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ABSTRACT
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose. 
1. INTRODUCTION
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the risks to people and the economic impacts are most severe. In the UK, for example, over 2 million properties are located in floodplains, with an estimated 200,000 of these being classified as at risk because they do not have protection against a 1 in 75 year flood event [1]. This figure may rise further with global warming, especially given the recent finding that the increase in intensity of heavy rainstorms with temperature rise is larger than that predicted [2]. The majority of these properties are in urban areas. 
Urban flood inundation models are important tools for the prediction of risk due to flooding in urban areas. Inundation models are hydraulic models which typically solve the shallow water equations at each node of a regular or irregular grid covering the river channel and floodplain, subject to boundary conditions which include the input flow rate to the domain [3]. Urban flood modelling is still at an early stage, and to date most inundation models have been applied in rural areas. This is partly because flood modelling in urban areas is more complicated than in rural areas. While some processes such as channel-floodplain interactions are common to both environments, in urban areas flows interacting with the built environment must also be modelled. Surface flows are affected not only by the ground topography and vegetation, but also by buildings and other man-made features such as walls, roads, embankments, ditches, kerbs and parked vehicles [4]. Urban topography is highly complex, necessitating at least a 2D treatment of the surface flow hydraulics. Sub-surface flows in storm water drainage systems must also be modelled [5] and these flows coupled with surface flows. Until recently, one of the main factors hampering research into urban flood modelling was the lack of topographic data of sufficiently high resolution and accuracy. However, LiDAR data have now become available at sub-metre spatial resolution, giving highly resolved Digital Surface Models (DSMs) of the urban environment [6].

Two-dimensional urban flood models need considerable data for their parameterisation. Traditionally the specification of surface flow resistance uses a calibration strategy, whereby global bottom friction parameters for the channel and floodplain are adjusted to optimize the fit between observations and model predictions of flood extent. The floodplain friction factor may differ for different surface types (vegetation, roads and man-made surfaces, etc). Further, to limit computation, the model grid cell size may not be small compared to typical building dimensions. This may necessitate estimating the fraction of each cell that is unoccupied by building and therefore available for flow, then using for example a porosity approach similar to that used for dealing with partially wet elements in wetting and drying problems [7].

In rural areas, 2D inundation models have been successfully calibrated using flood extents determined from SAR data (typically ERS and ASAR) in order to estimate model channel and floodplain friction factors. SAR data are used because of their all-weather day-night capability. The calibration approach involves minimizing the difference between observed and modelled areal flood extents [e.g. 8, 9], or (better) the mean height difference between observed and modelled waterlines (with the waterlines being heighted by intersecting them with the LiDAR Digital Terrain Model (DTM)) [10-12]. It is difficult to use the same approach in urban areas due to the relatively low resolution of SARs such as ERS and ASAR. Urban flooding has been detected in RADARSAT-1 data (after first identifying urban areas in Landsat ETM+ data) by searching for stronger returns caused by double-bounce scattering from flooded streets and adjacent buildings than the returns from adjacent un-flooded urban areas [13], though the flood extent resolution was low. We therefore have a situation in which studies inter-comparing the relative performances of different urban flood models have been performed [14], but where there are few accurate validation data to back up their findings. 

TerraSAR-X should be suitable for urban flood detection because of its high resolution in stripmap/spotlight modes. In the absence of significant wind or rain, flooded urban areas would generally appear dark due to specular reflection. This would also be the case for roads and other man-made surfaces. However, due to the side-looking nature of SAR, substantial areas of ground surface may not be visible due to shadowing and layover caused by buildings or taller vegetation. [15] found that only one-third of roads were visible to the SAR in airborne SAR data of Karlsruhe. This makes it unlikely that a continuous flood waterline could be extracted. However, even disjoint sections of waterline would be very useful for model calibration and validation, as these could be heighted and compared to the corresponding waterline heights predicted by the model. Following [15], we have used a SAR simulator in conjunction with LiDAR data to identify regions in urban areas not affected by buildings or taller vegetation that could definitely be said not to be radar shadow or layover. 

Various sources of information may be exploited in the classification of flooded urban areas. It is likely to be easier to detect floodwater in adjacent rural areas than in the more complicated urban regions. An approximate flood height may be estimated from the SAR waterline intersection with the LiDAR DTM in nearby rural areas. However, it must be stressed that this may only be approximate, as flood heights often vary locally across a flood due to its dynamic nature. Dark urban areas in the SAR image that are not shadows should be water or roads or other man-made surfaces. Dark urban areas substantially above the local waterline height would generally not be floodwater. Training samples for urban water backscatter could be obtained from adjacent flooded rural areas. Training samples for urban regions not containing water could be selected from SAR pixels at heights significantly above the local waterline height.
The objectives of this study were to develop an algorithm to detect urban floodwater in a TerraSAR-X image, and to estimate the accuracy of this detection and the degree to which this accuracy was tempered by the presence of shadow and layover. A companion paper describing urban flood inundation modelling studies carried out using the TerraSAR-X flood extent data will be published separately.
The paper is organized as follows. Section II describes the study area and data set. Section III is concerned with the estimation of radar shadow and layover. Section IV describes the algorithm for detection of floodwater in urban areas. Sections V and VI consider the processing of the validation data and the validation of the TerraSAR-X flood extent, respectively.

