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1. Introduction
Flood inundation models are a major tool for mitigating the effects of flooding. They provide predictions of flood extent and depth that are used in the development of spatially accurate hazard maps. These allow the assessment of risk to life and property in the floodplain, and the prioritisation of either the maintenance of existing flood defences or the construction of new ones. 
There have been significant advances in flood inundation modelling over the past decade. Progress has been made in the understanding of the processes controlling runoff and flood wave propagation, in simulation techniques, in low cost high power computing, in uncertainty handling, and in the provision of new data sources.
One of the main drivers for this advancement has been the veritable explosion of data that have become available to parameterise and validate the models. The acquisition of the vast majority of these new data has been made possible by developments in the field of remote sensing (Smith et al., 2006; Schumann et al, in press). Remote sensing, from both satellites and aircraft, allows the collection of spatially distributed data over large areas rapidly and reduces the need for costly ground survey. The two-dimensional synoptic nature of remotely sensed data has allowed the growth of two- and higher-dimensional inundation models, which require 2D data for their parameterisation and validation. The situation has moved from a scenario in which there were often too few data for sensible modelling to proceed, to one in which (with some important exceptions) it can be difficult to make full use of all the available data in the modelling process.

This article reviews the use of data in present-day flood inundation modelling. It takes the approach of first eliciting the data requirements of inundation modellers, and then considering the extent to which these requirements can be met by existing data sources. The discussion of the data sources begins by examining the use of data for model parameterisation. This includes a comparison of the main methods for generating Digital Terrain Models (DTMs) of the floodplain and channel for use as model bathymetry, including airborne scanning laser altimetry (Light Detection And Ranging (LiDAR)) and airborne Interferometric Synthetic Aperture Radar (InSAR). Filtering algorithms for LiDAR data are reviewed, as are the use of remotely sensed data for distributed floodplain friction measurement and the problems of integrating LiDAR data into an inundation model. A detailed discussion follows on the use of remotely sensed flood extent and water stage measurement for model calibration, validation and assimilation. Flood extent mapping from a variety of sensors is considered, and the advantages of active microwave systems highlighted. Remote sensing of water stage, both directly by satellite altimeters and InSAR and indirectly by intersecting flood extents with DTMs, is discussed. The integration of these observations into the models involves quantification of model performance based on flood extent and water levels, and consideration of how model performance measures can be used to develop measures of uncertainty via flood inundation uncertainty maps. The assimilation of water stage measurements into inundation models is also discussed. The article concludes by considering possible future research directions that aim to reduce shortfalls in the capability of current data sources to meet modellers’ requirements.
2. Data requirements for flood inundation modelling

The data requirements of flood inundation models have been reviewed by Smith et al. (2006). They fall into four distinct categories, (a) topographic data of the channel and floodplain to act as model bathymetry, (b) time series of bulk flow rates and stage data to provide model input and output boundary conditions, (c) roughness coefficients for channel and floodplain, which may be spatially distributed, and (d) data for model calibration, validation and assimilation.

The basic topographic data requirement is for a high quality Digital Terrain Model (DTM) representing the ground surface with surface objects removed. For rural floodplain modelling, modellers require that the DTM has vertical accuracy of about 0.5m and a spatial resolution of at least 10m (Ramsbottom and Wicks, 2003). Whilst this level of accuracy and spatial scale is insufficient to represent the micro-topography of relict channels and drainage ditches existing on the floodplain that control its initial wetting, at higher flood depths inundation is controlled mainly by the larger scale valley morphology, and detailed knowledge of the micro-topography becomes less critical (Horritt and Bates, 2001a). Important exceptions are features such as embankments and levees controlling overbank flow, for which a higher accuracy and spatial scale are required (~10cm vertical accuracy and 2m spatial resolution ) (Smith et al., 2006). This also applies to the topography of the river channels themselves. On the other hand, for modelling over urban floodplains knowledge of the micro-topography over large areas becomes much more important, and a vertical accuracy of 5cm with a spatial resolution of 0.5m is needed to resolve gaps between buildings (Smith et al., 2006). Modellers also require a variety of features present on the ground surface to be measured and retained as separate Geographic Information System (GIS) layers to be used for tasks such as determining distributed floodplain roughness coefficients. Layers of particular interest include buildings, vegetation, embankments, bridges, culverts and hedges. One important use for these is for adding to the DTM critical features influencing flow paths during flooding, such as buildings, hedges and walls. A further use is the identification and removal of false blockages to flows which may be present in the DTM, such as bridges and culverts. It should be borne in mind that different modelling applications may have different requirements for a DTM as well as other data, with wide area inundation models used for high level assessment of flood risk requiring lower resolution data than more detailed models used for the design of remedial works or for planning emergency response.
Flood inundation models also require discharge and stage data to provide model boundary conditions. The data are usually acquired from gauging stations spaced 10-60km apart on the river network, which provide input to flood warning systems. Modellers ideally require gauged flow rates to be accurate to 5% for all flow rates, with all significant tributaries in a catchment gauged.  However, problems with the rating curve extrapolation to high flows and gauge bypassing may mean discharge measurement errors may be much higher than this acceptable value during floods.  At such times gauged flow rates are likely only to be accurate to 10% at best, and at many sites errors of 20% will be much more common.  At a few sites where the gauge installation is significantly bypassed at high flow errors may even be as large as 50%. The data requirements of an alternative scenario in which input flow rates are predicted by a hydrological model using rainfall data as an input, rather than being measured by a gauge, are not considered here.
Estimates of bottom roughness coefficients in the channel and floodplain are also required. The role of these coefficients is to parameterise those energy losses not represented explicitly in the model equations. In practice, they are usually estimated by calibration, which often results in them compensating for model structural and input flow errors. As a result, it can be difficult to disentangle the contribution due to friction from that attributable to compensation. The simplest method of calibration is to calibrate using two separate global coefficients, one for the channel and the other for the floodplain. However, ideally friction data need to reflect the spatial variability of friction that is actually present in the channel and floodplain, and be calculable explicitly from physical or biological variables.
A final requirement is for suitable data for model calibration, validation and assimilation. If a model can be successfully validated using independent data, this gives confidence in its predictions for future events of similar magnitude under similar conditions. Until recently, validation data for hydraulic models consisted mainly of bulk flow measurements taken at a small number of points in the model domain, often including the catchment outlet. However, the comparison of spatially distributed model output with only a small number of observations met with only mixed success (Lane et al., 1999). The 2D nature of modern distributed models requires spatially distributed observational data at a scale commensurate with model predictions for successful validation. The observations may be synoptic maps of inundation extent, water depth or flow velocity. If sequences of such observations can be acquired over the course of a flood event, this allows the possibility of applying data assimilation techniques to further improve model predictions.
3. Use of data for model parameterisation
This section discusses the extent to which the data requirements of the previous section can be met by existing data sources, including any shortfalls that exist.
3.1. Methods of Digital Terrain Model generation
The data contained in a DTM of the floodplain and channel form the primary data requirement for the parameterisation of a flood inundation model. Several methods exist for the generation of DTMs suitable for flood modelling. Smith et al. (2006) have provided an excellent review of these, together with their advantages and disadvantages for flood inundation modelling, and this is summarised below. While Smith et al. (2006) considered the situation specifically in the UK, many of their conclusions are valid on a wider scale. The choice of a suitable model in any given situation will depend upon a number of factors, including the vertical accuracy, spatial resolution and spatial extent required, the modelling objectives and any cost limitations. Many air- and space-borne sensors generate a Digital Surface Model (DSM), a representation of a surface including features above ground level such as vegetation and buildings. A DTM (also called a Digital Elevation Model) is normally created by stripping off above-ground features in the DSM to produce a ‘bald-earth’ model.
3.1.1 Cartography
A DTM can be produced by digitising contour lines and spot heights from a cartographic map of the area at a suitable scale, then interpolating the digitised data to a suitable grid (Kennie and Petrie, 1990). The product generated is a DTM since ground heights are digitised. While the method is relatively economical, contour information is generally sparse in floodplains because of their low slope, which limits the accuracy of the DTM in these areas.

