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Abstract 

A series of six low molecular weight elastomers with hydrogen bonding end-groups have 

been designed, synthesised and studied. The poly(urethane) based elastomers all 

contained essentially the same hard block content (ca. 11%) and differ only in the nature 

of their end-groups. Solution state 
1
H NMR spectroscopic analysis of model compounds 

featuring the end-groups demonstrate that they all exhibit very low binding constants, in 

the range 1.4 to 45.0 M
-1

 in CDCl3, yet the corresponding elastomers each possess a 

markedly different nanoscale morphology and rheology in the bulk. We are able to 

correlate small variations of the binding constant of the end-groups with dramatic 

changes in the bulk properties of the elastomers. These results provide an important 

insight into the way in which weak non-covalent interactions can be utilized to afford a 

range of self-assembled polyurethane based materials that feature different morphologies.   

 

Introduction 

Supramolecular polymer chemistry has become a major field of research in recent years.
1
 

Typically, supramolecular polymers consist of relatively low molecular weight species 

which are able to spontaneously assemble into higher ordered structures through designed 

motifs that can form reversible non-covalent bonds.
2
 Supramolecular materials utilizing 

hydrogen bonding interactions have received
3,4

 the most widespread attention, but in 

principle, any non-covalent bond forming process could be employed, as demonstrated 

by the synthesis of materials harnessing the dynamic nature of metal-ligand 

complexation
5
 and - stacking

6
 interactions to form supramolecular materials. 
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As with conventional, covalently bonded polymers, the macroscopic properties of 

supramolecular polymers (such as viscosity and tensile strength) are intimately related to 

the degree of polymerisation (DP). For supramolecular polymers in dilute solution, the 

relationship between monomer concentration ([M]) and DP and the can be approximated
7
 

to be proportional to (Ka[M])
0.5

, where Ka is the association constant of the monomers. In 

these systems, Ka can be altered by the application of an external stimulus which directly 

affects the physical properties of the polymer.  Subsequent removal of the stimulus 

allows the supramolecular bonds between the monomers to reform, thus restoring the 

original mechanical properties of the material. This characteristic affords supramolecular 

systems with reversibly switchable physical properties, a feature which cannot be 

achieved easily though conventional covalent polymer synthesis. As a consequence of the 

relationship between DP and Ka, early studies in this field focused on increasing the 

binding constant between the monomeric components of the supramolecular polymer. 

This resulted in the production of materials with solution state properties analogous to 

those of conventional high molecular weight covalently bonded polymers. As a result, 

carefully designed, highly pre-organised hydrogen bonding motifs that exhibit high 

binding constants (<10
6
 M

-1
) were reported by the groups of Meijer

 
and Sijbesma

8
 and 

Zimmerman.
9
 Bulk supramolecular polymers that are assembled from monomers which 

exhibit high binding constants require significant energy to disrupt the supramolecular 

assembly. Thus, disassembly of the supramolecular complexes to give dramatic changes 

in viscosity requires high temperatures (for example,
10

 the storage modulus (G’) of a 

supramolecular complex comprised of tetraethylene glycol bis(4-benzoic acid) and 

2,2',6,6'-tetrakis[ (4-pyridylmethylene) iminolphenoxylbiphenyl] only decreased by an 

order of magnitude when the temperature is increased from 150 °C to 190 °C (4.5×10
6
 to 

2×10
5 
Pa).  

 

Whilst the relationship between DP, Ka and the physical characteristics of supramolecular 

polymers in dilute solution is well understood, the same rational cannot be applied 

directly to the prediction of bulk properties of the materials. In the solid state, polymer 

morphology and crystallinity play equally important rôles in the final properties of the 

material. Early reports of these relationships include studies by Lillya et al. who found
 11
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that the addition of simple benzoic acid residues to low molecular weight 

poly(tetrahydrofuran) (PTHF) (Mn ≈ 2000 Da) transformed the waxy parent polymer  to 

an elastomeric solid. The strength of the material is derived from crystallization of the 