II. STUDY AREA AND DATA SET
An ideal data set exists for use in this study. A 1 in 150 year flood took place on the lower Severn around Tewkesbury, UK, in July 2007, which resulted in substantial flooding of urban areas. Tewkesbury lies at the confluence of the Severn, flowing in from the NW, and the Avon, flowing in from the NE (Fig. 1). Twelve cm of rain fell on the surrounding area in a single day. The peak of the flood occurred on 22 July, when the level at Tewkesbury was measured at 5.43m ODN (Ordnance Data Newlyn), 0.13m above the previous record from 1947 [16]. Several people were killed, thousands were evacuated from their homes, 50,000 people were without water and electricity for over a week, and about £1.5Bn worth of damage was caused in the region as a whole. In the town of Tewkesbury itself about 1500 homes were flooded, and flood water entered Tewkesbury Abbey for the first time in 247 years [17]. The river did not return to bank-full until 31 July. 
On 25 July TerraSAR-X acquired a stripmap image of the region, and DLR posted a map showing an estimate of flood extent (mainly in rural areas) superimposed on the radar image on the International Charter of Space and Major Disaster website (www.disasterscharter.org) (Fig. 1). Although the satellite was still in its commissioning phase, the image shows incredible detail of the flooded urban areas, particularly when compared to an ASAR image acquired the following day [16]. Detail such as streets and gaps between houses can be clearly seen in the TerraSAR-X image (3m pixel spacing) (Fig. 2a), whereas none of this is visible in the ASAR image (12.5m pixel spacing) (Fig. 2b). The TerraSAR-X incidence angle was 24°, and the image was multi-look ground range spatially enhanced. The HH polarization mode was chosen because it provides better discrimination between flooded and non-flooded regions than other polarizations [18, 19]. At the time of overpass there was relatively low wind speed (16 km/h) and no rain.
We were unaware that the TerraSAR-X image was to be acquired, but had independently organised a set of three aircraft overflights taking aerial photographs on the descending limb of the hydrograph, on 24, 27 and 31 July. The overflights were performed by the Piper Chieftain aircraft operated by the Cambridge University Unit for Landscape Modelling. The urban flood extent in Tewkesbury extracted from the TerraSAR-X image can therefore be validated using the aerial photos (0.2m resolution) from 24 July (Fig. 3) and 27 July, which is of great value. We also hold LiDAR data of the un-flooded area (2m resolution, 0.1m height accuracy)) acquired by the Environment Agency of England and Wales (EA) in 1999 (Fig. 4).
III. ESTIMATION OF RADAR SHADOW AND LAYOVER
Substantial areas of urban flood water may not be visible to the SAR because of the presence of radar shadow and layover due to buildings or taller vegetation. Consider the situation shown in Fig. 5, containing two rectangular buildings of height h1 and h2 separated by a flooded street AD. Assume that AD lies along the range direction, with the azimuth direction normal to the paper. The section of the street that is in shadow, CD, is 

CD = h2tanθ





(1)

where θ = 24° is the radar incidence angle [15]. This region will appear dark in the SAR image because no signal returns to the relevant range bins. The range section subject to layover, AB, is [15]







AB = h1cotθ. 





(2)

In the layover region, objects located at different positions (on wall OA and ground AB) will have the same distance to the sensor, and their backscatter will be integrated into the same range bin, leading generally to a bright return. Rays incident between B and C (e.g. at Y) will suffer a single specular reflection, and these pixels will appear dark. 
Fig. 5 can also be used to calculate whether a radar beam striking a flooded street in parts of this not affected by shadow or layover from adjacent buildings could be subject to multiple reflection, giving rise to a strong return rather than the low return expected from water. Consider a ray MN that reflects firstly from water at N and secondly from the top of the building at O, before being received by the sensor after a double bounce. The ground ranges of N and B can be estimated from -

N = A - h1tan24° = A – 0.45 h1



(3)
B = A - h1cot24° = A – 2.25 h1



(4) 

Therefore N is nearer than B to A. In fact, the path length sensor-wall-ground-sensor is equal to twice the single distance from the sensor to the building’s origin A, because the above simplistic argument ignores the additional distance ((ON + RN) – 2RN) travelled by the ray beyond N. Therefore the strong double bounce reflection will occur within the layover region close to A, which is masked out in the subsequent processing.
The DLR SAR End to End Simulator SETES [20, 21] was used to estimate regions of the TerraSAR-X image in which water would not be visible due to the presence of shadow or layover caused by buildings or taller vegetation. SETES simulates the overall SAR system chain from the target to the final image product, and is capable of simulating realistic raw data and focused images of extended three-dimensional scenes. It consists of independent modules for the different stages in the chain, as shown in Fig. 6. The algorithms employed are similar to those described in [22, 23]. Shadow and layover appear in the SAR image due to the side-looking viewing geometry and the fact that radar is a distance measuring system. The estimation of these zones is purely geometrical, and uses the height information of the scene’s surface as well as the radar flight trajectory and incidence angle. In this case, the estimation was implemented using the LiDAR DSM to allow SETES to create a reflectivity map in the sensor’s azimuth - slant range reference frame. Due to the fact that only boolean information was required describing whether or not a pixel was affected by layover or shadow, no simulation of realistic backscattering values was necessary. Furthermore, double-reflection contributions were not considered in the simulations, because they appear in the layover regions.