In the UK, an important example of such a DTM is the Ordnance Survey Landform Profile Plus DTM, which is of sufficiently high height accuracy and spatial resolution to be useful for flood risk modelling (www.ordnancesurvey.co.uk/oswebsite/products/landformprofileplus). This has been developed from the Landform Profile dataset, which was generated from 1:10,000 contour maps and covers the entire UK (Holland 2002). The Profile Plus DTM has a vertical accuracy and spatial resolution that depends on land cover type, being ±0.5m on a 2m grid in selected urban and floodplain areas, ±1.0m on a 5m grid in rural areas, and ±2.5m on a 10m grid in mountain and moorland areas.
3.1.2. Ground survey
Elevations can be measured directly in the field using total stations or the Global Positional System (GPS). The spot heights measured have to be interpolated onto a grid to produce a DTM. While these techniques provide the highest accuracies currently achievable, they require lengthy fieldwork, making them more suitable for providing validation data for other techniques or for filling gaps in data than for DTM generation over large areas. Total stations are electronic theodolites with distance measurement capabilities, which can position points to better than ±0.5cm (Kavanagh, 2003). GPS is a system that provides continuous all-weather positioning on the earth’s surface using a constellation of more than 24 satellites transmitting continuous microwave signals (see. e.g. Hoffman-Wellenhof et al., 1994). The two main observing modes used in surveying are differential static positioning and kinematic positioning, which each require as a minimum a base and a roving receiver. Static positioning can achieve a positional accuracy of ±2cm, while kinematic positioning, requiring less observation time, can achieve ±5cm.
3.1.3. Digital aerial photogrammetry
DTMs can be produced using stereo-photogrammetry applied to overlapping pairs of aerial photographs (Wolf and Dewitt, 2000). Photographs are usually acquired in strips with adjacent photographs having 60% overlap in the flight direction and 20-30% overlap perpendicular to this. They are then digitised using a photogrammetric scanner. Coordinates in the camera’s image coordinate system are defined knowing the imaging characteristics of the camera and the location of a set of fiducial marks. A relationship between the image space coordinates and the ground space coordinates is determined in modern aircraft systems using the onboard GPS to determine positions and the inertial navigation system (INS) to determine orientations. In order to generate ground elevations from a stereo-pair, corresponding image points in the overlapping area of the pair must be determined. While this image matching can be performed semi-automatically, automatic area-, feature- or relation-based matching is less time-consuming. The 3D ground space coordinates of points can then be determined, and interpolated onto a regular grid. The model formed is essentially a DSM. Semi-automatic techniques are used to remove blunders. The accuracy achieved depends on the scale of the photography and the skill of the operator. 
In the UK, photogrammetric techniques have been used in the development of the O.S. Landform Profile Plus DTM. There is extensive aerial photography of the UK, and UK Perspectives has created a DTM of the UK using photogrammetry applied to 1:10,000- and 1:25,000- scale imagery. This has an approximate vertical accuracy of ±1m and a 10m grid spacing.
3.1.4. Interferometric SAR
A DSM can be generated using InSAR, which uses two side-looking antennae on board a satellite or aircraft separated by a known baseline to image the terrain (Goldstein et al., 1988, Madsen et al., 1991). Two main configurations exist, repeat pass interferometry, where the data are acquired from two passes  of a (usually satellite) sensor in similar orbits; and single pass interferometry, where the data are acquired in a single pass using two antennae separated by a fixed baseline on the same platform, which to date has been an aircraft or the Space Shuttle. The height of a point can be determined by trigonometry, using knowledge of the locations and orientations of the two antennae (from GPS and each sensor’s INS), their baseline separation, and the path difference between the signals from each antenna. The surface elevation measured for a pixel may consist of a combined signal from different scatterers in the pixel. For pixels containing vegetation, volume scattering will occur and there will be some penetration into the canopy, so that the height measured will not be that of the first surface. Other limitations are that performance can degrade in urban areas due to bright targets and shadow, and that artefacts may appear in the DSM due to atmospheric propagation and hilly terrain. However, InSAR is all-weather and day-night, and large areas can be mapped rapidly.
The main airborne InSAR is the InterMap STAR-3i. This is a single-pass across-track X-band SAR interferometer on board a Learjet 36, with the two antennae separated by a baseline of 1m. In the NextMap Britain project in 2002/3, an accurate high resolution DSM of the whole of Britain was built up containing over 8 billion elevation points. This meant that for the first time there was a national height database with height accuracies better than ±1m and spatial resolutions of 5m(10)m in urban(rural) areas (www.intermap.com). Using in-house software, Intermap is able to filter the DSM to strip away features such as trees and buildings to generate a bare-earth DTM.

