (c) The
result of our categorization.
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microphysical characteristics lead to different instrument
signals. At the lidar wavelength of 532 nm, cloud particles
scatter in the geometric optics regime, where the back-
scattered intensity is approximatively proportional to the
square of particle diameter (D), and consequently dominated
by liquid droplets due to their large number concentration.
On the other hand, radar reflectivity factor is, in the
Rayleigh regime approximation, proportional to much
higher moment (proportional to D6, assuming solid spheres),
and so dominated by ice particles due to their large diameter.
A single supercooled water identification method has been
originally proposed for spaceborne lidar by Hogan et al.
[2004] and will be described briefly and step by step. This
method identifies supercooled layers in close agreement
with those identified subjectively from examination of the
backscatter images, but independent verification is still
required using other sources of cloud phase information.
[17] Each lidar ray is examined in turn, and we search for

one or more liquid layer. In order to identify the first liquid
layer, we first find the highest pixel where simultaneously:
[18] 1. Attenuated backscatter b > 2 × 10−5 m−1 sr−1.
[19] 2. The b value within 240 m below this peak value is

a factor ten lower.
[20] 3. Tw < 0°C and T > −40°C; we consider that

supercooled liquid water cannot persist outside this range.
[21] These criteria are subjectively defined from exami-

nation of the CALIPSO backscatter images. Once this
“pivot” pixel is identified, we estimate the vertical extent of
the supercooled layer by defining Dbtop as is the maximum
gate‐to‐gate increase in b in the 180 m above the pivot, and
Dbbase as is the maximum gate‐to‐gate decrease in b in the
300 m below the pivot. The supercooled layer upper limit is
defined as the highest pixel within the 180 m above the
pivot where the difference in b between it and the pixel
below exceeds Dbtop/4. The supercooled layer base is
identified where the lowest pixel within the 300 m below the
pivot where the decrease of b from the pixel above exceeds
Dbbase/4 or when the lidar return falls to 0 m−1 sr−1 within
the 300 m below the pivot. All pixels within these limits are
classified as containing supercooled water. Then, we search
the ray below the layer to see if any more pixels satisfy the
three criteria above. When the lidar is totally extinguished
(or attenuated such that no liquid could be detected) the
pixel is flagged as being impossible to determine whether or
not liquid is present (even though ice still may or may not be
identified by the radar).
[22] Figure 1 shows the result of the supercooled detection

algorithm on A‐Train data and the cloud phase identification
and categorization. Here the strong lidar echo is predomi-
nantly due to the supercooled liquid droplets and the radar
signal is coming from larger ice particles. Note that the
layers containing supercooled droplets only can be identi-
fied where the radar does not see any cloud (indicated in
light green).
[23] Note that convective clouds are an issue in our cat-

egorization. Due to the presence of abundant supercooled
liquid water, the cores of deep convective clouds can con-
tain rimed graupel and hail particles of much higher density
than the particles usually found in cirrus, which makes the
usual assumptions in ice‐cloud retrievals invalid. It is
therefore desirable to diagnose these situations. In the future
we would like to propose a new approach to identify these

clouds using the horizontal gradient of the reflectivity, since
such clouds have a very small horizontal extension com-
pared to their vertical extension.

3. Variational Method Combining Radar, Lidar,
and Radiometers

[24] In this section we describe briefly the method used to
retrieve ice properties combining CALIPSO attenuated lidar
backscatter, CloudSat radar reflectivity factor and infrared
radiances from IIR or MODIS. This scheme was originally
proposed by DH08 and readers needing more detail can
refer to this paper where the methodology is fully described.
Here, the description is restricted to the essential parts and
also the changes in the algorithm due to the application to
A‐Train data.

3.1. Formulation of the State Vector and Observation
Vector

[25] The algorithm used here is restricted to the ice clouds.
Lidar and radiometer are not used where ice clouds are
obscured by liquid drops. Keeping that in mind, in this
variational scheme we must decide what variables to use to
describe ice cloud properties. Following DH08 these vari-
ables will be retrieved and are represented as the state
vector, x:

x ¼

ln�v;1

..

.

ln�v;n

aln S
bln S

lnNb;1

..

.

lnNb;m

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð1Þ

[26] The visible extinction coefficient, av, in the geometric
optics limit, is directly linked to the lidar measurements and
the optical depth of the cloud, and in (1) is represented by a
value at each of the gates that ice is detected. DH08 included
in the state vector the extinction‐to‐backscatter ratio, S,
which was assumed constant with height. However this
strong constraint can be relaxed when the number of inde-
pendent measurements allows it, for instance when an
independent estimate of av is available (e.g. from a Raman
or high spectral resolution lidar), providing information on
the height dependence of S. Unfortunately, CALIPSO does
not have such channels, but when infrared radiances are
available we have enough independent information to allow
S to vary with height in the retrieval. Platt et al. [2002]
showed that ln(S) varies linearly with temperature. We
assume that the altitude dependence can be used instead of
temperature if temperature varies linearly with altitude. In
that case, ln(S) is expressed as a linear function of height:

lnðSÞ ¼ aln Sðz� zmidÞ þ bln S ; ð2Þ

where z is the altitude and zmid the height of the middle of
the cloud. Coefficients, aln S and bln S are, respectively, the
slope and the value of ln(S) at the middle of the cloud
sampled by the lidar, and they can be used to represent
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ln(S) in the state vector instead of ln(S). When no radiances
are assimilated (e.g. when liquid in the profile prevents the
radiance from being forward‐modeled using ice properties
above), aln S is removed from the state vector to revert to the
original assumption of DH08.
[27] Following DH08, we represent size information by

Nb, which is a basis‐function representation of the ratio of
“normalized number concentration parameter”,N*0, described
by Delanoë et al. [2005], to av

