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Particle Swarm Optimization Aided Orthogonal
Forward Regression for Unified Data Modeling

Sheng Chen, Fellow, IEEE, Xia Hong, Senior Member, IEEE, and Chris J. Harris

Abstract—We propose a unified data modeling approach that
is equally applicable to supervised regression and classification
applications, as well as to unsupervised probability density
function estimation. A particle swarm optimization (PSO) aided
orthogonal forward regression (OFR) algorithm based on leave-
one-out (LOO) criteria is developed to construct parsimonious
radial basis function (RBF) networks with tunable nodes. Each
stage of the construction process determines the center vector and
diagonal covariance matrix of one RBF node by minimizing the
LOO statistics. For regression applications, the LOO criterion
is chosen to be the LOO mean square error, while the LOO
misclassification rate is adopted in two-class classification appli-
cations. By adopting the Parzen window estimate as the desired
response, the unsupervised density estimation problem is trans-
formed into a constrained regression problem. This PSO aided
OFR algorithm for tunable-node RBF networks is capable of
constructing very parsimonious RBF models that generalize well,
and our analysis and experimental results demonstrate that the
algorithm is computationally even simpler than the efficient
regularization assisted orthogonal least square algorithm based
on LOO criteria for selecting fixed-node RBF models. Another
significant advantage of the proposed learning procedure is that
it does not have learning hyperparameters that have to be tuned
using costly cross validation. The effectiveness of the proposed
PSO aided OFR construction procedure is illustrated using
several examples taken from regression and classification, as well
as density estimation applications.

Index Terms—Classification, density estimation, evolutionary
computation, leave-one-out cross validation, orthogonal forward
regression, particle swarm optimization, radial basis function
network, regression.

I. Introduction

MODELING from data is of fundamental importance
in all walks of engineering. Various data modeling

applications can be classified into three categories, namely,
regression [1]–[3], classification [4]–[6], and probability den-
sity function (PDF) estimation [7]–[9]. In regression, the task
is to establish a model that links the observation data to their
target function or desired output values. The goodness of a
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regression model is judged by its generalization performance,
which can be conveniently determined by the test mean square
error (MSE) on the data not used in training the model. Like
regression, classification is also a supervised learning problem.
However, the desired output is discrete valued, e.g., binary in
two-class classification problems, and the goodness of a classi-
fier is determined by its test error probability or misclassifica-
tion rate. Despite these differences, classifier construction can
be expressed in the same framework of regression modeling.
The third class of data modeling, namely, PDF estimation, is
very different in nature from regression and classification. The
task of PDF estimation is to infer the underlying probability
distribution that generates the observations. Because the true
target function, the underlying PDF, is not available, this is
an unsupervised learning problem and can only be carried
out based on, often noisy, observation data. Nevertheless, this
unsupervised task can be “transformed” into a supervised one,
for example, by computing the empirical distribution function
(EDF) from the observation data and using it as the target
function for the cumulative distribution function (CDF) of the
PDF estimation. Thus, a unified regression framework can be
adopted for all three classes of data modeling problems.

The radial basis function (RBF) network has found wide-
ranging data modeling applications in diverse engineering
fields [10]–[26]. The parameters of the RBF network, which
include the center vectors and variances or covariance matrices
of its hidden nodes, as well as the weights that connect the
RBF nodes to the network output, can be trained together
via nonlinear optimization using gradient based algorithms
[27]–[31], the expectation-maximization (EM) algorithm [32],
[33], or various evolutionary algorithms [34]–[38]. Generally
speaking, learning based on such a nonlinear approach is
computationally expensive and may encounter the problem
of local minima. Additionally, the network structure or the
number of RBF nodes has to be determined via other means,
typically based on cross validation. Alternatively, clustering
algorithms can be applied to find the RBF center vectors, as
well as the associated basis function variances [39]–[42]. This
leaves the RBF weights to be determined by the usual linear
least squares solution. Again, the number of clusters has to be
determined via cross validation. An alternative RBF network
selection criterion is based on sensitivity analysis [43]. How-
ever, one of the most popular approaches for constructing RBF
models for regression is to formulate the problem as a linear
learning problem by considering the training input data points
as candidate RBF centers and employing a common variance