A near-global high resolution DSM of the Earth’s topography was acquired using InSAR by the Shuttle Radar Topography Mission (SRTM) on board Space Shuttle Endeavour in February 2000. The SRTM was equipped with two radar antennae separated by 60m, and collected data over about 80% of the Earth’s land surface, that between latitudes 60° North and 54° South. The vertical accuracy is about ±16m with a spatial resolution of 30m in the US and 90m in all other areas (Smith and Sandwell, 2003).
An InSAR DSM of the UK was produced using repeat pass InSAR techniques applied to ERS-2 satellite data in the LandMap project (Muller, 2000). This has a height standard deviation of ±11m and a spatial resolution of 25m.
The German Aerospace Centre (DLR) is funding the development of an InSAR system (TanDEM-X) for mapping the Earth’s topography with unprecedented precision. TanDEM-X consists of two high-resolution imaging radar satellites TerraSAR-X and TanDEM-X flying in tandem and forming a huge radar interferometer with a proposed capability of generating a global DSM with a vertical resolution of 2m, surpassing anything available today from space. TerraSAR-X was launched in 2007 and TanDEM-X is scheduled for launch in late 2009.

3.1.5. LiDAR
LiDAR is an airborne laser mapping technique that produces highly accurate and dense elevation data suitable for flood modelling (Wehr and Lohr, 1999; Flood, 2001). A LiDAR system uses a laser scanner mounted on an aircraft or helicopter platform (figure 1). Pulses from the laser are directed towards the earth’s surface, where they reflect off features back towards the platform. Knowing the round trip time of the pulse and the velocity of light, the distance between the laser and the ground feature can be calculated. The instantaneous position and orientation of the laser are known using the GPS and INS systems on board the platform. Using additional information on the scan angle and GPS base station, the 3D position of the ground feature can be calculated in the GPS coordinate system (WGS84) and then transformed to the local map projection. A high vertical accuracy of ±5-25cm can be achieved. At typical flight speeds, platform altitudes and laser characteristics, terrain elevations can be collected at a density of at least one point every 0.25 – 5m. The laser pulse may reflect from more than one part of a ground feature e.g. in vegetated areas the pulse may reflect from the top of the foliage and also from the ground below. Many LiDAR systems can collect both the first return (from the foliage) and the last return (from the ground), and in some systems it is possible to collect the complete reflected waveform. The intensity of the reflected pulse can also provide useful information about the surface feature being imaged. 
In the UK, high resolution LiDAR data suitable for flood modelling are available for a number of selected floodplain and coastal areas. A substantial amount of these data have and are being collected by the Environment Agency of England and Wales (EA). Flights are typically carried out during leaf-off periods with the system set to record the last returned pulse. The EA provide quality control by comparing the LiDAR heights on flat unvegetated surfaces with GPS observations, and can achieve discrepancies less than ±10cm (EA, 2005). However, note that DTM errors generally increase in regions of dense vegetation and/or steep slope, and can be especially significant at the boundaries between river channels and floodplains.

3.1.6 Sonar bathymetry
Methods of estimating river channel topography usually involve generating a series of height cross-sections along the channel using ground surveying techniques, then interpolating between the cross-sections. With the advent of more sophisticated modelling, there is a need for better estimates of channel topography, and one technique involves bathymetric measurement using sonar. This uses a vessel-mounted transducer to emit a pulse of sound towards the river bed and measure the elapsed time before the reflection is received. The depth of water under the vessel can be estimated knowing the velocity of sound in water. In the UK, the EA operates a wide swath sonar bathymetry system designed to make it straightforward to merge bathymetry of the channel with LiDAR heights on the adjacent floodplain (Horritt et al., 2006a).
3.1.7 Suitability of DTM generation techniques for flood modelling
The suitability of a DTM generation technique for flood modelling is largely governed by the heighting accuracy and level of spatial detail that can be captured. Table 1 gives a summary of the main merits and limitations of available DTM generation techniques, and table 2 summarises the main characteristics of the DTMs that are generally available in the UK. Many of the techniques described in table 1 produce DTMs that are not suitable for the quality of flood modelling currently being undertaken. Smith et al. (2006) point out that recently in the UK it is largely the LiDAR and swath bathymetry data collected by the EA and the InSAR data collected by InterMap that have been used to produce DTMs for flood modelling. In parts of the world where LiDAR data are not available, floods are larger than in the UK or modelling requirements are less stringent, other data sources (e.g. SRTM data) have been used (Wilson et al., 2007). However, the discussion below focuses on DTMs produced using LiDAR.
3.2 Filtering algorithms for LiDAR data
Considerable processing is necessary to extract the DTM from the raw DSM. The basic problem in LiDAR post-processing is how to separate ground hits from hits on surface objects such as vegetation or buildings. Ground hits can be used to construct a DTM of the underlying ground surface, while surface object hits, taken in conjunction with ground hits, allow object heights to be determined. Many schemes have been developed to perform LiDAR post-processing. Most of these are concerned with the detection and recognition of buildings in urban areas (Maas and Vosselman, 1999; Oude Elberink and Maas, 2000), or the measurement of tree heights (Naesset, 1997; Magnussen and Boudewyn, 1998), though Mandlburger et al. (2009) have recently discussed optimisation of LiDAR DTMs for river flow modelling. Commercial software is also available for the removal of surface features. Gomes Periera and Wicherson (1999) generated a DEM from dense LiDAR data for use in hydrodynamic modelling, after the removal of surface features by the data supplier. Another example is the system developed by the EA, which uses a combination of edge detection and the commercial TERRASCAN software to convert the DSM to a DTM (A. Duncan, pers. comm.). The system has been designed with flood modelling in mind, and, as well as the DTM, also produces other data sets for use in the subsequent modelling process, including buildings, taller vegetation (trees, hedges), and embankments. An example of the EA’s hybrid filtering process showing a LiDAR DSM and the data sets derived from it is given in figure 2. False blockages to flow such as bridges and flyovers are removed from the LiDAR data manually using an image processing package, and the resulting gaps interpolated, prior to DSM filtering.
3.3. Floodplain friction measurement
Remotely sensed data may be used to generate spatially-distributed floodplain friction coefficients for use in 2D inundation modelling. A standard method is to use two separate global static coefficients, one for the channel and the other for the floodplain, and to calibrate these by minimising the difference between the observed and predicted flood extents. The remote sensing approach has the advantage that it makes unnecessary the unphysical fitting of a global floodplain friction coefficient. Wilson and Atkinson (2007) estimated friction coefficients from floodplain land cover classification of Landsat TM imagery, and found that spatially-distributed friction had an effect on the timing of flood inundation, though less effect on the predicted inundation extent.