0.67, hereafter N′. N′ has a good
temperature‐dependent a priori. This choice of variable leads
to an efficient algorithm due to the reduced size of the state
vector, and simple 1D‐lookup tables in the forward model.
[28] The observation vector, y contains the measurements

Z (the CloudSat radar reflectivity factor), b (the CALIPSO
apparent lidar backscatter), Il (the Infrared radiance at
wavelength l) and DI (the difference between two Infrared
radiances) from MODIS or IIR.
[29] Valid lidar and radar measurements (detected as ice)

are not necessarily both available at each ice pixel due to the
radar’s insensitivity to thin cloud and the lidar’s inability to
penetrate thick cloud. Moreover, in the case of the lidar
signal it is advantageous to include in y any gates beyond
the far end of the cloud where molecular echoes are
detectable. This enables any molecular return measured here
to be used automatically as a constraint on optical depth
[Young, 1995; Cadet et al., 2005], explored further in
section 5.2. Nevertheless, this requires a confident identifi-
cation of molecular signals, as misclassification of cloud or
noise as molecular can lead to large errors in retrieved
optical depth. If radar or lidar measurements are missing at
any ice pixel they are simply excluded from y. Since the
lidar signal is strongly attenuated by liquid water, when
supercooled layer is detected, the lidar signal in and below
the liquid is not used even if it is identified as also con-
taining ice. In such regions, we assume that radar echo is
dominated by the ice, and that liquid attenuation of radar in
supercooled clouds can be neglected [Hogan et al., 2003a],
and hence in such a situation, the retrieval reverts back to
one using reflectivity only. Since liquid clouds are not included
in the forward models, it is not possible to simulate the
infrared radiances accurately when there is any liquid water
within the profile. Thus, we do not assimilate the infrared
radiances when there is any liquid detected. The radiances
are only introduced into the retrieval after the radar‐lidar
part of the algorithm has been run to convergence.

3.2. Formulation of the Optimal Estimation
and Forward Model

[30] The aim is to find the state vector that minimizes the
difference between the observations and the forward model
in a least‐squares sense. This is achieved by minimizing a
cost function using Gauss‐Newton iteration, as described
fully by DH08. A key input is observational error covariance
matrix (R), which includes both instrument and forward‐
model errors as discussed in section 4.
[31] The forward model used in the scheme is described

by DH08, and produces an estimate of the observations y
from the state vector x. This is achieved by first calculating
N*0 using N′, then using one‐dimensional look‐up tables to
relate the ratio av /N*0 to either an intensive variable y, or to
Y/N*0, where Y is an extensive variable. To create the one‐

dimensional look‐up tables, we assume a shape of the par-
ticle size distribution [Delanoë et al., 2005]:

NðDÞ ¼ N*
0 FðD=DmÞ; ð3Þ

where N*0 is the normalized number concentration parame-
ter, given by

N*
0 ¼ 44

6

M5
3

M4
4

; ð4Þ

where Mn is the nth moment of the ice particle size distri-
bution. Particle size in (3) is normalized by Dm, a measure of
the mean size of the distribution and defined as

Dm ¼ M3=M2: ð5Þ

[32] The function F in (3) is the “unified” size distribution
shape given by Delanoë et al. [2005], and has been found to
fit measured size distributions when they are appropriately
normalized (i.e. F fits N/N*0 versus D/Dm).
[33] To generate the look‐up tables, we cycle through a

wide range of values of Dm and for each calculate av /N*0,
y and Y/N*0 (where y and Y represent all intensive and
extensive variables of interest). The ice particle mass is
assumed to follow the Brown and Francis [1995] mass‐size
relationship derived from aircraft data in mid‐latitude ice
clouds. The corresponding area‐size relationship is taken
from Francis et al. [1998], who used the same aircraft data
set as Brown and Francis [1995].
[34] Geometric optics is used to calculate av via the area‐

size relationship above.
[35] The radar reflectivity factor Z, is derived using Mie

theory and assuming the particles to be homogeneous ice‐air
spheres of diameter D and mass m. Similarly, the ice water
content, IWC, is simply the integrated particle mass across
the size distribution. The intensive variable effective radius,
re, is derived using Foot [1988]

re ¼ 3

2

IWC

�v�i
; ð6Þ

where ri is the density of solid ice.
[36] The fast multiple‐scattering model of Hogan [2006]

is used to derive the lidar attenuated backscatter, it needs
as input the “equivalent‐area radius” ra, i.e. the radius of a
sphere with the same cross‐sectional area as the mean area
of the entire size distribution. A look‐up table is used to
convert av /N*0 to ra.
[37] The individual radiance calculations employ the

“two‐stream source function technique” of Toon et al.
[1989]. For each infrared radiometer channel, the radiance
forward model takes as input the scattering and absorption
properties derived from lookup‐tables using the relevant
cloud variables from the state vector (profiles of visible
extinction coefficient av and N′) and estimates of other
variables (profiles of temperature, pressure, humidity, O3

and CO2 concentrations, as well as skin temperature and
emissivity). To built the lookup‐tables, the scattering and
absorption properties for an individual ice particle, at each
radiometer wavelength l, are taken from the database of
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Baran [2003], which assumes aggregates. For each value of
av /N*0 we derived; extinction coefficient al, single‐scatter
albedo ~wl and asymmetry factor gl at each radiometer
wavelength l.
[38] As a priori, we use a N′(T) relationship derived using

in situ database as used by Delanoë et al. [2005]. DH08
showed that ln N′ is varying linearly with the temperature,
and therefore we derived the following expression:

lnN
0 ¼ 22:5� 0:089T ; ð7Þ

where T is the temperature in degree Celsius. So when one
of the measurements is missing the N′ has the value of the
a priori and allows to retrieve N*0 knowing av, then all
the forward model inputs can be deduced from the
lookup‐tables.
[39] A large amount of ancillary information is required

for each component of the forward model. This includes the
thermodynamic state of the atmosphere (in particular, pro-
files of temperature, pressure, humidity and ozone concen-
tration), the properties of the surface (skin temperature and
emissivity at the radiometer wavelengths), as well as the
properties of the instruments themselves (in particular the
lidar field‐of‐view to calculate the contribution from mul-
tiple scattering). Such information can be obtained with
adequate accuracy from the standard ECMWF analysis and
forecast products that are archived within the CloudSat
database introduced in section 2.1.