Within SETES, surfaces are approximated locally by plane square facets with dimensions large in terms of wavelength, but smaller than a resolution cell. Each facet is characterized by the coordinates of three vertices and by a material class describing its electromagnetic properties. The facet backscattering can be computed using several physical models taking into account local incidence angle, polarization of the incident and backscattered wave, and the facet’s roughness. In this work a simplified empirical model based on measured values was used [24], in conjunction with a uniform material class for soil with a backscattering coefficient 0 of -7.2 dB at the mean incidence angle of 24°. Finally, the commensurate allocation of the facet’s backscattering values to the appropriate range bins in azimuth - slant range geometry allows for a correct mapping of layover and foreshortening zones. As proposed in [22], shadowed regions are identified using a ray-tracing recursive algorithm.. The algorithm starts at near range. It selects the knee point where the incident ray is tangent to the profile of the DSM in the range direction. The next point belongs to a shadow zone if its height is lower than that of the intersection of the DSM with the incident ray. The backscattering values of these zones are set to zero. In this case, the shadow regions were extracted manually from the final reflectivity map as a binary image by applying a threshold (Fig. 7a). 
A simple extraction of layover regions from the reflectivity map using a threshold is not possible due to the fact that we cannot distinguish between high backscattering values resulting from layover and foreshortening, especially on saddle roofs of buildings. Faces contribute to layover under the condition 
θ and cos  > 0,



(5)

where  is the angle between the face’s normal and the vertical, θ is the local incidence angle, and  is the angle between normal and horizontal as sketched in Fig. 8. Prior to the ground range – slant range conversion, the relevant faces were identified using equation 5 and their reflectivity values were enhanced in such a way that the resulting layover regions within the final reflectivity map could be clearly identified and extracted as a binary image (Fig. 7b). Due to the relatively coarse resolution of the LiDAR data (2m), the accuracy of the simulation results was limited. For the height of about 17m  of one of the buildings, the length of its layover zone was estimated at 12 pixels in the TerraSAR image, which is close to the calculated value of 38m using equation 2. 
Both binary images were combined to form a single image showing shadow and layover regions (Fig. 7c). Viewing Fig. 7c in conjunction with the LiDAR DSM (Fig. 4), it is apparent that many of the older parts of the town containing narrow streets and higher buildings contain significant areas in which flooding in the streets would not be visible. In contrast, many of the more modern parts of the town have been less densely constructed, and flooding would be more visible in these areas. Areas of the TerraSAR-X image that were shadow or layover regions were masked out in the subsequent processing stages.
IV. DELINEATION OF FLOODWATER IN URBAN AREAS
Flood water usually appears dark compared to the surrounding land because the smooth water surface acts as a specular reflector. However, wind or rain may cause roughening of the water surface, such that the backscatter from the water may rise to similar or greater levels than the surrounding land. A further complicating factor may be the presence of emergent vegetation or buildings at the flood edge, leading to substantial increase in backscatter due to multiple reflections. These factors tend to reduce the accuracy of SAR-derived flood extent maps.
Methods for the automatic and semi-automatic delineation of flood extent in SAR images of both fluvial and tidal environments have been developed by several authors [9, 10, 12, 18, 25-36]. A technique for delineating a fluvial flood using a statistical active contour model (or snake) applied to a single-frequency single-polarisation SAR image of the flood to identify regions of homogeneous speckle statistics is described in [9]. Snakes are useful for converting incomplete or noisy image edges into smooth continuous vector boundaries. The image space is searched using a dynamic curvilinear contour that is driven to be attracted to region boundaries using an energy minimization function, so that the contour can link together unconnected edge segments. The contour (snake) is represented in a piecewise linear fashion as a set of nodes (i.e. the coordinates of the snake points) linked by straight line segments. The technique involves estimating the local image mean intensity (tone) at a node using the pixels between this node and its adjacent nodes. This gives the advantage that noise due to SAR speckle is reduced by averaging pixel intensities along an edge, while at the same time maintaining resolution perpendicular to the edge, giving accurate edge positioning. The local intensity variance (texture) is also calculated from these pixels, as this has proved to be a useful discriminator between different natural land-cover types having similar mean intensities in SAR imagery. The total energy is minimized if the contour encloses a region of pixels that is homogeneous in tone and texture. The energy function also contains contributions from the energies generated by the model’s internal tension and curvature constraints, which favour a smooth uncrenellated contour made up of evenly spaced nodes. Too large a curvature energy will make the curvature term dominate the model energy and produce an unrealistically smooth contour. Too large a tension energy will favour a short contour and stifle the growth of the snake. The snake is seeded manually as a closed thin contour covering the un-flooded (pre-flood) river network (including all tributaries), and expands iteratively until the statistics of the pixels along a local section of the snake differ from the statistics of the pixels in the interior of the snake. The flooded region may not be simply connected, as islands and isolated water bodies may form holes and outliers. To cope with this, the algorithm incorporates a method for dealing with complex topology and snake self-intersection. As an example, a snake may spawn a smaller sub-snake within itself to represent an island. It may be necessary to correct errors in the snake seed (e.g. where a flooded field is isolated from the river network) or final snake manually.
The technique was applied to a 1992 Thames flood of a rural area imaged using the ERS-1 SAR sensor, and proved capable of identifying 75% of the flooded area correctly, with 70% of the waterline coinciding with ground data to within 20m. The main error in waterline position was found to be due to un-flooded short vegetation adjacent to the flood giving similar radar returns to open water, causing an over-estimate of flood extent. To reduce this type of error, the original algorithm was modified to look not only at SAR image space but also at the LiDAR DTM, so that the snake could be conditioned to be smoothly-varying in ground height along the reach [12]. The modification resulted in a reduced waterline height variance and reflected the fact that, in reality, changes in height along a reach are usually very gradual.
The modified snake algorithm was applied to the TerraSAR-X image of the Tewkesbury flood, with the snake being conditioned on both SAR and LiDAR data. To maintain spatial resolution, all processing stages were carried out in the frame of reference of the TerraSAR-X image having 98° inclination (though the results presented have been geo-referenced). Fig. 9 shows the flood extent predicted by the snake superimposed on the TerraSAR-X image, with shadow and layover regions masked out. It was necessary to generate several additional snake seeds in isolated flooded fields to obtain this result. It is apparent that the algorithm was quite successful at delineating the flood extent in the rural areas. However, it was less successful at detecting urban flooding (e.g. flooding at the two urban regions highlighted in Fig. 3 has not been detected). There were two main reasons for this. One was that it was difficult for the snake to advance into the urban area because of the high curvatures generated in merging narrow flooded streets into the flood extent. A second was that it was possible for isolated flooded regions to exist in the urban area due to the effects of radar layover or to ponding, so that connectivity with the main flood would not always be present. The latter point meant that it was not possible to use a simple flood-fill to the height of the local rural waterline to expand the rural flood into the urban area. This approach was also ruled out because there might be (as in this case) small differences in water level between rural and urban areas due to the dynamic nature of most floods.
It was decided to adopt an approach in which the flood extent in rural areas was delineated using the snake, but a simpler region-growing technique was applied in adjacent urban areas. The flowchart for this hybrid method is shown in Fig. 10. The two methods were linked because the simpler one was initialized using knowledge of the snake waterlines in the rural areas. A set of seed regions having low backscatter was identified in the urban areas using supervised classification into urban water and urban non-water classes based on training data. No speckle reduction was performed at this stage to maintain spatial resolution in urban areas. Training areas for water were taken from the rural flood extent. Training areas for urban regions not containing water were selected from pixels in the DTM having heights between 3 – 4m above the waterline heights in nearby urban areas. The probability density functions for these two classes are shown in Fig. 11. A Bayesian classification was performed assuming equal prior probabilities for each class [37] i.e. 