LiDAR data may also be used for friction measurement. Most LiDAR DSM vegetation removal software ignores short vegetation less than 1m or so high. However, even in an urban floodplain, a significant proportion of the land surface may be covered with this type of vegetation, and for floodplains experiencing relatively shallow inundation the resistance due to vegetation may dominate the boundary friction term. Mason et al. (2003) extended LiDAR vegetation height measurement to short vegetation using local height texture, and investigated how the vegetation heights could be converted to friction factors at each node of a finite element model’s mesh. A system of empirical equations that depended on vegetation height class was used to convert vegetation heights to Manning’s n values. All the friction contributions from the vegetation height classes in the polygonal area surrounding each finite element node were averaged according to their areal proportion of the polygon. 
This process has been taken further in rural floodplains by decomposing the model mesh to reflect floodplain vegetation features such as hedges and trees having different frictional properties to their surroundings, and significant floodplain topographic features having high height curvatures (Cobby et al., 2003, Bates et al., 2003). The advantage of this approach is that the friction assigned to a node can be made more representative of the land cover within the node, so that the impact of zones of high friction but limited spatial extent (e.g. hedges) is not lost by averaging over a larger neighbourhood. The simulated hydraulics using the decomposed mesh gave a better representation of the observed flood extent than the traditional approach using a constant floodplain friction factor. The above technique has been extended for use in urban flood modelling using a LiDAR post-processor based on the fusion of LiDAR and digital map data (Mason et al., 2007a). The map data were used in conjunction with LiDAR data to identify different object types in urban areas, in particular buildings, roads and trees. Figure 3 shows an example mesh constructed  over a vegetated urban area. 
3.4 Integrating LiDAR data into a flood inundation model
A problem with integrating LiDAR data as bathymetry into a flood inundation model is that the LiDAR data generally have a higher spatial resolution than the model grid. Marks and Bates (2000), who were the first to employ LiDAR as bathymetry in a 2D model, coped with this by using the average of the four central LiDAR heights in a grid cell as the topographic height for the cell. Bates (2000) also used LiDAR in a sub-grid parameterisation in order to develop an improved wetting-drying algorithm for partially-wet grid cells. If LiDAR data are averaged to represent DTM heights on a lower-resolution model grid (e.g. 1m LiDAR data averaged to a 10m model grid), care must be taken not to smooth out important topographic features of high spatial frequency such as embankments. Map data can be used to identify the embankments so that this detail can be preserved in the DTM (Bates et al., 2006).
In urban flood modelling studies using lower resolution models where a grid cell may occupy several buildings, different approaches to the calculation of effective friction on the cell have been developed, based on object classification from LiDAR or map data. The first approach simply masks out cells that are more than 50% occupied by buildings, treating the edges of the masked cells as zero flux boundaries. The second uses a porosity approach, where the porosity of a cell is equal to the proportion unoccupied by buildings and therefore available for flow (Defina, 2000; Bates, 2000). Friction in the porous portion of the cell may than be assigned locally or globally.
The effect of errors in LiDAR DTMs on inundation predictions in urban areas has been considered in (Neelz and Pender 2006, Hunter et al, 2008). These studies concluded that uncertainty in friction parameterisation is a more dominant factor than LiDAR topography error for typical problems. This is considered in more detail in the following chapter.
4. Use of remotely sensed flood extent and water stage measurements for model calibration, validation and assimilation 
Early launches of satellites and the availability of aerial photography allowed investigation of the potential to support flood monitoring from as far as space. There have been notable studies on integrating data from these instruments with flood modelling since the late 1990s. A more recent consensus among space agencies to strengthen the support that satellites can offer has stimulated more research in this area and significant progress has been achieved in recent years in fostering our understanding of the ways in which remote sensing can support or even advance flood modelling. 
4.1 Flood extent mapping
Given the very high spatial resolution of the imagery, flood extent is derived from colour or panchromatic aerial photography by digitising the boundaries at the contrasting land-water interface. The accuracy of the derived shoreline may vary from 10 to 100m, depending largely on the skills of the photo interpreter, of which the geo-rectification error is generally 5m with ~10% chance of exceeding that error (Hughes et al., 2006). 
In recent years, however, mapping flood area and extent from satellite images has clearly gained popularity, mostly owing to their relatively low post-launch acquisition cost. Following a survey of hydrologists, Herschy et al. (1985) determined that the optimum resolution for floodplain mapping was 20m, while that for flood extent mapping was 100m (max. 10m, min. 1km) (Blyth, 1997). Clearly, most currently available optical, thermal as well as active microwave sensors satisfy these requirements (Smith, 1997; Bates et al., 1997; Marcus and Fonstad, 2008; Schumann et al., in press). Flood mapping with optical and thermal imagery has met some success (Marcus and Fonstad, 2008), however the systematic application of such techniques is hampered by persistent cloud cover during floods, particularly in small to medium sized catchments where floods often recede before weather conditions improve. Also, the inability to map flooding beneath vegetation canopies, as demonstrated by e.g. Hess et al. (1995, 2003) and Wilson et al. (2007) with radar imagery, limits the applicability of these sensors. Given these limitations to acquire flood information routinely, flood detection and monitoring seems realistically only feasible with microwave (i.e. radar) remote sensing, as microwaves penetrate cloud cover and are reflected away from the sensor by smooth open water bodies.

The use of passive microwave systems over land surfaces is difficult given their large spatial resolutions of 20 to 100km (Rees, 2001). Interpretation of the wide range of materials with many different emissivities is thus rendered nearly impossible. Nevertheless, as the sensor is sensitive to changes in the dielectric constant, very large areas of water, for instance, can be detected (Sippel et al., 1998; Jin, 1999) but their uncertainties may be large (Papa et al., 2006). Imagery from (active) SAR seems to be at present the only reliable source of information for monitoring floods on rivers < 1km in width. Although the operational use of SAR images for flood data retrieval is currently still limited by restricted temporal coverage (up to 35 days for some sensors), recent efforts on satellite constellations (e.g. COSMO-SkyMed) seem promising and should make space-borne SAR an indispensable tool for hydrological/hydraulic studies in the near future.
Many different SAR image processing techniques exist to derive flood area and/or extent. They range from simple visual interpretation (e.g. Oberstadler et al., 1997) and image histogram threshold (Otsu, 1979) or texture measures to automatic classification algorithms (e.g. Hess et al., 1995; Bonn and Dixon, 2005) or multi-temporal change detection methods (e.g. Calabresi, 1995), of which extensive reviews are provided in Liu et al. (2004) and Lu et al. (2004). Image statistics-based active contour models (Mason et al., 1996; Horritt, 1999) have been used by some authors to successfully extract a flood shoreline, of which Mason et al. (2007b) have proposed an improvement based on LiDAR DEM constraining.