4. Errors Assigned in the Variational Scheme

[40] As stated in section 3.2, when a variational approach
is used we need to estimate R, the error covariance matrix of
the observations, and retrieved properties can be very
dependent on the values used. For the retrieval error to be
realistic it is important that R includes the errors in the
forward model. Consequently, it may be given by R = O +
M [Cooper et al., 2006], where O is the error covariance
solely due to instrumental error and M is the forward model
error. We assume R to be a diagonal matrix, where the
diagonal elements are simply the sum of error variances of
each of the elements of y and forward model errors. It is
reasonable to assume that errors in the measurements are
uncorrelated, but forward model errors can be slightly cor-
related, due, for example, to errors in the ancillary data
affecting several forward‐modeled values in the same sense.
However in this work we will assume that all these errors
are uncorrelated. This section describes which are these
errors and how we compute them; this work is relevant to
any variational scheme that uses radar, lidar or infrared
radiometers from the A‐Train.

4.1. Radar

4.1.1. Radar Forward Model Error
[41] As shown by DH08, the forward model error in Z is

a combination of the representation of the size distribution
and mass‐size variability, which leads to a random error in
Z due to microphysical assumptions of around DZmicro =
1 dB. This is used to form the diagonal elements of M
corresponding to the radar measurements.

4.1.2. CloudSat Instrumental Error
[42] We distinguish two categories of error in the radar

measurement, systematic error and random error. Systematic
error is typically a bias due a calibration error, but we will
assume that CloudSat radar calibration has been corrected
[Tanelli et al., 2008]. However we have found that using our
algorithm with a change in calibration of 1 dB and 2 dB
would lead, respectively, to a 10% and 20% error in IWC.
The variational formalism is not well suited to calibration
errors due to their high correlation.
[43] Random measurement error is due to a combination

of a finite number of samples and the background instru-
ment noise and can be computed following Hogan et al.
[2005] via:

DZdB ¼ 4:343ffiffiffiffiffi
M

p 1þ 1

SNR

� �
; ð8Þ

where DZdB is the one‐standard‐deviation random error in
dB, and M and SNR are respectively the number of pulses
averaged and the linear signal‐to‐noise ratio of CloudSat. It
is valid to assume that, due to the motion of the satellite,
each pulse is independent. M is reported for each ray but
SNR is not, so we have to compute it using the level 1 echo
power (containing noise) and the level 2 reflectivity (with
noise subtracted). We estimate that the background noise (in
dBZ) is given by the following relationship:

NdBZ ¼ �131:4þ 20 log10ðrÞ; ð9Þ

where r is the distance in meters of each radar gate from the
satellite. The linear signal‐to‐noise ratio can be easily ob-
tained:

SNR ¼ 100:1 ZdBZ�NdBZð Þ: ð10Þ

As mentioned in section 2.1, radar and lidar measurements
are at the same vertical grid. Radar reflectivity factor is now
vertically interpolated to 60 m, so random error must be
interpolated too.

4.2. Lidar

4.2.1. Lidar Forward Model Error
[44] When infrared radiances are not assimilated, the error

in the lidar forward model is dominated by the fact that the
lidar ratio S is assumed constant with height (exemplified by
the fact that we retrieve just a single value for the whole
profile). In reality this may vary with height in which case
the results of Hogan et al. [2006a] indicate that a radar‐lidar
algorithm will retrieve approximately a mean value for the
profile with the local error in extinction proportional to the
local error in lidar ratio. However, the contribution of this
error will be reduced when infrared radiances are assimi-
lated because the extra information enables us to relax the
assumption of constant lidar ratio. The lidar forward model
is also susceptible to errors in our ability to represent mul-
tiple scattering, but these are believed to be smaller than
those due to variations in S.
[45] In this section we estimate the impact of making the

assumption of S constant, first in the simulated backscatter
and then in the extinction retrieval. To do so, we used
simulated profiles of lidar backscatter and a visible extinc-
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tion derived from in situ data from the aircraft size spectra
obtained during the European Cloud Radiation Experiment
(EUCREX), in the same way as done by Hogan et al.
[2006a]. Apparent lidar backscatter profiles have been
computed by combining the visible extinction profile with
different extinction‐to‐backscatter ratio profiles, including
the effects of multiple scattering and attenuation using the
model of Hogan [2006]. The lidar characteristics of
CALIOP (Cloud‐Aerosol Lidar with Orthogonal Polariza-
tion) are used: a wavelength of 532 nm, and the lidar full‐
angle beam divergence and field‐of‐view are set to 0.1 and
0.13 mrad respectively.
[46] A wide range of values of S have been shown in the

literature for ice clouds; according to [Platt et al., 1987] and
Chen et al. [2002], S typically varies between 20 sr and
60 sr. Platt et al. [2002] show that for very cold ice
clouds, S can go up to 100 sr. However, there has been less
study of how S varies with height, and we test the sensitivity
of the retrieved to different shapes of profile. The dashed
lines in Figure 2a show two different profiles of S, consid-
ered as “truth” in the simulations. Both vary with height as
expected in real ice clouds. Profile 1 varies over around a
factor of 2 similar to the range found by Ansmann et al.
[1992], from 60 sr at the cloud top to 30 sr at cloud base.
Profile 2 aims to represent an extreme case of S variation
(basically two orders of magnitude), corresponding to
specular reflection [Thomas et al., 1990; Sakai et al., 2006]
(we will come back later to this effect) below 7 km; S is set
to 50 sr above this height and 0.5 sr below.
[47] Two apparent backscatter profiles are computed,