end-groups into hard microdomains
12 

which afford the polymer a three dimensional 

network structure. Rheological analysis demonstrated that the storage modulus for the 

self-assembled material decreased from 10
6
 Pa to ≈ 0 Pa between 50 and 70 ˚C. Dramatic 

changes in viscosity such as this, over readily accessible temperatures represent a genuine 

advantage for large scale polymer synthesis and processing.  Since this report, stable 

supramolecular assemblies generated by phase segregation driven by crystallinity and 

hydrogen bonding have been studied by several groups.
13,14,15

 Notably, Rowan et al. have 

demonstrated the ability to harness the co-operative power of multiple weak hydrogen 

bonding units (≈5 M
-1

) from the addition of adenine derivatives to PTHF (Mn = 1,400 g 

mol
-1

).
16

 This procedure transformed soft waxy PTHF into a highly thermally sensitive 

material which was mechanically stable at ambient operating temperatures (G’ is ca. 10
6
 

at 120 °C).  

 

We have recently reported the synthesis of a series of low molecular weight (<650 Da) 

bisurethane derivatives via a simple one-pot procedure from inexpensive and readily 

available starting materials.
17

 Extensive 
1
H

 
NMR, IR spectroscopic and viscometric 

analysis demonstrated that these bisurethane species assembled into extended hydrogen 

bonded networks both in solution and in bulk. Rheological analysis in the bulk revealed 

that these bisurethanes behaved in an analogous fashion to high molecular weight 

polyurethanes (Mw ≈ 50,000 g mol
-1

) despite their monomeric nature and low association 

constants (>15 M
-1

). Furthermore, we have also demonstrated
18

 that this bisurethane 

hydrogen bonding motif could be introduced readily into isocyanate terminated pre-

polymers. Addition of the end-group to the prepolymer was found to have a dramatic 

effect on the physical properties of the bulk material, transforming the viscous 

prepolymers into elastomers which exhibited highly temperature dependent rheological 

characteristics. These elastomers were synthesized through a simple procedure that 

involved the addition of either an alcohol or amine derivative to a prepolymer followed 

by isolation via precipitation. This methodology permits the rapid production of a series 
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of structurally related materials enabling the influence of atomic level changes to either 

the hydrogen bonding ‘hard’ segments or the polymer ‘soft’ segments to be investigated 

in a systematic fashion. Herein we report the results of a structure-property investigation 

of series of self-assembling polyurethanes by correlating changes in hydrogen bonding 

ability on the nanostructure and mechanical properties of the bulk elastomers. 

 

General experimental 

Materials 

Poly(ethylene-co-butylene) diol (Mn=3500, Mw/Mn = 1.08) was supplied by Henkel UK 

Limited. Reagents were purchased from Acros Chimica, Aldrich Chemical Company and 

Alfa Aesar and were used without further purification. Tetrahydrofuran (THF) was 

distilled from benzophenone and sodium. 

Characterisation 

1
H Nuclear magnetic resonance spectroscopy was performed on a Bruker AMX400 

(400 MHz) spectrometer or a Bruker AC250 (250 MHz) spectrometer (using the 

deuterated solvent as lock). 
13

C Nuclear magnetic resonance (
13

C NMR) spectroscopy 

was performed on Bruker AMX400 (100 MHz) spectrometer or a Bruker AC 250 

operating at 62.5 MHz. Infrared spectroscopy was performed using either a Perkin Elmer 

1720-X spectrometer or a Bruker Equinox 55 FT-IR microspectrometer fitted with MCT 

D316 IR scope detector in transmission mode. The samples were analysed as either neat 

films or in solution between two potassium bromide or sodium chloride disks. Gel 

permeation chromatography (GPC) was performed by Smithers RAPRA UK using a 

Viscotec TDA model 301 equipped with a PLgel guard column and two mixed bed-D (30 