Classification accuracies of flooded areas (most of the time defined as a ratio of the total area of interest where classification errors are omitted) vary considerably and only in rare cases do classification accuracies exceed 90 percent. Interpretation errors (i.e. dry areas mapped as flooded and vice versa) may arise from a variety of sources: inappropriate image processing algorithm, altered backscatter characteristics, unsuitable wavelength and/or polarisations, unsuccessful multiplicative noise (i.e. speckle) filtering, remaining geometric distortions, and inaccurate image geocoding. Horritt et al. (2001b) state that wind roughening and the effects of protruding vegetation, both of which may produce significant pulse returns, complicate the imaging of the water surface. Moreover, due to the corner reflection principle (Rees, 2001) in conjunction with its coarse resolution, currently available SAR is unable to extract flooding from urban areas, which for obvious reasons would be desirable when using remote sensing for flood management. Note that recently launched SAR satellites with higher spatial resolution (1-3 m) and carefully chosen incidence angle and wavelength may allow reliable flood extraction from urban areas after careful identification of radar shadow and layover areas using LiDAR (Mason et al., 2010). Figure 4 shows a TerraSAR-X image of flooding in Tewkesbury, U.K., with the dark regions being flood-water or radar shadows.
Generally, the magnitude of the deteriorating effects, which determines the choice of an adequate processing technique, is a function of spatial resolution, wavelength, radar look angle and polarisation. Henry et al. (2006) compare different polarisations (VV, HV and HH) for flood mapping purposes and conclude that HH (horizontal transmit, horizontal receive) is most efficient in distinguishing flooded areas.
4.2 Water stage retrieval
4.2.1 Direct measurements
Space-borne image-based direct measurements have only been obtained from the Shuttle Topography Radar Mission (SRTM) flown in February 2000 (Alsdorf et al., 2007). Despite their degraded vertical accuracies over inland water surfaces (up to ±18.8m), LeFavour and Alsdorf (2005) showed that globally and freely available SRTM DEMs may be used to extract surface water elevations and estimate a reliable surface water slope, provided that the river reach is long enough. Kiel et al. (2006) assessed the performance of X-band and C-band SRTM DEMs for the Amazon River and a smaller river in Ohio. They concluded that the C-band SRTM DEM gives reliable water elevations also for smaller river reach lengths. They also state that while SRTM data are viable for hydrologic application, limitations such as the along-track antennae offset and the wide look-angle suggest the necessity of a new satellite mission (SWOT - Surface Water Ocean Topography, http://bprc.osu.edu/water/) for improved water elevation acquisition.

For changes in water stage retrieval with InSAR technology, the specular reflection of smooth open water causes most of the return signal to be reflected away from the antenna, rendering interferometric retrieval difficult if not impossible. However, for emerging vegetation in inundated floodplains, Alsdorf et al. (2000, 2001, and also 2007 for a short review) show that it is possible to obtain reliable interferometric phase signatures of water stage changes (at centimetre scale) in the Amazon floodplain from the double bounced return signal of the repeat-pass L-HH-band Shuttle Imaging Radar (SIR-C). L-band penetrates the vegetation canopy and follows a double bounce path that includes the water and tree trunk surfaces, with both amplitude and phase coherence stronger than surrounding non-flooded terrain, permitting determination of the interferometric phase (Alsdorf et al., 2001). Alsdorf (2003) also used these characteristics and found that decreases in water levels were correlated with increased flow-path distances between main channel and floodplain water bodies that could be modelled in a GIS. This correlation function allowed changes in water storage to be mapped over time.
Altimeters (onboard ERS, ENVISAT or JASON mission satellites) emit a radar wave and analyse the return signal. Surface or water height is the difference between the satellite's position in orbit with respect to an arbitrary reference surface and the satellite-to-surface range. Although range accuracies usually lie within 5 to 20cm for oceans and sea ice (Rees, 2001) but typically ~50cm for rivers (Alsdorf et al., 2007), the altimeter footprint is only in the range of 1 to 5km and seems thus only suitable for rivers or inundated floodplains of large width (Birkett et al., 2002). Figure 5 shows an example of radar altimeter-derived point water levels with error bands for the Danube River between 1993 and 2002. For large lakes accuracies may improve to <5cm root mean square (RMS) error (Alsdorf et al., 2007; Birkett et al., 2002). Another disadvantage of altimetry for water stage retrieval over land is that its success relies primarily on adequate re-tracking of complex contaminated waveforms (Garlick et al., 2004). 
However, the launch of ICESat in 2003 has made space-borne LiDAR altimetry available for terrestrial water bodies with an elevation precision of a few centimeters (Frappart et al., 2006), suitable for detecting river surface slopes along long river reaches or between multiple crossings of a channel. Also the potential to measure water stage beneath vegetation (Harding and Jasinski, 2004) could prove interesting for flood monitoring and modelling.
4.2.2 Indirect measurements
Some interesting developments in extracting water levels from remote sensing are those which integrate topographic data (Raclot, 2006). Topographic maps with small interval contours and level data may provide an excellent ground truth check for water levels on flood shorelines from aerial photography (Currey, 1977) or satellite imagery (Oberstadler et al., 1997; Brakenridge et al., 1998). LiDAR or photogrammetric DEMs can be intersected with lines from flood deposits on aerial photographs (Lane et al., 2003) or high resolution space-borne imagery from visible bands. Even heights from flooded vegetation may be used (e.g. Horritt et al., 2003).

The floodplain can also be segmented into polygons in which water levels are supposed to be horizontal, similar to possible approaches with most 1D hydrodynamic models. In order to ensure a decreasing water trend with flow direction, extracted water stages are adjusted using an automated algorithm based on hydraulic constraints (see Puech and Raclot, 2002 for application to aerial photography and Hostache et al., 2009 for an application to SAR). Used in conjunction with topographic maps or LiDAR this might lead to vertical RMS accuracies of around 20-30cm.
Retrieval techniques that combine imagery with LiDAR topography and statistical data analysis have also been suggested. River cross sections are drawn perpendicular to the main channel and elevation data are extracted at the SAR flood boundaries, assuming a horizontal water level at each section. A smoothed linear trend of water levels is estimated either by using a moving average filter or spline interpolation (Matgen et al., 2007a). A least squares estimation in flow direction is another approach for water surface approximation with respect to localised flow behaviour (Schumann et al., 2007a). Additionally, regression modelling allows reliable simulation of stages at any location along the stream centreline (with an RMS accuracy of <20cm). These data can be used in a GIS to generate a triangular irregular network (TIN) mesh of coherent flood area and stage across the inundated floodplain. As regression modelling, particularly linear modelling, may be undesirable when integrated with more dynamic hydraulic models, multiple water stage data points may be extracted on river cross sections (Schumann et al., 2008a). This allows descriptive statistics (e.g. mean, median or quartiles) to be applied instead of a least squares estimation. The advantage is that levels are now considered varying perpendicular to as well as in the direction of stream flow, with a median accuracy generally better than 50cm.
4.3 Integration with inundation models
4.3.1 Building and understanding model structures
As reported in the first part of this chapter, remotely sensed data are crucial to build models and define boundary conditions. Integration of remote sensing has also been used to understand the difference in behaviour of different model structures. Localised error information, resulting from a comparison of model simulations with spatially distributed SAR-derived water stages, may be used to attribute differences in model behaviour to differences in channel roughness (Schumann et al., 2007b). This allows the definition of a model structure that uses additional roughness parameters in order to strike the balance between model complexity and performance at the local level where accurate field observations are available. 