combining the extinction profile (Figure 2b, dashed black

line) and the two extinction‐to‐backscatter ratio profiles
described above, using the multiple scattering model of
Hogan [2006]. Note that these apparent attenuated back-
scatter profiles are simulated without instrument noise in
order to avoid contamination of the comparison between
varying S and constant S. The fractional error of using a
constant S to simulate these two apparent backscatter pro-
files is 0.48 and 2.6 (in a root‐mean‐squared difference
sense) for profiles 1 and 2 respectively. Therefore, we
assume that the error in forward modeling natural logarithm
of the attenuated backscatter is 0.5 (which corresponds to
50% in attenuated backscatter).
[48] These two profiles, with varying S, are used to esti-

mate the error in the retrieved extinction using the DH08
algorithm. The two extinction profiles retrieved assuming
S constant are displayed in Figure 2b. For profile 1, the root‐
mean‐squared difference in ln S between the retrieved con-
stant profile and truth is 0.24, corresponding to a 24% error in
retrieval S. The fractional root mean squared error in retrieved
extinction is 46%.
[49] The black dashed line (profile 2) aims to represent an

extreme case of S variation, corresponding to specular
reflection below 7 km. Specular reflection occurs when
horizontally oriented ice crystals reflect light as a mirror and
strongly increase the lidar signal while keeping the visible
extinction unchanged [Sakai et al., 2006] compared with
aggregates with same projected area. This occurs particu-
larly when the lidar is pointed directly at nadir. Once the
DH08 algorithm is applied to profile 2, the root‐mean‐
squared difference in ln S between the constant profile
retrieved and truth is 1.7 above 7 km and 2.9 below. Visible
extinction is therefore underestimated of 2 orders of mag-
nitude. The fractional error in retrieved extinction are 242%,
25% below 7 km and 330% above.
[50] To overcome the problem of specular reflection, the

CALIPSO lidar pointing was moved forward from 0.3 to
3.0 degrees forward from nadir at the end of November
2007.
4.2.2. CALIPSO Instrumental Error
[51] As for CloudSat, there are two major types of

instrumental lidar error: systematic error (such as calibration
error) and random error. Hogan et al. [2006a] showed that
lidar calibration has no effect on the retrieval since only
relative changes in b are used in the algorithm. Therefore
the absolute value is not important and bias in the CALIPSO
calibration will not affect the retrieval. The CALIPSO signal
is currently calibrated using nighttime profiles by normal-
izing the high‐altitude return signal to a molecular model
and daytime calibrations are interpolated from adjacent
nighttime calibrations [Winker et al., 2009].
[52] In order to estimate the error due to the noise in the

measurement, we use the approach of Liu et al. [2006].
Random errors in measured backscatter (sr−1m−1) at 532 nm
due to shot noise, according to Liu et al. [2006], can be
derived from:

D� ¼ NSF2� þ r2

C

� �2

ðDVbÞ2 þ ðDVbÞ2
h i( )1

2

ð11Þ

where NSF is the Noise Scale Factor representing the effect
of the photomultiplier tube for 532 nm channels to increase

Figure 2. Simulated profiles used to estimate the random
error due to assuming the extinction‐to‐backscatter ratio
(S) constant with height: (a) true profiles of S described in
the text (dashed lines) and the corresponding retrieved con-
stant profiles (solid lines), (b) visible extinction profile sim-
ulated from particle size distributions collected during
EUCREX (thick dashed black line) and retrieved visible
extinction coefficients using the DH08 algorithm using
constant S when the true S has the shapes shown in
Figure 2a (solid lines).
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to the noise above what would be expected purely from
Poisson statistics, r is the distance in meters of each lidar
gate from the satellite and C is the lidar calibration constant
such that the signal power is V = Cbr−2. All these quantities
are included in CALIPSO level 1B product. DVb and DVb

are respectively the standard deviation of the background
signal‐power, estimated by us using N samples above 30
km, and the standard error of the mean background signal,
which is given by

DVb ¼ DVb=
ffiffiffiffi
N

p
: ð12Þ

Db is first obtained for the highest 30 m vertical resolution
of the lidar and when backscatter values are averaged on to a
lower resolution grid (e.g. 60 m for this paper), low reso-
lution random errors are derived from:

D�n ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

D�2
30i

s
; ð13Þ

where Db30i is the random error in measured backscatter at
30 m vertical resolution and n the number of gates averaged.
When Db30i is constant with height, the high resolution
error is simply divided by the square‐root of the number of
gates averaged. The main effect of applying (11) is for much
higher error in the day.

4.3. Infrared Radiance Errors

4.3.1. Radiance Forward Model Errors
[53] In this section we show how errors in retrieved

infrared radiances are estimated. The error in the forward‐
modeled radiance depends on cloud thickness, surface
temperature and error in meteorological parameters such as
the temperature profile. The infrared radiance forward
model used here is detailed in DH08, where each individual
radiance calculation employs the “two‐stream source func-
tion technique”. Comparisons with the 16‐stream DISORT
code (Discrete Ordinates Radiative Transfer Program;
[Stamnes et al., 1988]) demonstrated that for zenith radiances
our code is accurate to better than 1% (see DH08). However
this study did not include uncertainties in the input para-
meters to the radiance code. In the literature, different
sources of uncertainties have been explored, including the
error due to different particle habit assumptions (1.5 K
according to Cooper et al. [2003]) and errors in humidity
and ozone profiles. Errors due to other input parameters;
(skin temperature, surface emissivity and air temperature)
must be also taken in account.
[54] Skin and air temperature errors have an effect on

observed top‐of‐atmosphere radiances that is dependent on
the optical depth of the intervening cloud, and consequently
need to be considered carefully. This radiative model first
uses a two‐stream calculation to estimate the upwelling and
downwelling monochromatic fluxes F ±, which are then used
as the source function in a radiance calculation for the
radiance measured by the MODIS or IIR infrared channels.
Unfortunately, this model is too complicated to rigorously
work out the radiance error associated with a particular
temperature error. Therefore, a much simpler model of
infrared radiative transfer is assumed for the purpose of
calculating error propagation, although we stress that in the
subsequent forward modeling of radiances, the full two‐

stream model is used. In the absence of scattering and
gaseous absorption, and assuming a single layer of physi-
cally thin cloud overlying a surface with an emissivity of
unity, we may write the zenith radiance as