CM, 5 M) columns. Detection was achieved using a refractive index detector with 

differential pressure and light scattering. The samples were analyzed at 30 C using THF 

as the eluent at a flow rate of 1 mL/min. The instrument was calibrated using low 

polydispersity polystyrene standards. Glass transition temperatures (Tg) were determined 

using a TA Instruments DSC 2920 differential scanning calorimeter. DSC was performed 

scanning from -80 C to 150 C (at a rate of 3 K/min modulated). Rheological analysis 

was performed on a TA Instruments AR2000 Rheometer at a constant frequency of 10 

Hz. 
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SAXS experiments were performed on station 2.1 at the Synchrotron Radiation Source, 

Daresbury Laboratory, UK and station A-2 of HASYLAB at Deutsches Elektronen-

Synchrotron (DESY) in Hamburg, Germany. A two-dimensional RAPID area detector 

was used on station 2.1 at Daresbury to acquire SAXS patterns. WAXS data were 

obtained at station A-2 DESY using a linear detector. Since orientation was not observed 

in the SAXS patterns, data were reduced to one-dimensional form using software BSL, 

with appropriate background subtraction. The wavenumber q = 4sin/ (scattering angle 

2, wavelength  = 1.5 Å or 1.4 Å) scale was calibrated using wet collagen (rat tail 

tendon). 

 

Full synthetic procedures and characterization for the model componds can be found in 

the supporting information (see Supporting Information). Binding constants were 

determined by a dilution-titration followed by 
1
H NMR spectroscopic analysis (see 

Supporting Information). These data were analysed by ‘Dynofit 4’ to generate the 

binding constant and confidence interval using the Michaelis-Menton equation: 

  

 
 

 TK

TK
T

a

a






1

max
max


  

 

Synthesis of isocyanate terminated pre-polymer 14. Poly(ethylene-co-butylene) diol 

13 (250.0 g, 0.071 mol) was heated at 120 °C under vacuum for 1 h before MDI (35.7 g, 

0.143 mol) was added to the stirred polymer under a nitrogen atmosphere. After 60 

minutes heating, a vacuum was applied for 30 minutes before the heat was removed and 

the system flushed with nitrogen to generate pre-polymer 14 which was then stored at -18 

°C and used as required. 

 

Polymers 16, 18 and 19 were prepared according to the general procedure described for 

15 (see Supporting Information). 

 

4-((4’-Carbamic acid 2-[bisbutyl-amino]-ethyl ester) benzyl)-phenyl-amino-carbonyl 

terminated poly(ethylene-co-butylene) diol 15. To a stirred solution of prepolymer 14 
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(4.34 g, 0.362 mmol) in dry THF (50 mL) under a nitrogen atmosphere was added  2-

hydroxyethyl-N,N-bisbutylamine (0.45 mL, 2.2 mmol) and the mixture was heated under 

reflux for 18 h. The material  produced was purified by repeated precipitation from 

methanol at -78 °C to furnish the desired polymer 15 as a clear light brown tacky wax 

material (3.85 g, 71 %); IR (CDCl3, KBr) max/cm
-1

 2904, 2855, 1728, 1613, 1595, 1523, 

1461, 1413, 1379, 1310, 1216, 1064;
 1

H NMR (400 MHz, CDCl3)  0.81-0.84 (m), 0.88-

0.92 (m), 1.03-1.26 (m), 1.60-1.70 (m),  2.46-2.50 (t, J = 7.5 Hz), 2.71-2.74 (t, J = 6.0 

Hz), 3.88 (s), 4.12-4.22 (m), 7.09-7.20 (m), 7.26-7.29 (m); 
13

C NMR (100 MHz, CDCl3) 

 10.6-11.1, 14.3, 20.9, 26.1-27.0, 29.6, 30.0-31.2, 33.5-33.8, 38.1-39.1, 40.8, 52.9, 54.7, 

63.5, 63.9, 119.1, 129.6, 136.3, 136.5, 154.0; GPC (THF): Mw 27,000, Mn 15,200. 

 

Polymers 20 was prepared according to the general procedure described for 17 (see 

Supporting Information). 