if P(ω1 | g) > P(ω2 | g)   classify g as ω1 , else as ω2 



(6)
where P(ωi | g) is the a posteriori probability of a pixel with DN value g being from class ωi , where ω1 = water and ω2 = non-water. The minimum error rate was obtained with a threshold (sar_thresh) of 55 DN units. 95% of urban water pixels gave returns below this threshold, so that the false negative rate was 5%. However, there was an associated false positive rate of 19.8% of urban non-water pixels also giving returns lower than the threshold.
It seems reasonable to assume that water in the urban areas should not be at a substantially higher level than that in nearby rural areas. There should be very little water at higher urban levels, yet, unless a height threshold is imposed, there could be a substantial false positive rate of seed pixels at these levels. These were therefore required to have heights less than a spatially-varying height threshold determined from nearby snake heights. The spatial variability of this threshold reflected the fact that different parts of the area could be flooded to different heights. For example, the waterline height at point A in the NW of Fig. 9 was 12.0m, whereas that at point B in the SE was 11.5m. To construct the height threshold map, a uniformly-distributed set of 7 snake nodes in areas of low slope (and therefore accurately heighted) were selected manually (Fig. 9) and heighted using the LiDAR data, then interpolated over the whole area using kriging. Point kriging assuming an isotropic spherical variogram of range 1km and sill 0.01m2 with a nugget variance of 0.0015 m2 was employed [38], though the exact values of the parameters were not critical. A minimum of 3 and a maximum of 7 samples were selected for interpolation to each point, distributed as far as possible uniformly about the point. This kriging approach is valid in this case because the flooded urban areas are surrounded by flooded rural areas, but may require modification in cases where a flooded urban area is only partly surrounded by flooded rural areas, to avoid increased heighting errors due to extrapolation rather than interpolation. The height threshold was set at a fixed offset (h_offset) above the local snake height. h_offset was estimated experimentally by measuring the percentage (Pf) of SAR returns falling below the threshold of 55 DN units as a function of height range above snake height. In height ranges containing no urban water, Pf should be similar to the false positive rate of 19.8% measured for the height range of 3 - 4m above snake height. Table 1 shows the variation of Pf  with height range above snake height. It can be seen that the majority of the water in the urban areas is contained in a height range of 0 – 0.5m above local snake height, and that the false positive rate in the higher height ranges is similar to that for the range 3 - 4m above snake height. h_offset was therefore set to a value of 0.5m. It should be noted that, in the event that un-flooded regions below the height threshold (e.g. a walled or embanked compound) are present in the urban area, false positives may be generated from these regions.
From examination of the spatial distribution of the seed pixels below the height threshold, it was clear that seed pixels from the same body of urban water were generally close together, though not always connected. Seed pixels from different bodies of urban water were generally much farther apart. Seed pixels were therefore clustered together using a region growing approach involving iterated 8-neighbour pixel dilation and 8-neighbour connected component labelling [39]. Clustering was carried out on the basis of distance of a pixel to the nearest seed pixel rather than similarity between the DN values of pixel and seed. At each iteration, seed regions were dilated by a pixel, then the number of connected regions was found. Ideally dilation should continue until all pixels from the same water body are agglomerated into that body, but none of the different water bodies are fused together. In practice, iteration was terminated when the number of connected regions began to show relatively little change. At this point regions were eroded by the total amount by which they had been dilated. Table 2 gives the number of connected regions remaining after each iteration. It can be seen that, prior to the first iteration, there were a very large number of single-pixel regions, and that these were substantially agglomerated after the first iteration. After an initial decrease in the number of regions of 97% after the first iteration, the decrease reduced to 14% between the fourth and fifth iterations, so the process was terminated after five iterations. Only pixels classified as water that were contained in a mask of the urban area were retained as flooded urban pixels. Regions of shadow and layover were masked out both before and after the clustering process.
V. PROCESSING OF VALIDATION DATA
The ideal data for validation would have been a map of the water extent at TerraSAR-X overpass time (0634 on 25th July) derived from a simultaneously-acquired aerial photograph. But aerial photos were acquired at approximately 1130 hours on 24th and 27th July, 19 hours before and 53 hours after the satellite overpass. It was necessary to interpolate between the aerial photo flood extents to estimate the flood extent at overpass time. The interpolation assumed a linear change in flood water height between 24th and 27th July, an assumption that is probably acceptable given that only 19 hours elapsed between the first aerial photo acquisition and the overpass.