I� ¼ �cBðTcÞ=�þ ð1� �cÞBðTsÞ=�; ð14Þ

where �c is the emissivity of the cloud, B is the Planck
function, and Tc and Ts are respectively cloud and skin
temperatures. For a radiance in the zenith direction, cloud
emissivity can be calculated from the infrared absorption
optical depth (tl):

�c ¼ 1� expð���Þ: ð15Þ

Infrared absorption optical depth can be well approximated
as half of the visible optical depth and the cloud emissivity
becomes:

�c ¼ 1� expð��v=2Þ: ð16Þ

[55] Since the radiances are only introduced into the
retrieval after the radar‐lidar part of the algorithm has been
run to convergence, we may use the visible optical depth
derived by radar and lidar here. In practice it is found that
the radar and lidar provide an optical depth that is close to
the value using all three instruments, and therefore the use of
this optical depth does not introduce substantial uncertainty
in the calculation of the error in Il. We take the partial
derivative of (14) with respect to Tc and Ts, and by assuming
each error is independent may sum the squares of the results
to obtain the error variance of the radiance:

DI2� ¼ DT 2
c �

2
c dBðTcÞ=dTc½ �2=�2

þDT2
s ð1� �cÞ2 dBðTsÞ=dTs½ �2=�2; ð17Þ

where DTs is the error in skin temperature, which is
assumed to be 3 K for ECMWF forecasts [Morcrette, 2001].
DTc is the error in the cloud temperature; we use a value of
0.6 K, which was the error estimated for ECMWF temper-
ature forecasts by Benedetti [2005]. The gradients of the
Planck function are straightforward to calculate at the Ts and
Tc (taken to be the cloud‐top temperature as detected by the
lidar). Note that it is not necessary to consider random error
in cloud emissivity, since we are calculating the error in
radiance due to parameters in the forward model that are
held constant during the subsequent retrieval process. Since
the cloud optical depth, and hence the cloud emissivity, will
be varied in order to better match the observed radiance in
the subsequent retrieval, there is no need to include this error
in (17).
[56] It is clear that the errors in radiance are strongly

dependent on the visible optical depth retrieved in the first
part of the algorithm: optically thin clouds let through a
substantial amount of radiation from the surface, and
therefore the surface temperature error contributes signifi-
cantly to the error in the radiance forward model. For
optically thick clouds, �c is close to unity, and so almost all
the measured radiation is emitted by the cloud, and hence
the errors in forward modeling the radiance arise entirely
from the lower error in the temperature profile.
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4.3.2. Infrared Measurement Errors
[57] An error estimate in the radiance measurements for

each MODIS wavelength is given as a percentage by the
“Cloudsat MODIS‐AUX Auxiliary Data”, with a typical
value of 0.5%. This error estimate is combined with the
errors due to the microphysical model [Cooper et al., 2003].

4.4. Radar‐Lidar Colocation Errors

[58] Another source of error arises due to the mismatch of
the radar and lidar beams. Illingworth et al. [2000] inves-
tigated this effect, and they estimated an error of 0.1 dB
when the lidar samples through the middle of the radar
footprint, increasing to 0.7 dB for a separation of radar and
lidar footprints of 1 km. These values correspond to the
RMS difference in reflectivity that would be found if the
lidar measured the same quantity as the radar. Accordingly,
we usually consider data to be acceptable when the sepa-
ration distance is less than 1 km, otherwise the alignment
cannot be trusted and no retrieval is performed. Fortunately,
in 97% of the time this distance does not exceed 1 km.

5. Results

[59] In this section, the algorithm is applied to case studies
of A‐Train data. The target categorization is obtained using
the methodology described in section 2.2, and error calcu-
lations needed for the variational approach are performed as
explained in the previous section.

5.1. Radar and Lidar Retrieval

[60] Figures 3a and 3e show an ice cloud sampled by the
CALIPSO lidar and the CloudSat radar on 22 September
2006 at around 15:29 UTC. This is a good illustration of the
complementarity between the lidar and the radar, since only
the lidar detects the second part of the cloud between
9.5 and 12.5° latitude, but it cannot completely penetrate the
cloud between 6 and 7.5°, while the radar can. They are able
to work together when the cloud becomes thick enough to
be detected by the radar down to the distance at which the
lidar is completely extinguished. Figure 3b shows the cat-
egorization obtained using the method described in section
2.2, where the ice phase is represented in light blue and
purely supercooled liquid in dark blue, and we can see that
most of this cloud is composed of ice, without any super-
cooled water layers detected (green). Since the DH08 algo-
rithm works only for the ice phase, the retrieved cloud
properties will be restricted to the part where the cloud is
represented in light blue although in a mixed‐phase cloud, a
radar‐only retrieval is performed. We can also see that the
lidar signal is completely extinguished from 6 to 7.5° and
there no molecular echo detected below most of the cloud.
[61] First we run the algorithm with only radar and lidar

(no MODIS data assimilated) and without using lidar
molecular scattering beyond the cloud as a constraint on
optical depth. The lidar forward‐modeled attenuated back-
scatter signal, at the final iteration of the algorithm, is
represented by Figure 3c and is in a good agreement with
the measured signal. The molecular signal is also simulated
(but not assimilated). Figure 3g represents the radar forward‐
modeled signal, once again in a good agreement with the
measurement indicating that the retrievals are well con-
strained by observations throughout the depth of the cloud.