 

4-((4’-Carbamic acid 2-[bis-(2-hydroxyethyl)-amino]-ethyl ester) benzyl)-phenyl-

amino-carbonyl terminated poly(ethylene-co-butylene) diol 17. To a stirred solution 

of triethanolamine (0.38 g, 2.6 mmol) in dry THF (10 mL) under reflux was added 

dropwise a solution of prepolymer 14 (5.00 g, 0.417 mmol) in dry THF (125 mL). After 1 

h the reaction was cooled to room temperature and the product isolated by repeated 

precipitation from methanol at -78 °C to furnish 17 as a clear colourless elastomer (3.36 

g, 62 %); IR (CDCl3, KBr) max/cm
-1

 3436, 3154, 2961, 2926, 2854, 1793, 1729, 1595, 

1522, 1463, 1413, 1380; 
1
H NMR (400 MHz, CDCl3)  0.80-0.85 (m), 1.07-1.26 (m), 

1.60-1.70 (m),  2.71-2.75 (t, J = 5.0 Hz), 2.81-2.85 (t, J = 5.5 Hz), 3.60-3.63 (t, J = 5.0 

Hz), 3.88 (s), 4.14-4.25 (m), 7.04-7.08 (m), 7.26-7.30 (m); 
13

C NMR (100 MHz, CDCl3) 

 10.6-10.9, 25.9-26.8, 30.0-31.2, 33.5-33.8, 38.1-39.1, 40.5, 54.3, 56.9, 59.6, 63.2, 63.9, 

118.8, 129.4, 136.0, 136.2, 153.9; GPC (THF): Mw 35,100, Mn 17000. 

 

 

Results and discussion 

The initial focus of this investigation was the design of supramolecular urethane based 

polymers which feature end-groups that possess varying degrees of hydrogen bonding 

capability in order to realize ‘tunable’ materials. The end-groups were selected in line 
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with our previous investigations
17,18

 in order to deliver materials that possessed a non-

crystalline, yet interpenetrating, phase separated morphology. These design criteria are 

important as the introduction of physical, crystalline cross-links into non-covalently 

bonded polymeric materials has previously been shown to have a dramatic impact on the 

physical properties of the materials, over and above the hydrogen bonding interactions 

that we aimed to study.
11,16

 In addition, recent work by Sibjesma et al. has demonstrated
19

 

that telechelic supramolecular polymers which assemble via end to end binding, but lack 

secondary lateral interactions, leads to one dimensional aggregation in the solid state and 

thus a lack of strength in the axis of the material perpendicular to the orientation of the 

hydrogen bonding system.  
 

As part of this study, three relatively inexpensive residues based on a central aliphatic 

tertiary amine motif were selected as the polymer end-groups. The tertiary amine element 

acted as a hydrogen bonding acceptor whilst the non-planar geometry of this unit was 

predicted to hinder crystallization of the end-groups. Two of the substituents on the 

tertiary amine were either butyl groups (without hydrogen bonding capability), part of a 

cyclic ether (morpholine - which may be considered a hydrogen bonding acceptor), or 

two alcohol moieties (which can act as hydrogen bond acceptors and donors). Lastly, the 

end-group was introduced onto the isocyanate termini of the pre-polymer either via an 

alcohol (Figure 1, 1-3) or amine functionality (Figure 1, 4-6) to afford the corresponding 

urethane or urea moieties, respectively. We have shown previously that the addition of 

these end-groups (1-6) to methylene diphenyl diisocyanate (MDI) leads to polymeric-like 

materials.
17

 These materials possess an irregular hydrogen bonded array as a consequence 

of the conformational flexibility of the end-groups disfavoring supramolecular linear 

chain extension, delivering the three dimensional morphology that generates mechanical 

robust materials.  
 