It would have been extremely difficult to digitize the flood extents in the two aerial photo mosaics manually because of the presence of many emergent buildings and trees. Instead, in a similar method to that used for the TerraSAR-X data, for each mosaic a uniformly-distributed set of flood extent waterline points in areas of low slope were selected manually and heighted using the LiDAR data. These heights were interpolated to form a water height threshold map over the whole area covered by the aerial photos using kriging. Areas in the LiDAR image below the local height threshold were classed as water. These classifications were found to agree very well visually with their respective aerial photo flood extents. For neither mosaic was the height threshold map a uniform height, indicating that at both dates different parts of the area had been flooded to different heights. A height threshold map for the overpass time was then constructed using linear interpolation between the two aerial photo height threshold maps, and areas in the LiDAR image below the local height threshold were taken as the flood extent at overpass time (Fig. 12). This flood extent justified the assumption made in deriving the SAR-based flood extent that no water regions were present in the higher urban areas.
VI. VALIDATION OF TERRASAR-X FLOOD EXTENT

The flood extent estimated by TerraSAR-X in the rural and urban areas was validated using the flood extent estimated from the aerial photos. This approach is justified as the parameters of the SAR-based method were estimated solely on the basis of the TerraSAR-X and LiDAR images, leaving the aerial photos free to act as validation data. A mask containing all the instances of flooding in the rural and urban areas was derived by interpretation of the aerial photos. Areas not visible in the SAR image due to shadow or layover were suppressed in this mask. 
The overall classification accuracy of the snake over the whole area (rural and urban) was estimated to be 80%, with a false positive rate of 1%. This accuracy was dominated by the accuracy of the snake in detecting rural flooding.

However, the main interest here is in using TerraSAR-X for detecting urban flooding. The aerial photo mask was refined to include only flooding observed in urban areas. Fig. 13 shows the correspondence between the flood extents that was achieved in the main urban areas of Tewkesbury, superimposed on the LiDAR image (from which all but the main urban areas have been masked out). The TerraSAR-X flood extent has a 3m pixel spacing. 76% of urban water pixels were correctly detected by TerraSAR-X, giving a false negative rate of 24%. The associated false positive rate of urban non-water pixels incorrectly classed as water was 25% (table 3). 
These figures quantify the fraction of the urban flood extent that is visible to TerraSAR-X and also detected by it. A more pertinent figure is the fraction of the urban flood extent visible in the aerial photos that is detected by TerraSAR-X. This fraction will be lower because flooded pixels in shadow/layover regions must now be included. The fraction was calculated by not masking out the areas in the aerial photo urban flood extent that were in shadow/layover areas. Only 58% of urban water pixels were now correctly detected by TerraSAR-X, with a false positive rate of 19%  However, many of the additional aerial photo water pixels in the shadow/layover regions were adjacent to water pixels that had been detected by TerraSAR-X, rather than being in complete water regions that TerraSAR-X had failed to detect.
It is instructive to examine the probability density function of SAR backscatter DN values in urban areas covered by water in the aerial photos, which are not in regions of shadow or layover. Fig. 14 shows that, while these are concentrated at lower values, there is a substantial tail towards higher values. 63% of pixels have DN values above the SAR threshold value (sar_thresh) of 55 units, compared to only 5% for the rural water training areas (Fig. 11a). On the other hand, 37% fall below the threshold, compared to 19.8% of urban non-water pixels at heights 3 – 4m above local rural waterline heights (Fig.11b). This implies that urban water pixels are being corrupted in some cases, perhaps due to contributions from side-lobes of strong reflectors nearby, or inaccuracies in the layover calculation due to the limited resolution of the LiDAR. This tends to justify the approach adopted of clustering pixels of low DN value based on their close proximity, rather than using a region-growing approach in which all pixels in a region of urban water are required to have low backscatter values. It also justifies the decision not to use the snake algorithm in urban areas, as this attempts to detect regions of homogeneity.
VII. DISCUSSION AND CONCLUSION
The above results imply that, at least for the event considered, TerraSAR-X is good at identifying those flooded urban areas that are visible to the SAR, and reasonably good at identifying all flooded urban areas. It is likely that the algorithm would also be applicable to data from other high resolution single-polarisation SARs. The next step will be to estimate the degree to which the radar-detected urban flood regions enable a 2D flood inundation model to predict the correct urban flood extent, by constraining the friction parameters in the urban area. It is intended to use an existing LISFLOOD-FP flood model of this reach [3], within which a more refined higher resolution model of the urban areas will be nested. This will use a porosity approach to limit computation, with a local friction factor (Manning’s n) depending on the surface types in a grid cell.
It is worth considering how the detection accuracy of flooded urban pixels may be affected if the radar incidence angle θ is greater or less than the 24° of the present example. From equations (1) and (2), it can be seen that, at building locations, a small viewing angle leads to large layover areas and small shadow areas, whereas a large viewing angle leads to small layover areas and large shadows. Consider the case of a road between two buildings as in Fig. 5, with the azimuth direction normal to the paper. The road will be partly occluded by shadow (CD) and partly covered with layover (AB). [15] shows that an object on the road will only be sensed properly if a condition for the road width ws holds –