1089-778X/$26.00 c© 2009 IEEE
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for every RBF node. A parsimonious RBF network is then
identified using the orthogonal least squares (OLS) algorithm
[44]–[48]. A similar linear learning approach is adopted in
the support vector machine (SVM) and other sparse kernel
modeling methods [49]–[55], which fix the kernel centers to
the training input data points and adopt a common kernel
variance for every kernel. A sparse kernel model is then sought
by making as many kernel weights to near zero as possible
based on appropriate optimization criteria. Hybrid learning
for RBF networks has also been proposed. For example, an
initial RBF network can be constructed using a linear learning
method and the resulting RBF model is then further optimized
using nonlinear optimization [56].

The SVM and related sparse kernel methods are equally
applicable to regression, classification, and density estimation
[57]–[62]. The OLS approach has also been extended to all
three types of data modeling. In particular, the regularization
assisted OLS (ROLS) algorithm based on minimizing the
leave-one-out (LOO) MSE [48] offers a state-of-the-art for
regression application. The work [63] has developed a ROLS
algorithm based on minimizing the LOO misclassification rate
for two-class classification applications. Owing to orthogonal
decomposition, the LOO misclassification rate can be com-
puted efficiently, just as in the case of the LOO MSE for
regression, and this ensures a fast RBF classifier construction.
A sparse density estimation technique has been developed
in [64], which uses the ROLS algorithm based on the LOO
MSE to select a parsimonious density estimate and computes
the associated kernel weights using the multiplicative non-
negative quadratic programming (MNQP) algorithm of [65].
Our experimental results [48], [63], [64] have demonstrated
that the ROLS-LOO algorithm compares favorably with many
other existing fixed-node RBF or kernel modeling methods for
data modeling, in terms of model sparsity and generalization
performance. One aspect of the linear learning approach for
RBF models, which deserves consideration, is the determina-
tion of the common RBF variance. Since this variance is not
provided by the learning algorithms, it must be treated as a
hyperparameter and determined via cross validation. For kernel
modeling methods, the learning algorithm’s hyperparameters
also have to be determined by cross validation. For example,
for the SVM algorithm with the ε insensitive cost function
[50], the kernel variance as well as the regularization and error-
band parameters must be specified.

To avoid using costly cross validation for determining the
RBF variance as is required by the above-mentioned linear
learning approach for fixed-node RBF or kernel modeling
methods, Chen et al [66] adopt a strategy of fitting a diagonal
covariance matrix to each candidate RBF node, which as usual
is centered at a training input point, by optimizing the cor-
relation criterion between the training data and the candidate
RBF regressor. Because fitting the covariance matrix of a RBF
node by maximizing the correlation criterion is a nonlinear and
nonconvex optimization task, a global search algorithm known
as the repeated weighted boosting search (RWBS) [67] is em-
ployed to perform this optimization. This RBF regression does
not need to learn any hyperparameter. However, it is required
to fit a diagonal RBF covariance matrix to every training data

point, which can be computationally costly, particularly for a
large training data set. More effective construction algorithms
for the RBF network with tunable nodes for regression and
classification are proposed in [68], [69], where each RBF
unit has a tunable center vector as well as an adjustable
diagonal covariance matrix. An orthogonal forward regression
(OFR) procedure is employed to optimize the RBF units one
by one by minimizing the LOO statistics. Specifically, each
stage of the model construction procedure determines one RBF
unit’s center vector and diagonal covariance matrix using the
RWBS [67]. Because the RBF centers are not restricted to the
training input points and each RBF node has an individually
adjusted covariance matrix, this OFR-LOO algorithm can
produce sparser representations with excellent generalization
capability, in comparison with the existing fixed-node RBF
modeling methods. This tunable-node approach is also very
different from those RBF learning methods based on nonlinear
optimization, as it does not attempt to optimize all the RBF
units together, which could be a too large and complicated
nonlinear optimization task. A drawback of the algorithms
[68], [69] for constructing tunable-node RBF models is that
they may require more computation in model construction
than the algorithms [48], [63] for selecting fixed-node RBF
models.