 

1 X = O 

4 X = NH 

 

 

2 X = O 

5 X = NH 

 

3 X = O 

6 X = NH 

Figure 1 Structures of end-groups 1-6. 
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Prior to the study of the self-assembling polymeric systems, model compounds featuring 

the hydrogen bonding end-groups (1-6) were synthesized
17

 to verify that their hydrogen 

bonding properties met the design criteria (7-12 in Table 1). Each model compound 

contained one of the end-groups in addition to an aliphatic group which was designed to 

replicate the polymer chain.
20

 In some cases it was necessary to use a branched aliphatic 

residue (2-ethyl hexanol) to aid the solubility of the final product. It was possible to 

ascertain the self-associative binding constants of these model compounds (7-12) in 

solution (CDCl3, 25 °C). This was accomplished by measuring the change in position of 

the key NH proton resonances on the urethane (and/or the urea when present) with 

respect to concentration.
17

 The binding constants for the six model compounds are 

reported in Table 1 (see Supporting Information).  
 

Compound Ka/M
-1 

R1 

X = O X = NH 

 

 

7 

1.4 ± 0.4 

 

10 

6.9 ± 1.7 

 

7 = undecane 

10 = 2-ethylhexane 

 

 

 

 

8 

1.5 ± 0.3 

 

11 

9.7 ± 4.5 

 

8 = undecane 

11 = 2-ethylhexane 

 

 

 

 

9 

15 
17

 

 

12 

45 ± 11 

 

9 = decane 

12 = 2-ethylhexane 

Table 1 Structures and binding constants (CDCl3, 25 ˚C) for the model compounds 

7-12 

As predicted, the binding constants for the model compounds correlated with increasing 

hydrogen bonding potential of the end-groups in the order dibutyl<morpholine<diol 

within the series of compounds that contained either two urethane moieties (7, 8 and 9) or 

a combination of a urea and a urethane functionality (10, 11 and 12). In each case, the 

binding constant for the model compound that contained both urea and urethane groups 

was higher than that for the analogous model compound that contained two urethane 

groups. In all cases, the binding constant was low (between 1 and 45 M
-1

), far below that 

needed to produce an appreciable DP in dilute solution.
8
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With this data in hand, attention turned to the synthesis of the polymeric systems (15-20) 

which would be modified to contain the end-groups 1-6. The synthesis of these 

supramolecular polymers was achieved by the addition of two equivalents of the alcohol 

or amine functionalized end-groups (1-6) to a pre-polymer (14) synthesized by the 

addition of MDI to poly(ethylene-co-butylene) diol (13, [P(E-co-B)]) (NCO to OH ratio 

2:1), according to our previously established methodology
18 (Scheme 1) in order to  

deliver a prepolymer with a predicted molecular weight of 12 kDa (see Supporting 

Information). We predicted that the non-polar nature of P(E-co-B) would induce phase 

separation from the polar, hydrogen bonding end-groups and aid the delivery of the 

desired supramolecular hydrogen bonded elastomers.  
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X-R2 X = O 

Prepolymer: NCO/OH = 2:1  

  X = NH 

Prepolymer: NCO/OH = 2:1  

Compound Mn/ Mw 

(g/mol) 

Hard 

segment 

content 

(%) 

Compound Mn/ Mw 

(g/mol) 

Hard 

segment 

content 

(%) 

 

 
 

 

 

15 

 

 

 

15,200/ 

27,700 

 

 

11.4 

 

 

18 

 

 

13,800/ 

27,800 

 

 

11.4 

 

 

 
 

 

 

 

16 

 

 

 

15,600/ 

28,200 

 

 

10.7 

 

 

19 

 

 

11,000/ 

17,800 

 

 

10.7 

 

 
 

 

 

17 

 

 

17000/ 

35,100 

 

 

11.0 

 

 

20 

 

 

12,700/ 

27,000 

 

 

11.0 

 

Scheme 1 Synthesis and structures of supramolecular self-assembling polymers 15-20. 
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As a consequence of the high reactivity of the prepolymer isocyanate endgroups, the 

molecular weight of 14 could not be measured directly. However, the averaged Mn value 

of the polymers 15-20 was 14 kDa as determined by GPC analysis, which was 

comparable to the targeted molecular weight of 12 kDa.  