ws > CD + AB = h2tanθ + h1cotθ         


(6)

ignoring any change in viewing angle with range. Assuming for simplicity that h1 = h2  = h 





ws > h(tanθ + cotθ)




(7)

The full performance incidence angle range for TerraSAR-X in stripmap mode is 20 - 45°. At θ = 20° , ws = 3.1h, whereas at θ = 45° , ws = 2.0h. This implies that the use of larger incidence angles should lead to increased detection of flooded urban pixels.

TerraSAR-X is one of a number of high resolution SARs that have been launched recently. The others are RADARSAT-2, ALOS PALSAR, and the first three of the COSMO-SkyMed satellites. When the four satellites in the COSMO-SkyMed constellation become operational, a flood revisit time of a few hours should be possible. If, as with TerraSAR-X, these SAR images can be made available in geo-registered form in near-real time [40], they may become a powerful tool for operational flood risk mitigation. However, this would require the availability of a near-real time algorithm for detecting urban flood extent which would not involve the collection of ground reference data or substantial user interaction. The algorithm presented here is aimed at the alternative scenario of parameterizing, calibrating and validating an urban flood inundation model in an offline situation. It is semi-automatic, and requires user interaction at a number of stages. These include manual editing of the snake to remove errors, and, in the urban region-growing, choosing training areas for water and non-water pixels, and choosing a set of snake nodes in regions of low slope in order to interpolate a spatially-varying height threshold. It would be very difficult to automate the complete process, and the price to be paid is that this invariably introduces an element of delay and subjectivity in the production of the final product. A near-real time flood detection algorithm using a split-based automatic thresholding procedure applied to TerraSAR-X data that has been shown to work well in rural areas, and which has been implemented at DLR Oberpfaffenhofen’s Centre for Satellite-Based Crisis Information (ZKI), is described in [18]. However, this would require modification to work in urban areas containing radar shadow and layover. The development of a near-real time algorithm for urban flood detection thus remains a challenge.
ACKNOWLEDGEMENT
We would like to thank the EA for providing the LiDAR data and the UK Natural Environment Research Council (NERC) Flood Risk from Extreme Events (FREE) research programme for funding the acquisition of the aerial photos.
REFERENCES
[1] E.P. Evans, R. Ashley,  J.W. Hall, E.C. Penning-Rowsell, A. Saul, P.B. Sayers, C.R. Thorne and A. Watkinson, “Foresight Flood and Coastal Defence Project: Scientific Summary,” Office of Science and Technology, London., 2004.
[2] R.P. Allan and B.J. Soden, “Atmospheric warming and the amplification of precipitation extremes,” Science, vol. 321, no. 5895, pp.1481-1484, doi:10.1126/science.1160787, 2008. 

[3] P.D. Bates, M. Wilson, M.S. Horritt, D.C. Mason, N. Holden and A. Currie, “Reach scale floodplain inundation dynamics observed using airborne SAR imagery,” J. Hydrology, vol. 328, no. 1-2, pp. 306-318, 2006.
[4] S. Haider, A. Paquier, R. Morel and J-Y. Champagne, “Urban flood modelling using computational fluid dynamics,” Proceedings of the Institute of Civil Engineers Water, Maritime and Energy, vol. 156, pp. 129-135, 2003.

[5] C. Zoppou, “Review of urban storm water models,” Environmental Modelling and Software, vol. 16, pp. 195-231, 2001.

[6] E.P. Baltsavias, “Airborne laser scanning: existing systems and firms and other resources,” ISPRS J. Photogrammetry and Remote Sensing, vol. 54, no. 2/3, pp. 164-198, 1999.