4.3.2 Quantifying model performance based on flood area observations


The most common procedure to assess model performance is through an overlay operation of single or multiple simulations of flood inundation models with binary maps from remote sensing based on wet/dry cells in a GIS. For this operation map outputs from two-dimensional models can be readily used with a contingency table (also called confusion matrix) that counts the number of correctly and incorrectly flooded/non-flooded cells. One-dimensional models require adequate post-processing of their output to render a binary map comparison possible. There exist a vast number of performance measures based on these categorical data, of which table 3 provides a short summary and recommendation for flood studies (Hunter, 2005). However, the trouble with area-based performance measures is that (i) there is not a single best one, and (ii) each one is difficult to interpret, mostly because easily predictable dry cells within the contingency table are misleading.
As an alternative to single area-based performance measures, the modeller may use a comparison of multiple measures or use a fuzzy rules based measure, where a simple yes/no (i.e. wet/dry) answer is augmented by a ‘maybe’ relative to the certainty of a given cell being flooded (Pappenberger et al., 2007). Such fuzzy membership functions have been used successfully to evaluate multiple model simulations within an uncertainty framework, such as the Monte Carlo-based Generalised Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992). A membership function reflects the lack of knowledge about the real flood extent as it allows one to express one’s belief in a pixel being flooded and assign a performance value to a simulation which predicts the pixel as flooded accordingly (Matgen et al., 2004; Pappenberger et al., 2006). Additionally, such an approach may give insights into the effects of different model parameters on acceptability of model performance (Schumann et al., 2007b).
Visually illustrating uncertainty in model performance may be a difficult task given the ‘fuzziness’ of the information content and the complex model parameter interactions when dealing with multiple model simulations. Nevertheless, there have been a few notable attempts to output uncertain flood maps. Romanowicz et al. (1996) proposed to derive a ‘probability’ map by
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in which Li is the weight for each simulation i and the simulation results for the jth model element (e.g. computational cell or node) is wij = 1 for wet and wij=0 for dry. The weight can be based on normalized performance measures which are derived from maps conditioned on remotely sensed information. RCMj is the Relative Confidence Measure for each cell j, which expresses a belief that an uncertain prediction is a consistent representation of the system behaviour. 

Horritt (2006b) addressed the issue by exploiting the spatial nature of floods and computing model precision and accuracy over the model domain. A precise map will contain large areas which are classified as definitely dry or wet, and few areas of probability around 0.5. The precision of the map can therefore be measured by the entropy (defined as C in Horritt, 2006b). For an accurate uncertain map, the regions with probability 0.5, for example, will contain equal areas of wet and dry observations. The accuracy can therefore be visualised by the reliability curve, which plots the model probability against the proportions of wet and dry areas in the observations (see figure 6). An accurate model will exhibit a 1:1 relationship and the deviation from this (e.g. the RMS error) can be used as a measure of the accuracy (Schumann et al., in press).

4.3.3 Model performance based on water levels

Despite the fact that some authors have demonstrated that water depth might constrain the uncertainty in flood inundation models more efficiently than binary patterns (e.g. Werner et al., 2005; Schumann et al., 2008b; Mason et al., 2009), the number of studies that refer to the use of remote sensing water levels in the model calibration or validation processes are at present very limited (Schumann et al., 2007b, 2008b; Hostache et al., 2009; Mason et al., 2009). Possible reasons for this include higher data processing skills involved in water level retrieval and also the lack of precision often associated with indirectly retrieved water levels. Moreover, although direct retrieval may possess the desired accuracy, they often lack the required spatial resolution. In the case of indirect measurements the inaccuracy has largely been the result of a combination of uncertain flood boundary position and DEMs that are inappropriate for the scale of the river reach under study. However, with the availability of LiDAR and recently developed innovative stage retrieval techniques (as described earlier), this has considerably improved and, with the newly launched higher resolution SAR sensors, is likely to continue.