 

Each of the supramolecular polymers 15 to 20 was isolated as a rubbery-like material 

which was soluble in organic solvents such as chloroform and THF. In contrast to the 

pre-polymer 14, a sticky viscous material at ambient temperature, the polymers (15 to 20) 

could be solution cast to form optically transparent, self-supporting elastomeric films, 

thus demonstrating the effect that the end-groups have on the physical properties of the 

P(E-co-B) prepolymer 14. It should be noted that as a consequence of the closely related 

composition of the polymers (15-20), each contained essentially the same proportion of 

hard block segments (11% +/- 0.4%). Therefore, differences in the morphology and 

mechanical performance within this series of polymers must be related to the small 

structural changes within the end-group of each polymer. 

 

To confirm that these polymers met the design criteria (vide supra) each of the samples 

was analysed by solid state FTIR and differential scanning calorimetry (DSC). The FTIR 

spectra for the polymers containing end-groups appended to the pre-polymer (14) via a 

urethane linkage (15-17) or urea linkages (18-20) are shown in Figures 2a and b, 

respectively. The FTIR spectra for urethane terminated polymers 15-17 all exhibited 

strong absorbances for both the free (1730 cm
-1

) and hydrogen bonded (1710 cm
-1

) 

urethane groups.
21

 This spectroscopic data suggests that a proportion of the urethane 

groups are distributed throughout the soft segment, rather than constrained within densely 

hydrogen bonded hard segments.
16

 In addition, IR spectroscopic analysis of polymers 18-

20 (which contain both urethane and urea moieties), revealed absorbance bands 

corresponding to both free and hydrogen bonded urethane groups (1730 cm
-1

 and 1710 

cm
-1

, respectively) as well as intense bands indicative of disordered urea stacking (1660-

1680 cm
-1

). Absorbances consistent with ordered urea domains (ca. 1630 cm
-1

) were, in 

contrast, relatively weak indicating that these materials did not feature significant 

crystalline domains, in line with our original design criteria. 
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a b 

Figure 2 (a) Partial FTIR spectra for polymers 15-17 and (b) polymers 18-20. 

 

Furthermore, the absence of crystallinity within all six polymers (15-20), was confirmed 

by DSC analysis (see Supporting Information). Melting exotherms were not observed 

during either the heating or cooling cycles thus demonstrating the desired amorphous 

morphology in all of these polymers. However, each thermogram featured a readily 

identifiable glass transition at ca. -60 ˚C, typical of that expected for the P(E-co-B) soft 

segment.  

 

To obtain a deeper understanding of the morphology of these materials, polymers 15-20 

were analysed by both wide angle X-ray scattering (WAXS) and small angle X-ray 

scattering (SAXS). Analysis of the WAXS scattering patterns confirmed the lack of 

crystallinity of the end-groups but revealed the local packing of the self-assembled 

polymer network through the planar hydrogen bonds between the urethane or urea 

groups. All of the WAXS scattering patterns featured an isotropic halo at 2θ which 

indicated a lattice spacing of 4.7 Å for the stacking of the urethane/urea moieties.
22

 This 

lattice spacing was consistent regardless of the polymer end-group under analysis.  

 

Each of the polymers (15-20) exhibited a single Bragg peak in the SAXS profiles, 

suggesting a microphase separated morphology on the 5.9-8.1 nm length scale (Figure 3). 

The phase separation is driven by the immiscibility of the hard, hydrogen bonding end-

groups within the soft, non-polar central P(E-co-B) blocks. The intensity of the scattering 
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signal increased with the type of end-group in the order dibutyl<morpholine<diol. For 

each of these end-groups, the urethane/urea containing polymers (18-20) produced 

scattering signals with higher intensity when compared to the polymers (15-17) that 

possessed only urethane moieties. The relationship between the dilute solution binding 

constant for the end-groups and the bulk peak scattering intensity is illustrated in Figure 

3.  

 

 

Figure 3 SAXS analysis of polymers 15-20 at 25 °C. (Insert) plot of peak scattering 

intensity versus binding constant. 