[7] A. Defina, “Two-dimensional shallow flow equations for partially dry areas,” Water Resources Research, vol. 36, no. 11, pp. 3251-6264, 2000. 

[8] G. Aronica, P.D. Bates and M.S. Horritt, “Assessing the uncertainty in distributed model predictions using observed binary pattern information with in GLUE,” Hydrological Processes, vol. 16, pp. 2001-2016, 2002.

[9] M.S. Horritt, D.C. Mason and A.J. Luckman, “Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model,” Int. J. Remote Sensing, vol. 22, no. 13, pp. 2489-2507, 2001.

[10] G. Schumann, R. Hostache, C. Puech, L. Hoffmann, P. Matgen, F. Pappenberger and L. Pfister, “High-resolution 3D flood information from radar imagery for flood hazard management,” IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 6, pp. 1715-1725, 2007.

[11] D.C. Mason, P.D. Bates and J.T. Dall’Amico, “Calibration of uncertain flood inundation models using remotely sensed water levels,” J. Hydrology, vol. 368, pp. 224-236, 2009.
[12] D.C. Mason, M.S. Horritt, J.T. Dall’Amico, T.R. Scott and P.D. Bates, “Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry,” IEEE. Trans. Geoscience Rem. Sens, vol. 45, no. 12, pp. 3932-3943, 2007.

[13]. R. Rykhus and Z. Lu, “Hurricane Katrina flooding and oil slicks mapped with satellite imagery”, in Science and the Storms: the USGS Response to the Hurricanes of 2005, G.S. Farris, G.J. Smith, M.P. Crane, C.R. Demas, L.L. Robbins and D.L. Lavoie, eds, U.S. Geological Survey Circular 1306, pp 49-52, 2007.
[14] N.M. Hunter, P.D. Bates, S. Neelz, G. Pender, I. Villanueva, N.G. Wright, D. Liang, R.A. Falconer, B. Lin, S. Waller, A.J. Crossley and D.C. Mason, “Benchmarking 2D hydraulic models for urban flood simulations,” Water Management, vol. 161, no.1, pp. 13-30, 2008.
[15] U. Soergel, U. Thoennessen and U. Stilla, “Visibility analysis of man-made objects in SAR images,” 2nd GRSS/ISPRS Joint Workshop on “Data Fusion and Remote Sensing over Urban Areas”, Berlin, 22-23 May 2003, 2003.

[16] H. Zwenzner and S. Voigt, “Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data,” Hydrology and Earth System Sciences Discussions, vol. 5, pp. 2951-2973, 2008.
[17] Risk Management Solutions. “UK summer 2007 floods.” 

[18] S. Martinis, A. Twele and S. Voigt, “Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data,” Natural Hazards and Earth System Sciences, vol. 9, pp. 303-314, 2009.
[19] J.B Henry, P. Chastanet, K. Fellah and Y.L. Desnos, “ENVISAT multi-polarised ASAR data for flood mapping,” Int. J. Remote Sensing, vol. 27, pp. 1921-1929, 2006.
[20] R. Speck, M. Hager, M. Garcia and H. Süß, “An end-to-end simulator for spaceborne SAR systems”, Proc. European Conference on Synthetic Aperture Radar (Eusar), Cologne, 4-6 June 2002, VDE Verlag GmbH, ISBN 3-8007-2697-1, 2002.
[21] R. Speck, P. Turchi and H. Süß, “An end-to-end simulator for high-resolution spaceborne SAR systems”, Proc. SPIE Defense and Security, vol. 6568, 2007.
[22] G. Franceschetti, M. Migliaccio, D. Riccio and G. Schirinzi. “SARAS: a synthetic aperture radar (SAR) raw signal simulator,” IEEE Trans. Geoscience and Remote Sensing, vol. 30,  no. 1,  pp. 110–123, 1992.
[23] G. Franceschetti, A. Iodice, D. Riccio and G. Ruello, “SAR raw signal simulation for urban structures,” IEEE Trans. Geoscience and Remote Sensing, vol. 41,  no. 9,  pp. 1986–1995, 2003.
[24] F. Ulaby and M. Dobson, Handbook of Radar Scattering Statistics for Terrain. Artech House, 1989.

[25] J-S. Lee and I. Jurkevich, “Coastline detection and tracing in SAR images,” IEEE Trans. GeoScience and Remote Sensing, vol. 28, no. 4, pp.662-668, 1990.
[26] D.C. Mason and I.J. Davenport, “Accurate and efficient determination of the shoreline in ERS-1 SAR images,” IEEE Trans. Geoscience and Remote Sensing, vol. 34, no. 5, pp. 1243-1253, 1996.

[27] Y. Wang, L.L. Hess, S. Filoso and J.M. Melack, “Understanding the radar backscattering from flooded and non-flooded Amazonian forests: results from canopy backscatter modelling,” Remote Sensing of Environment, vol. 54, pp.324-332, 1995.

[28] M. Badji and S. Dautrebande, “Characterisation of flood inundated areas and delineation of poor drainage soil using ERS-1 SAR imagery,” Hydrological Processes”, vol. 11, pp. 1441-1450, 1995.