Water stages may be used to define additional flood model parameter classes according to different magnitudes of model error (Schumann et al., 2007b). This highlights the importance of model evaluation at the local scale. In a similar approach, Mason et al. (2009) used the Student t-test on the error information between SAR-derived waterlines and modelled ones to define model performances with an a priori defined uncertainty level. Another useful implementation is to use the uncertainty associated with water levels to set a spatially continuous acceptability interval (Beven, 2006) inside which model simulations are required to fall (see Schumann et al., 2008b and Hostache et al., 2009). This evaluation procedure allows the modeller to gain insights of the model functioning at different spatial scales (Schumann et al., 2008b). 
With the launch of new radar satellites and missions (e.g. RADARSAT-2, ALOS, Cosmo-SkyMed, TerraSAR-X and SWOT) that have better spatial and radiometric resolutions, the uncertainties of water level estimates will presumably be further reduced, getting closer to the desired centimetre-scale accuracy. 
4.3.4 Water stage assimilation into inundation models
Studies in the field of assimilation of remote sensing data in flood forecasting systems are at present only very few in number, as there are a number of considerable challenges to be faced. Errors in the upstream boundary inflow (Andreadis et al., 2007; Matgen et al., 2007b) and channel roughness have been considered the only sources of model error and other likely sources of model uncertainty such as floodplain roughness, channel and floodplain topography, and model structure have been neglected. There is a consensus that a simple re-initialization of models with distributed water stages obtained from remote sensing does not lead to significant improvement because of the dominating effect of the forcing terms on the modelling results (Matgen et al., 2007b). By sequentially confronting models with remote sensing observations it becomes possible to ’diagnose’ the latest model setup and to find out how modelling can be improved. 
In this respect, the use of error forecasting models (Andreadis et al., 2007; Neal et al., 2007) in the context of spatially distributed gauge measurements seems to indicate a promising way forward. A persistent improvement can only be obtained by looking for, and identifying, the reasons that cause disagreement between model results and observations. It needs to be the objective to identify and correct components that are responsible for the discrepancy between modelled and observed variables. 
It may be argued that such a ’diagnostic approach’ (Gupta et al., 2008) ensures efficiency when assimilating remote sensing into flood models. It is reasonable to assume that the difference between the observed and simulated water surfaces might indicate that the model setup is questionable. An adequate understanding of all the different error sources and interactions is needed to conduct the model development in a meaningful way. Since flood inundation models are calibrated with data of a past flood event, the potential reasons for a mismatch can indeed be numerous: the rating curve used to describe the boundary condition might become erroneous after a given flow magnitude, model parameters (i.e. channel and floodplain roughness values) may vary with time (e.g. due to vegetation growth), important intermediate inflows may have been neglected or the model structure may become inappropriate with increased inflow (Schumann et al., in press). Put more bluntly, if there is considerable disagreement between observations and model simulations, then both need to be questioned and improvement of the modelling should be envisaged.
5. Future research
The foregoing has hopefully illustrated the wide variety of ways in which data are currently being utilised in flood inundation models. Substantial progress can be seen to have been made over the past decade in the development of new data sources, and on the integration of the data they produce into the models. The improvement in urban flood modelling made possible by the availability of high resolution LiDAR data is but one example. Whilst the progress made to date is significant, much further work remains to fully exploit the data from current sources in the modelling process. In addition, anticipated developments in data sources in the near future mean that the ongoing revolution in the production of data for inundation models is likely to proceed for some time yet. These developments suggest a number of topics for future research to better meet the data requirements of inundation modellers, and these are set out below.
Flood inundation models are only as good as the data used to validate them. There is a need for better model validation data sets, particularly in urban areas. In rural areas, 2D flood models have been successfully validated using flood extents determined from SAR data, typically ERS and ASAR. However, these have too low a resolution for use in urban areas. This situation should improve in the near future as the number of operational SARs and their spatial resolutions increase. The high resolution TerraSar-X, RADARSAT-2, ALOS PALSAR and the first three of the COSMO-SkyMed satellites have recently been launched. When the four satellites in the COSMO-SkyMed constellation become operational, a flood revisit time of a few hours should be possible. However, even with resolutions of only a few metres, the side-looking nature of SAR means that substantial areas of ground surface will not be visible due to shadowing and layover caused by buildings, and it will be necessary to correct for these in estimating flood extent (Mason et al., 2010) (figure 4). 
The number of operational SARs, coupled with the rise in importance of the Disasters Charter Agency and the advent of the European Space Agency’s (ESA’s) Heterogeneous Missions Accessibility (HMA) project, also bodes well for the production of SAR image sequences for future flooding events. The International Charter of Space and Major Disasters
(www.disasterscharter.org) aims to provide a unified system of space data acquisition and delivery to those affected by disasters such as flooding via its member space agencies. The HMA project is establishing harmonized access to Earth Observation data from multiple mission ground segments. This will include a single ‘one-stop’ mission planning and programming service to place requests for new acquisitions on to partner space agencies’ ground segments. The SAR image sequences acquired may image the rising limb of the hydrograph as well as the more commonly imaged falling limb. The availability of image sequences should make possible more data assimilation studies, which may provide more rigorous model validation than using single SAR scenes. If the SAR images can be made available in geo-registered form in near real time (as with TerraSAR-X), they may also become a powerful tool in operational flood risk alleviation scenarios (Martinis et al., 2009).
Full waveform LiDAR data need to be processed to produce more realistic topographic data in urban areas. Unlike LiDAR systems recording first and last return, full waveform systems are able to record the entire backscattered signal of each laser pulse (Chauve et al., 2007). Subtle modelling errors may arise due to the limited sampling of the LiDAR waveform that is currently employed (e.g. last return). For example, a wall may divert flood water, but may not be identified in LiDAR data because it is obscured by vegetation, which may subsequently be removed by the filtering process to leave an estimate of ground rather than wall height (Blanksby, 2005). Further studies are also required of the fusion of airborne LiDAR data with map and other data (including terrestrial LiDAR) in urban areas, and the relative trade-offs between grid and sub-grid representation of urban features.
The improvement of remotely sensed data sources for model parameterization and validation may, in the future, mean that our ability to gauge river flow accurately may become the limiting uncertainty in flood risk modelling.  Many gauging stations are located for low flow monitoring, and perform poorly during high flow periods.  Moreover, obtaining accurate flow velocity data at high flow across a complex floodplain may be difficult and dangerous.  Improved flow gauging may is therefore likely to be a critical research need in the coming decade and techniques to achieve this can currently only be described as experimental at best.  Boat-mounted Acoustic Doppler Current Profiler (ADCP) technology may provide the most plausible solution here, but it is likely that such technology will need to be used in conjunction with high resolution flow modelling in order to extrapolate the limited measurement we are likely to obtain to extreme flow conditions. An alternative using remote sensing may be to image the flood using an airborne SAR with an along-track interferometric capability, allowing measurement of water surface velocity from which flow rate may be inferred (e.g. Costa et al., 2000). The TerraSAR-X satellite is capable of performing along-track interferometry from space.
Lastly, networks of low cost sensors connected using wireless computing and GSM (Global System for Mobile communication) technology (e.g. Neal et al., 2007) may also provide an additional source of model validation data to complement that available through remote sensing.  The ability to deploy large numbers of sensors may help overcome the spatial resolution of existing ground sensor networks and yield new insights in to the hydraulics of flood flows that can be used to develop a new generation of flood inundation models.
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	Methods
	Merits
	Limitations

	Cartography
	Simple to generate if digital contours are available

Economical for large areas
	Highly dependent on the scale and quality of the base map.

Does not accurately characterize low lying areas such as floodplains

Influenced by the skill of operator digitizing the map

	Ground Surveying
	Extremely accurate

Total Stations can acquire elevations under canopy

Provides measurements for filling in voids in other datasets
	Expensive and time consuming to collect for large areas

GPS does not provide reliable heights under canopy

Access  required to property for measurement of heights

	Digital Aerial Photogrammetry
	It is a proven and well understood approach

Potential for high accuracies in plan and height

Provides an optical image for interpretation 

Relatively economical for surveys of large areas
	Delay between acquisition of images and production of DTM

Dependent on scale and quality of imagery

Limitations in the automatic matching algorithm

Manual measurements require an experienced observer

	Interferometric SAR
	Can “see” through clouds and operate day or night

Rapidly map very large areas.
	Volume scattering in vegetated areas  lead to poor coherence

Performance can degrade in urban areas due to bright targets and shadows

Artefacts in the DTM due to topography or atmospheric propagation

	LiDAR
	Potential for high accuracy

Can generate DTM for surface with little or no texture

Could measure vegetation height when set to record first and last pulse
	May require a lot of flying time for extremely large areas

Cannot operate in cloudy, rainy or windy conditions

May require complementary data, such as photo, if interpretation of points is necessary


Table 1. Summary of merits and limitations of available DTM techniques
(after Smith et al., 2006).