This paper proposes a particle swarm optimization (PSO)
aided OFR algorithm to construct tunable-node RBF models
for unified data modeling that includes regression, classifi-
cation, and density estimation. PSO [70], [71] constitutes
a population based stochastic optimization technique, which
was inspired by the social behavior of bird flocks or fish
schools. The algorithm commences with random initialization
of a swarm of individuals, referred to as particles, within the
specific problem’s search space. It then endeavors to find a
globally optimum solution by gradually adjusting the trajec-
tory of each particle toward its own best location and toward
the best position of the entire swarm at each optimization
step. The PSO method is popular owing to its simplicity in
implementation, ability to rapidly converge to a “reasonably
good” solution and to “steer clear” of local minima. It has been
successfully applied to wide-ranging optimization problems
[37], [38], [72]–[117]. Because of the simplicity and efficiency
of the PSO method, the proposed PSO aided OFR algorithm
based on LOO statistics for constructing tunable-node RBF
models not only produces smaller RBF models with better
generalization capability but also requires less computation in
model construction, in comparison with the efficient ROLS-
LOO algorithm for selecting fixed-node RBF models [48],
[63], [64]. Regression, classification and density estimation
examples are used in our experimental study to demonstrate
that the proposed PSO-aided OFR-LOO algorithm offers a
state-of-the-art for unified data modeling practice. Hence, the
novel contribution of this paper is that we develop a PSO-
aided OFR-LOO algorithm for constructing tunable-node RBF
models. This PSO-aided tunable RBF modeling approach
offers significant advantages over the best existing algorithms
for selecting fixed-node RBF models, in terms of achieving
smaller model size and better generalization performance as
well as imposing lower computational complexity.
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II. Unified Data Modeling Using

the Tunable RBF Network

Regression, classification, and PDF estimation can be uni-
fied under a regression framework of data modeling based
on appropriate modeling criteria, where the model is obtained
as a linear combination of a set of tunable RBF nodes or
kernels. For density estimation, additionally, each RBF kernel
is nonnegative and the area under the RBF kernel is unity.

A. Regression

Consider the generic regression modeling problem based on
the set of N pairs of training data, DN = {(xk, yk)}Nk=1, with
the RBF network defined in

yk = ŷk + ek =
M∑
i=1

wigi(xk) + ek = gT (k)w + ek (1)

where the input xk ∈ Rm, the desired output yk ∈ R, ŷk

denotes the RBF model output, ek = yk − ŷk is the modeling
error, M is the number of RBF units, w = [w1 w2 · · · wM]T

is the RBF weight vector, gi(•) for 1 ≤ i ≤ M denote the
RBF regressors, and g(k) = [g1(xk) g2(xk) · · · gM(xk)]T . We
will consider the generic RBF regressor of the form

gi(x) = K(x; µi, �i)

= K

(√(
x − µi

)T
�−1

i

(
x − µi

))
(2)

where µi is the center vector of the ith RBF unit, the
ith RBF covariance matrix takes a diagonal form �i =
diag{σ2

i,1, · · · , σ2
i,m}, and K(•) is the chosen basis or kernel

function. Many types of basis function can be used and a
commonly adopted one is the Gaussian function of the form

K(x; µ, �) =
1

(2π)m/2 det1/2 |�|e
− 1

2 (x−µ)T�
−1

(x−µ). (3)