Figures 3d, 3f, and 3h represent, respectively, the retrieved
visible extinction for ice, the ice water content and the ice
effective radius. There are no obvious discontinuities
between the regions where both instruments detect the cloud
to regions detected by only radar or lidar. Although there are
no validation data available (even if MODIS can be a partial
validation; see section 5.2), retrieved properties are in valid
ranges; for instance effective radius lies within the range 10
and 90 mm, and it tends to decrease toward the cloud top and
does not exceed 30 mm at the cloud top. However, the
effective radius appears to be very dependent on the altitude
of the cloud, especially when only one of the instruments is
available. This is partially due to the fact that when only one
instrument is available, the particle size information origi-
nates primarily from the a priori constraint on N′, which is
temperature dependent. Nevertheless, ice water content and
visible extinction coefficient appear to be much more
independent of the temperature, and the structures of the
cloud observed by the instruments are still conserved in the
retrieved variables.

5.2. Using the Lidar Molecular Signal Beyond
the Cloud

[62] When ice clouds are sufficiently thin to allow the
lidar signal to penetrate them entirely, the molecular signal
can be detected beyond the cloud and used automatically as
a constraint on optical depth [Young, 1995; Cadet et al.,
2005]. The attenuation due to the ice cloud affects the
molecular return and thus comparing the measured molec-
ular signal to that expected in the absence of clouds gives an
information on cloud optical thickness. To do this in a
variational framework we simply add a few gates (about 10)
beyond the far end of the cloud in y. The lidar forward
model is able to simulate the molecular scattering, including
the effect of multiple scattering, and can be included in the
assimilation process.
[63] Figure 4 represents the effect of adding this infor-

mation for the same ice cloud described in section 5.1, but
selecting the optically thin part where the molecular return is
detectable. This cloud was sampled during night‐time and
hence the attenuated backscatter signal is not too noisy, as
exemplified by Figure 4a. Figure 4b represents the visible
extinction retrieved by the algorithm without using the
molecular signal, while in Figure 4c the molecular signal is
used. This cloud is not well detected by the radar and
therefore we would expect the retrieval to be susceptible to
Hitchfeld‐Bordan instability ([Hitchfeld and Bordan, 1954])
if no molecular signal is detected and the cloud is too
optically thick. It can be seen that in some locations the
retrieved extinction is much lower when the molecular
signal is used. Figure 4d shows that optical depth is often
much lower when the molecular signal is used and it tends
to stabilize the retrieval especially around 11° and between
9.2° and 10° latitude. An independent validation is carried
out in Figure 4e, where infrared radiances at 10 mm are
simulated and compared to MODIS. Extinction around 11°
and between 9.2° and 10° is too large in the case of the
molecular signal not being used, and results in a radiance
much lower than observed by MODIS. This example shows
that making use of the molecular signal significantly
improves the retrieved extinction. However, this new con-
straint is very dependent on the quality of the target cate-
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gorization; we need to know accurately where cloud base
lies and which pixels only contain molecular scattering.
During day time, sunlight increases the noise in the lidar
signal and the small molecular signal is swamped by the
larger background solar signal. Therefore, we use it only
during the night.

5.3. Impact of the Choice of Mass‐Size Relationship

[64] As mentioned in section 3.1, our forward model
requires lookup tables which are derived assuming the Brown
and Francis [1995] relationships for spherical aggregates.
These relationships have been derived using mid‐latitude

Figure 3. Example of observations and retrieved ice cloud properties using the radar‐lidar algorithm (the
molecular lidar return beyond the cloud is not used) on 22 September 2006 at around 15:29 UTC:
(a) CALIPSO lidar observations, (e) CloudSat radar observations of the same scene, (b) the categorization
obtained using the method described in section 2.2, (c) the lidar forward modeled attenuated backscatter
signal at the final iteration of the algorithm, (g) the radar forward modeled signal, (d) retrieved extinction
coefficient of ice, (f) retrieved ice water content, and (h) retrieved effective radius.
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in‐situ aircraft data and the radar reflectivity they predict is
very close to observations [Hogan et al., 2006b], although
may not be entirely suitable for tropical or polar clouds.
Hogan et al. [2006a] estimated the impact of changing the
relationship from Brown and Francis [1995] to Mitchell

[2006] for two different radar‐lidar algorithms, and found
that the visible extinction was not affected. while IWC and
re were changed by about 30%.
[65] In this section we estimate this impact on our radar‐

lidar algorithm. Validation campaigns, where in situ mea-

Figure 4. Illustration of the effect of including the molecular return beyond the cloud on retrieved vis-
ible extinction, for part of the ice cloud represented in Figure 3. (a) Measured lidar attenuated backscatter.
(b and c) Retrieved visible extinction respectively without and with using the molecular signal.
(d) Retrieved optical depths. (e) Top‐of‐atmosphere radiance at 10 mm: measured by MODIS and forward
modeled both with and without molecular assimilated (note that the MODIS radiances were not used as a
part of the retrieval).
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surements are available under the track of the satellites,
could be used to partially estimate this error. However, due
to the complexity of this task and the fact that there is
considerable uncertainty on mass‐size relationships, even
from aircraft, coincident in‐situ data will not be used in this
paper. Instead, we quantify the impact of a change in the

assumed area‐diameter and the mass‐diameter relationships
for the retrieval of cloud properties.
[66] To do so, we created new lookup tables assuming the

mass‐area‐diameter relationships appropriate for bullet
rosettes with 5 branches proposed byMitchell [2006], instead
of spherical aggregates. Bullet rosettes are common in