	Available DTMs
	Method of

Generation
	Spatial

Resolution (m)
	Vertical

Accuracy ± (m)
	Formats


	Coverage
	Estimate of Costs
	Organization Responsible

	LandMap Elevation Data
	repeat-pass spaceborne InSAR
	25
	Varies

(10 - 100)
	DSM
	Entire UK
	Free for academics via Edina
	MIMAS

www.landmap.ac.uk

	SRTM 
	Single-pass spaceborne InSAR
	90
	~16
	DSM
	Global
	Free for research
	JPL at NASA

www.nasa.org

www.edina.com

	Land Form Profile
	Cartographic

(Digitized Contours) 
	10
	~2.5 – 5.0
	DTM
	Entire UK
	Free for academics via Edina or

£4.20 per 5kmx5km
	Ordnance Survey

	Land Form Profile Plus
	Photogrammetry LiDAR
	2
	0.5
	DTM
	Being rolled out on a needs basis
	£61 - £575 per 5kmx5km
	Ordnance Survey

	
	
	5
	1.0
	
	
	
	

	
	
	10
	2.5
	
	
	
	

	NextMap Britain
	Airborne InSAR
	5
	0.5 – 1.0
	DSM
	England, Wales & Scotland
	From £40 per sq km 

(or £1 per  sq km via CHEST; minimum £500)  
	Intermap,

Getmapping,

or BlueSky

	
	
	5 or 10
	0.7 – 1.0
	DTM
	
	
	

	LiDAR
	Airborne LiDAR
	0.25 - 3.0
	0.05 – 0.25
	DSM/DTM
	Selected low lying and coastal areas
	From £800 per 2kmx2km 
	Environment Agency

	UK Perspectives
	Photogrammetry
	10
	1.0
	DTM
	England
	£25.00 per km2
	Simmons Aerofilms Ltd. or

UK Perspectives
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	Name
	Remarks
	Equation 
	Recommendation

	Bias
	Predictions that count (A,B,C)
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	Recommended for summarising aggregate model performance (i.e. under- or overprediction).

	PC
	Heavily influenced by the most common category and hence, implicitly domain size
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	Not recommended for either deterministic or uncertain calibration. 

The values for D are usually orders of magnitude larger than the other categories and may also be trivially easy to predict. Therefore, in many instances, PC will provide an overly optimistic assessment of model performance.

	ROC analysis (F,H)
	Artificial minimising ad maximising of F and H respectively
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	Summarises two different types of model error (i.e. under- or overprediction) that can occur and is potentially a useful tool for exploring their relative consequences and weighting in any subsequent risk analyses. Therefore, worthy of further consideration/development.

	PSS
	Underprediction C, relative magnitudes of F and H
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	Not recommended for either deterministic or uncertain calibration. Small F and large H are typical in this type of application and, as such, the measure fails to adequately penalise overprediction. Significant overestimates of the flooded area are therefore only graded slightly poorer than optimal simulations. This also results in the preferential rejection of underpredicting parameter sets during uncertain calibration.

	F <1>
	Correct predictions of flooding (A)
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	Recommended for both deterministic and uncertain calibration. A relatively unbiased measure that simply and equitably discriminates between under- and overprediction. As such, optimal simulations will provide the best compromise between these two undesirable attributes. 

	F<2>
	Overprediction (B)
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	Recommended for deterministic calibration (if underprediction is preferable). Explicitly penalises overprediction but suffers as a result during uncertain calibration. Overpredicting simulations are wrongly retained to offset the bias introduced by the measure and provide an acceptable compromise between inundation map accuracy and precision. The benefits of rejection  are reduced accordingly

	F<3>
	Underprediction
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	Recommended for deterministic calibration (if overprediction is preferable). Here the measure was not tested within the uncertain calibration methodology though for other reaches, events and study objectives, F3may provide a useful alternative to F1and F2. It is not sensitive to domain size and appears to favour overprediction similar to PSS


Table 3: Recommendations for various model performance measures (A = area wet in image and model, B= area wet in model but dry in image , C = area wet in image but dry in model, D = area dry in both)(after Hunter 2005).

Figure captions

Figure 1. Typical LiDAR system and its main components (after Smith et al., 2006).

Figure 2. Example of EA’s hybrid filtering, (a) DSM, (b) DTM with buildings, 

(c) DTM with vegetation, (d) DTM without bridges (© EA).
Figure 3. Mesh constructed over vegetated urban area (red = mesh, blue = building/taller vegetation heights; a river is present in the NE) (after Mason et al., 2007).

Figure 4. 3m-resolution TerraSAR-X image of flooding in Tewkesbury in July 2007 (© DLR (2007)) (dark regions are water and radar shadow areas).
Figure 5. River Danube water level fluctuations from 1993 to 2002. Bars indicate the standard deviation (data provided by the LEGOS hydroweb at http://www.legos.obs-mip.fr/en/equipes/gohs/resultats/i_hydroweb)
Figure 6. The reliability diagram. The uncertain prediction (top left) is classified into areas of similar Cj (top middle), then the ratio of observed wet/dry cells (top right) calculated. These then make up the reliability plot (bottom), with a reliable model being one with points close to the 1:1 line (after Horritt, 2006b).
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Figure 2.10 Typical LiDAR System and its Main Components (Smith 2005)
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Table 2. Summary of characteristics of generally available DTMs in the UK (after Smith et al., 2006).





Figure 1. Typical LiDAR system and its main components (after Smith et al., 2006).





Figure 4. 3m-resolution TerraSAR-X image of flooding in Tewkesbury in July 2007 (© DLR (2007))


(dark regions are water and radar shadow areas).








Figure 3. Mesh constructed over vegetated urban area


(red = mesh, blue = building/taller vegetation heights;


a river is present in the NE) (after Mason et al., 2007).
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Figure 2. Example of EA’s hybrid filtering, (a) DSM, (b) DTM with buildings, 


(c) DTM with vegetation, (d) DTM without bridges (© EA).





Figure 5. River Danube water level fluctuations from 1993 to 2002. Bars indicate the standard deviation (data provided by the LEGOS hydroweb at http://www.legos.obs-mip.fr/en/equipes/gohs/resultats/i_hydroweb).








Figure 6. The reliability diagram. The uncertain prediction (top left) is classified into areas of similar Cj (top middle), then the ratio of observed wet/dry cells (top right) calculated. These then make up the reliability plot (bottom), with a reliable model being one with points close to the 1:1 line (after Horritt, 2006b).
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