For regression and classification, the factor 1/
(
(2π)m/2

det1/2 |�|) can be combined into the RBF weight w.
By defining y = [y1 y2 · · · yN ]T , e = [e1 e2 · · · eN ]T , and

G = [g1 g2 · · · gM] with

gl = [gl(x1) gl(x2) · · · gl(xN )]T , 1 ≤ l ≤ M (4)

the regression model in (1) over the training data set DN can
be written in matrix form as

y = Gw + e. (5)

Note that gk denotes the kth column of G while gT (k) is the kth
row of G. Let an orthogonal decomposition of the regression
matrix G be G = �A, where

A =

⎡
⎢⎢⎢⎢⎣

1 α1,2 · · · α1,M

0 1
. . .

...
...

. . .
. . . αM−1,M

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (6)

and

� = [φ1 φ2 · · · φM] (7)

with the orthogonal columns that satisfy φT
i φj = 0, if i �= j.

The orthogonalization can, for example, be performed by the
Gram–Schmidt procedure [44]. The regression model in (5)
can alternatively be expressed as

y = �θ + e (8)

where the weight vector θ = [θ1 θ2 · · · θM]T defined in the
orthogonal model space � satisfies the triangular system,
Aw = θ. Since the space spanned by the original model bases
gi(•), 1 ≤ i ≤ M, is identical to the space spanned by the
orthogonal model bases, the RBF model output is equivalently
expressed by

ŷk = φT (k)θ (9)

where φT (k) = [φ1(k) φ2(k) · · · φM(k)] is the kth row of �.

B. Classification

For notational simplification, we restrict to the two-class
classification problem with the given training data set DN =
{xk, yk}Nk=1, where xk ∈ Rm is an m-dimensional pattern vector
and yk ∈ {−1, +1} is the class label for xk. The task is to
construct a RBF classifier of the form

ỹk = sgn (ŷk) (10)

with the classifier

ŷk =
M∑
i=1

wigi(xk) (11)

where ỹk is the estimated class label for xk and

sgn(y) =

{−1, y ≤ 0
+1, y > 0.

(12)

By defining the modeling error as ek = yk − ŷk, the classifica-
tion model over the training data set DN can be expressed in
the regression model of (5), namely, y = Gw+e, or equivalently
in the orthogonal regression model of (8), i.e., y = �θ + e,
where all the relevant notations are as defined in Section II-A.
Thus, the classifier construction can be expressed in the same
regression modeling framework of Section II-A, and the only
difference with regression is that the target function yk in
classification applications is discrete valued. In particular, for
the two-class classification problem, yk is binary.

C. Density Estimation

Given the finite data sample set DN = {xk}Nk=1 drawn from
a density p(x), where xk ∈ Rm, the task is to estimate the
unknown density p(x) using the density estimate of the form

p̂(x) =
M∑
i=1

wigi(x) (13)

with the constraints

wi ≥ 0, 1 ≤ i ≤ M (14)

and

wT 1M = 1 (15)
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where 1M denotes the vector of ones with dimension M. The
basis function used in this study is chosen to be the Gaussian
function as given in (3). However, many other basis functions
can also be used in the density estimate of (13). This density
estimation is an unsupervised learning problem, as the desired
response for the training data points xk is unknown. We follow
the approach of [64] to transform it into a supervised learning
problem.

Given the training set DN , the well-known Parzen window
(PW) estimate [7] is obtained as

p̂Par(x) =
N∑

k=1

1

N
K(x; xk, ρ

2
Par)

=
N∑

k=1

1

N
K

(√
(x − xk)T (x − xk)/ρ2

Par

)
(16)

where ρPar is the kernel width and K(•) is usually chosen as
the Gaussian kernel function. The kernel width ρPar is typically
determined via cross validation. A disadvantage associated
with the PW estimate is its high computational cost of the
point density estimate for a future data sample, as the PW
estimate employs the full training data sample set in defining
density estimate for subsequent observation. The PW estimate,
however, is simple to construct and remarkably accurate [7].
Moreover, it can be regarded as the “observation” of the true
density, namely

p̂Par(x) = p(x) + e(x) (17)

where e(x) can be viewed as the “observational noise” at the
point x. Thus, the density estimation problem in (13) can be
viewed as a “supervised” regression problem with the PW
estimate as the “desired response,” subject to the constraints
given in (14) and (15).