Figure 5. Scatterplots of retrieved visible extinction and ice water content assuming spherical aggregates
[Brown and Francis, 1995] versus bullet rosettes. The results (a and d) for pixels only detected by lidar‐
only; (b and e) for radar‐only, and (c and f) for radar and lidar.
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midlatitude and polar cirrus clouds [Schmitt et al., 2006].
We compare the retrieved ice cloud properties using the
DH08 algorithm and assuming that ice particles are either
entirely bullet rosettes or entirely aggregates (except for the
smallest particles that are solid ice spheres in both cases).
We apply our algorithm on the case presented in Figure 1,
using radar and lidar. However, in some areas, lidar and
radar are not simultaneously available. The results of this
comparison are shown in Figure 5, where we split the
analysis into three instrument configurations: when lidar or
radar are assimilated but only one detects a particular pixel
in the profile, and when radar and lidar are used simulta-
neously. In a profile we can have all these configurations;
therefore note that the retrieval is affected simultaneously by
all regions due to using of a priori error covariances for
spreading of number concentration information in height
(see section 2.4 of DH08).
[67] Figure 5a represents the retrieved extinction assum-

ing bullet rosettes (hereafter aBR) as a function of the
retrieved extinction assuming Brown and Francis [1995]
(hereafter aBF), for lidar‐only pixels. Figure 5b represents
radar‐only pixels, and Figure 5c represents radar plus lidar. It
can be seen thataBR values are larger thanaBFwith an overall
bias of 45% and a spread over one order of magnitude. The
numerical results are summarized in Table 1 and show a root‐
mean‐squared spread of 60%. As shown by Figure 5b, the
overall bias is mostly due to the radar‐only contribution
(−101%), for which retrieved extinction is very sensitive to
the choice of ice particle type. Radar measurements alone
are not enough to accurately retrieve extinction since the
reflectivity is not directly linked to extinction; another vari-
able is needed such as number concentration, which is
obtained through an a priori relationship when lidar is not
available. Figure 5a reveals that for lidar‐only retrievals,
visible extinction is only affected by the change in particle
type by −20 ± 46%. In theory it should not be affected by
the area‐diameter and the mass‐diameter assumptions, but
this retrieval is affected by the radar only and radar‐lidar
part of the extinction profile. This has been verified using
only the lidar for the entire retrieval (i.e. the radar is not used
at all in the retrieval): the visible extinction retrieval does not
need to assume any particle shape once the extinction‐to‐
backscatter ratio is fixed (note that the extinction‐to‐back-
scatter is implicitly depending on particle shape), since in
the geometric optics limit, extinction is directly linked to the
lidar measurement (not shown).
[68] The regions detected by both radar and lidar are also

affected by the rest of the profile, as shown by Figure 5c, for
which the mean relative difference is about 28%. Since the
visible extinction is retrieved simultaneously using radar and

lidar, the radar contribution makes the retrieval dependent
on the particle shape assumption. Hogan et al. [2006a]
found that there is no effect on the extinction retrieval
since the Donovan et al. [2001] and Tinel et al. [2005]
algorithms that they analyzed used the radar signal to
assist in the correction for lidar attenuation. In our case the
radar is not only used to stabilize the retrieval, it also con-
tributes significantly to the retrieved extinction. However,
this is largely related to the ability of DH08 algorithm to act
as a radar‐only algorithm within the same profile, something
not possible with earlier two algorithms that can only work
where both instruments detect the cloud.
[69] The general behavior is slightly different concerning

ice water content (IWC). We use the lookup tables to derive
IWC, visible extinction and number concentration. The mean
relative difference overall is almost equal to zero, as shown in
Table 1. As shown in Figure 5d, lidar‐only IWC assuming
Brown and Francis [1995] (hereafter IWCBF) is greater than
IWC retrieved using bullet rosettes (hereafter IWCBR). The
opposite effect is shown for radar‐only. When radar and
lidar are used simultaneously, the difference in IWC is less
apparent although IWCBF is slightly larger than IWCBR for
the smallest IWC. The lidar‐only IWC retrieval is more
sensitive to the mass‐diameter assumptions (42 ± 37%),
since there is more dependence on the a priori assumption to
get IWC, and the lookup table is mass‐diameter dependent.
Radar‐only is also sensitive to density assumptions (−47 ±
117%) for the same reason. In the radar‐lidar region
(Figure 5f) the impact of the choice of particle habit is quite
small in terms of mean relative difference since it does not
exceed 10%.
[70] We do not plot the results for effective radius but we

can see in Table 1 that the results are similar to those found
by Hogan et al. [2006a], i.e the mean relative difference is
about 30% for radar‐lidar and radar‐only. However the
difference for lidar‐only is higher, greater than 50%. The
effective radius is proportional to the ratio of IWC to
extinction, therefore for radar‐only, since extinction and
IWC retrievals are both density dependent (IWCBR >
IWCBF and aBR > aBF), the effective radius is less affected.
For lidar‐only, the retrieved extinction is less dependent on
the density assumptions than IWC.
[71] To conclude this section, the assumed area‐diameter

and mass‐diameter relationships affect more the radar‐only
and lidar‐only parts of the retrieval than the radar‐lidar parts
of the retrieval, although the lidar‐only extinction retrieval is
not really sensitive. Note that all remote‐sensing retrievals
are subject to similar sensitivities. Fortunately, other con-
straints, particularly radiances, should help to reduce the
uncertainties.