[29] M.L. Imhoff, C. Vermillion, M.H. Story, A.M. Choudhury, A Gafoor and F. Poclyn, “Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data,” Photogrammetric Engineering and Remote Sensing, vol. 53, pp. 405-413, 1987.

[30] H. Liu and K.C. Jezek, “Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding method,” Int. J. Remote Sensing, vol. 25, no. 5, pp. 937-958, 2004.

[31] A. Niedermeier, E. Romaneessen and S. Lehner, “Detection of coastlines in SAR images using wavelet methods,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 5, pp. 2270-2281, 2000.

[32] Y. Yu and S.T. Acton, “Automated delineation of coastline from polarimetric SAR imagery,” Int. J. Remote Sensing, vol. 25, no. 17, pp.3423-3438, 2004.

[33] P.A. Brivio, R. Colombo, M. Maggi and R. Tomasoni, “Integration of remote sensing data and GIS for accurate mapping of flooded areas,” Int. J. Remote Sensing, vol. 23, no. 3, pp.429-441, 2002.
[34] G. Nico, M Pappalepore, G. Pasquariello, A. Refice and S. Samarelli, “Comparison of SAR amplitude vs. coherence flood detection methods – a GIS application,” Int. J. Remote Sensing, vol. 21, no. 8, pp.1619-1631, 2000.

[35] M.S. Horritt, “A statistical active contour model for SAR image segmentation,” Image and Vision Computing, vol. 17, pp. 213-224, 1999.

[36] P. Matgen, G. Schumann, J.B. Henry, L. Hoffmann and L. Pfister, “Integration of SAR-deived river flood inundation area, high precision topographic data and a river flow model toward near real-time flood management,” Int. J. Appl. Earth Obs., vol. 9, pp. 247-263, 2007.
[37] R.O. Duda and P.E. Hart, “Pattern classification and scene analysis,” Wiley, New York, 1973.

[38] C.V. Deutsch and A. Journel, “GSLIB: Geostatistical software library and User’s Guide”. Oxford University Press, New York, 1992.
[39] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, 1994.

[40] A. Schubert, “Geometric validation of TerraSAR-X high-resolution products,” Proc. 3rd TerraSAR-X Science Team Meeting, DLR Oberpfaffenhofen, Germany, 25-26 November 2008.
Tables
	Height range above snake height (m)
	Percentage of returns below SAR threshold

	0 – 0.5
	30.5

	0.5 – 1.0
	21.5

	1.0 – 1.5
	19.6

	1.5 – 2.0
	18.5

	2.0 – 2.5
	19.1

	2.5 – 3.0
	20.1

	3.0 – 3.5
	20.1

	3.5 – 4.0
	20.2


Table 1. Percentage of TerraSAR-X returns falling below threshold (DN = 55 units) 
as a function of height range above local snake height.
	Iteration number
	Number of connected components after iteration

	0
	11036

	1
	357

	2
	204

	3
	144

	4
	114

	5
	98


Table 2. Number of connected regions after each iteration of seed clustering.

	Shadow/layover masked out in aerial photos?
	% of urban water pixels correctly classified
	% false negatives
	% false positives

	Yes
	76
	24
	25

	No
	58
	42
	19


     Table 3. Accuracy of urban water detection.
Figure captions

1. TerraSAR-X image of the lower Severn July 2007 flood, with DLR flood extent (blue) overlain (© DLR 2007). The rectangle marks the detailed area shown in Fig. 2.
2. (a) TerraSAR-X image of Tewkesbury flooding on 25th July 2007 showing detail in urban areas (2.6 x 2km) (© DLR 2007), (b) ASAR image of 26th July 2007 (© ESA).
3. Aerial photo mosaic of Tewkesbury flooding on 24th July 2007. Two of the larger regions of urban flooding are shown magnified.
4. LiDAR Digital Surface Model of Tewkesbury (lighter = higher).
5. Layover (AB) and shadow (CD) regions in a flooded street (AD) between adjacent buildings of height h1 and h2 (θ = incidence angle).
6. Structure of the SETES simulator with the main modules for orbit and imaging geometry calculations, the generation of backscatter and raw data values, and image processing.
7. Regions unseen (black) by TerraSAR-X in LiDAR Digital Surface Model due to (a) shadow, (b) layover, and (c) combined shadow and layover.
8. Sketch of the geometry of faces inducing layover (θ = incidence angle, β = angle between normal to face inducing layover and vertical, γ = angle between normal and horizontal).
9. TerraSAR-X image of Tewkesbury with flood extent (blue) predicted by snake superimposed (shadow/layover regions masked out) (A - G = positions of snake nodes selected for interpolation).
10. Flowchart of the proposed method of flood detection in urban areas.
11. TerraSAR-X backscatter probability density functions for (a) water, and (b) non-water training areas (DN threshold sar_thresh = 55 units).
12. Flood extent at TerraSAR-X overpass time estimated from aerial photos, superimposed on LiDAR.
13. Correspondence between TerraSAR-X and aerial photo flood extents in main urban areas of Tewkesbury, superimposed on LiDAR image (yellow = wet in SAR and aerial photo, red = wet in SAR only, green = wet in aerial photo only). Two of the larger regions of urban flooding are shown magnified.

14. TerraSAR-X backscatter probability density function for urban water pixels (DN threshold sar_thresh = 55 units).
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