 

The intensity of the scattering signal is related to the degree of phase separation, and 

therefore increasing the binding constant increases the phase separation between the soft 

and hard sections. It can be seen for polymers 15-17 which contain end-groups with very 

low binding constants (ca. 1 to 7 M
-1

), there is little increase in the absolute scattering 

signal (250-600 units). In contrast, further increase in binding constant of the end group 

from 7 – 15 M
-1 

(17-19) results in a dramatic increase in the scattering intensity from 500 

to 2500 units. However, further tripling of the binding constant of the end group to 45 

M
-1

 (20) had a much smaller effect on the degree of phase separation with the scattering 

intensity only increasing to ca. 3100 units. These data suggest that there is a minimum 
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binding constant necessary to produce appreciable phase separation, but in addition there 

is a point at which maximum phase separation has been achieved and a further increase in 

binding constant only provides limited changes to the polymer morphology.  

 

Rheological analysis of the supramolecular polymers (15-20) was carried out on a 

parallel plate rheometer operating at a constant frequency of 10 Hz with a temperature 

ramp of 3 °C/min.  Storage moduli were measured as a function of temperature over the 

range -75 °C to at least 100 °C. All of the polymers appeared
23

 to exhibit a drop in 

storage modulus between -35 °C and -60 °C from ca. 10
7 

Pa to 10
6 

Pa, consistent with a 

phase transition occurring in the soft P(E-co-B) segments of the blend (Figure 4). The 

storage modulus for each polymer remained constant at this plateau (10
6 

Pa) until 

beginning to reduce significantly as the temperature was increased. The end of the 

plateau region occurs at a temperature between 0 °C and 50 °C, depending on the 

molecular structure of the material. This rheological profile is entirely consistent with a 

multiphase morphology and has been observed previously for a range of structurally 

diverse, segmented poly(urethanes) in the solid state.
24,25

 

 

The effect of structure on the rheological profile is further evident from the relationship 

between end-group binding constant in dilute solution and the temperature at which 

storage modulus for each polymer in bulk deviates from the plateau region (Figure 4, 

insert) (as defined by the temperature at which the storage modulus drops below 10
5
 Pa). 

Thus, whilst the storage modulus of the polymers at low temperatures (i.e. below 0 °C) is 

independent of the nature of the end-group, the temperature at which the storage modulus 

deviates from the plateau region is directly related to the binding constant. 
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Figure 4 Variation of storage modulus with temperature for supramolecular polymers 15-

20. (Insert) Plot of end-group binding constant against the temperature at which the 

storage modulus for the respective polymers falls below 10
5
 Pa. 

 

The high thermal responsiveness of these polymers may be exemplified by studying the 

rheological response of the morpholine end-capped supramolecular polymer 19 (Mn = 

11,000 g mol
-1

) which exhibits a reduction in storage modulus of 5 orders of magnitude 

from 10
6
 Pa between 50 °C and 100 °C. The material is thus transformed from a tough 

rubber-like elastomer to a free flowing liquid. This is different to classic high molecular 

weight phase segmented poly(urethanes), which typically exhibit reductions in storage 

modulus of only three orders of magnitude to 10
6
 Pa at far higher temperatures (150-200 

°C).
26

 

 

Conclusions 

 

Through careful design we have synthesized six new thermoplastic elastomers which 

possess weakly hydrogen bonding end-groups. Our studies have shown that a variation of 
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physical properties correlate systematically with the hydrogen bonding strength of the 

end-group. Binding constants in dilute solution, bulk SAXS peak scattering intensity and 

storage modulus above ambient temperature all increased when the end-group was 

changed from dibutyl<morpholine<diol and when the polymers contained urea groups. 

All of the polymers exhibited microphase separation in the bulk, and both the 

morphology and rheology correlated with the binding constant of the end-groups in dilute 

solution. These results signify an important design principle in the advance of 

supramolecular polymeric materials. We hope to develop further the observations made 

for this system to provide a general, predictive model for de novo design of 

supramolecular polymer materials. 
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