5.4. Retrieval Using Radar, Lidar, and Infrared
Radiometer

[72] When infrared radiances are available, from MODIS
or IIR, they can be used as an extra constraint. To demon-
strate the impact of assimilating infrared radiances with
radar and lidar and with making use of radar, lidar and
radiometer, we run the algorithm on an ice cloud sampled
on 8 July 2006 by CloudSat, CALIPSO and MODIS.
Figures 6a, 6b, and 6m depict the radar reflectivity, the
attenuated backscatter and infrared radiance respectively.
This ice cloud is relatively optically thin and can be pene-

Table 1. Mean Relative Difference and Root‐Mean‐Squared
Difference for Retrieved IWC, Visible Extinction, and Effective
Radius Between [Brown and Francis, 1995] and Bullet Rosettes
[Mitchell, 2006] for the Case Shown in Figure 5

Instruments Used a IWC re

Radar only −101 ± 69% −47 ± 117% 28 ± 17%
Lidar only −20 ± 46% 42 ± 37% 52 ± 7%
Radar and lidar −28 ± 41% 9 ± 73% 30 ± 18%
Radar and lidar, radar only,

lidar only
−45 ± 60% −0.1 ± 37% 32 ± 7%
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Figure 6. Illustration of the impact of assimilating infrared radiances in the retrieval process. Latitude‐
height representation of an ice cloud observed by both (a) CALIPSO lidar and (b) the CloudSat radar on
8 July 2006. (c, f, and i) Visible extinction, number concentration parameter (N*0), and effective radius
retrieved using only radar and lidar, respectively. (d, g, and j) The effect of assimilating the infrared
radiances at 10 mm and the difference in radiance between 8 mm and 12 mm when S is assumed constant.
(e, h, and k) The impact of assimilating radiances when S is allowed to vary with height. (l) Retrieved
visible optical depth. (m) Simulated and observed radiances for the three experiments at 10 mm.
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trated by the lidar after −69° latitude, when ice is precipi-
tating and only the radar can fully penetrate the cloud.
Between −70 and −60°, only the lidar can detect the top of
the cloud. Since this ice cloud is over the sea, the forward
modeled radiance is not affected by surface emissivity
variations. However, some supercooled water layers have
been identified in the boundary layer after −60°, and
therefore the radiances are not be assimilated at these times.
[73] Retrieved ice cloud properties are shown in Figure 6,

where Figures 6c, 6f, and 6i are respectively, visible
extinction, number concentration parameter (N*0) and
effective radius retrieved using only radar and lidar (we also
make using the molecular signal beyond the cloud as
described in section 5.2). As illustrated by Figures 6d, 6g,
and 6j, the effect of assimilating the infrared radiance at
10 mm and the difference in radiance between 8 mm and
12 mm is clearly to increase av and N*0 and reduce effective
radius at cloud base. In order to match the colder brightness
temperature measured by MODIS, the algorithm must
increase the extinction somewhere in the profile and there-
fore the optical depth. We would expect radiance assimila-
tion to increase extinction and number concentration at
cloud top and not at cloud base, since this is the part of the
cloud that the radiances are most sensitive to. This does not
occur due to the fact that we do not allow S to vary. Because
the lidar signal strongly constrains the extinction at the
cloud top, the only way the algorithm can match the mea-
sured radiance is to increase av at the cloud base where it is
less constrained by the lidar (it also needs to increase av

much more than it would if av was being increased at cloud
top but still cannot reduce the forward‐modeled radiances
all the way to the observations).
[74] To solve this problem, we allow extinction‐to‐back-

scatter ratio to vary linearly with height (as mentioned in
section 3), and Figures 6e and 6h show that av and N*0
increase not only at cloud base but also at cloud top, and
results also in a lower optical depth than in the case of
constant S. Effective radius (panel k) decreases at the cloud
top compared to radar‐lidar only and assimilating radiances
with S constant. Figure 6m shows that forward‐modeled
radiance with S variable in blue is closer to the observed
radiance in grey. Note that the change in S, when it is
allowed to vary linearly with height, is about 20% with
respect to S constant.
[75] This section has shown how infrared radiances can be

assimilated in the radar‐lidar algorithm. However, to eval-
uate whether or not assimilating improves the retrieval we
would need to compare the result to independent data. Since
the use of radiances should improve the retrieved properties,
we plan to carry out an evaluation using our retrievals to
compute longwave and shortwave fluxes at the top of the
atmosphere and compare them to Clouds and the Earth’s
Radiant Energy System (CERES).

6. Conclusion

[76] In this paper, the DH08 algorithm has been modified
and applied to A‐Train data, using spaceborne radar, lidar
and infrared radiometers to retrieve ice cloud properties. The
first step needed is to merge the radar and lidar profiles since
these two instruments are not on the same platform or
reported on the same grid. Since the algorithm works only

for ice cloud, we first implemented a cloud phase identifi-
cation method similar to Hogan and O’Connor [2004],
including identification of supercooled water layers using
the lidar signal and temperature. In terms of the variational
algorithm itself, a change to the original algorithm was to
add the capability for extinction‐to‐backscatter ratio to vary
with height when infrared radiances are available. We also
included calculation of both observational and forward
model errors.
[77] The algorithm has recently been run on a large vol-

ume of A‐Train data and these retrieved cloud properties are
currently being used to evaluate the clouds in the forecast
models of the UK Met Office and ECMWF (T. Stein et al.,
A comparison between different retrieval methods for ice
cloud properties using data from the CloudSat and A‐Train
satellites, manuscript in preparation, 2010; J. Delanoë et al.,
Evaluation of ice cloud representation in ECMWF and UK
Met Office models using CloudSat and CALIPSO data,
manuscript in preparation, 2010).
[78] The flexible algorithm presented here is very suitable

for the future mission EarthCare [ESA, 2004], which will
include a High Spectral Resolution Lidar [Shipley et al.,
1983] that can observe the molecular signal even within
cloud. A Doppler radar will add the capability to charac-
terize the vertical motions in clouds and providing infor-
mation on particle size via the measured fall speed
[Matrosov et al., 2002; Delanoë et al., 2007]. It is a rela-
tively straightforward matter to add forward models for
these additional measurements within the same retrieval
framework, and we have recently done this for the High
Spectral Resolution Lidar of the forthcoming EarthCare
satellite [Delanoë and Hogan, 2008b].

[79] Acknowledgments. The input data were obtained from the
NASA Langley Research Center Atmospheric Science Data Center and
the NASA CloudSat project. This work was supported by NERC grant
NE/C519697/1 and European Space Agency grant 20990/07/NL/EL.
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