Specifically, the PW estimate in (16) and the generic density
estimate in (13) at the training data point xk are, respectively,
defined as yk = p̂Par(xk) and ŷk = p̂(xk). Further, denote the
associated modeling error at xk as ek = yk − ŷk. Then the
generic density estimation problem in (13) is expressed in
the same regression modeling framework of (5), that is,
y = Gw + e, subject to the nonnegative constraint in (14) and
the unity constraint in (15), where all the relevant notations
have been defined in Section II-A. The regression model in
(5) can of course be written equivalently in the form of (8),
namely, y = �θ + e.

Appendix A explains in detail the two common approaches
for “converting” the unsupervised density estimation problem
into a supervised regression problem.

III. PSO Aided OFR for the Tunable RBF Network

As mentioned in the previous section, regression, classifi-
cation, and PDF estimation can all be unified in a common
regression modeling framework. We propose a PSO aided OFR
algorithm for efficient construction of the tunable-node RBF
model in this unified regression framework. First, the PSO
method adopted is briefly summarized.

A. PSO

Consider solving the generic optimization problem

uopt = arg min
u∈

∏m
′

j=1
Pj

F (u) (18)

using the PSO algorithm [70], [71], where u = [u1 u2 · · · um
′ ]T

is the m
′
-dimensional parameter vector to be optimized, F (•)

is the cost function, and

m
′∏

j=1

Pj =
m

′∏
j=1

[Pj,min, Pj,max] (19)

defines the search space. A swarm of particles, {u(l)
i }Si=1, that

represent potential solutions are “flying” in the search space∏m
′

j=1 Pj , where S is the swarm size and index l denotes the
iteration step. The algorithm is summarized as follows.

a) Swarm Initialization: Set the iteration index l = 0 and
randomly generate {u(l)

i }Si=1 in the search space
∏m

′

j=1 Pj .

b) Swarm Evaluation: Each particle u(l)
i has a cost F (u(l)

i )
associated with it. Each particle u(l)

i remembers its best
position visited so far, denoted as pb(l)

i , which provides
the cognitive information. Every particle also knows the
best position visited so far among the entire swarm,
denoted as gb(l), which provides the social information.
The cognitive information {pb(l)

i }Si=1 and the social infor-
mation gb(l) are updated at each iteration as follows:

For (i = 1; i ≤ S; i++)
If (F (u(l)

i ) < F (pb(l)
i )) pb(l)

i = u(l)
i ;

End for;
i∗ = arg min

1≤i≤S
F (pb(l)

i );

If (F (pb(l)
i∗ ) < F (gb(l))) gb(l) = pb(l)

i∗ ;

c) Swarm Update: Each particle u(l)
i has a velocity, denoted

as v(l)
i , to direct its “flying.” The velocity and position of

the ith particle are updated in each iteration according
to

v(l+1)
i = wI ∗ v(l)

i + rand() ∗ c1 ∗ (pb(l)
i − u(l)

i )

+ rand() ∗ c2 ∗ (gb(l) − u(l)
i ) (20)

u(l+1)
i = u(l)

i + v(l+1)
i (21)

where wI is the inertia weight, rand() denotes the
uniform random number between 0 and 1, and c1 and c2

are the two acceleration coefficients. In order to avoid
excessive roaming of particles beyond the search space
[75], a velocity space

m
′∏

j=1

Vj =
m

′∏
j=1

[−Vj,max, Vj,max] (22)

is imposed on v(l+1)
i so that

If (v(l+1)
i |j > Vj,max) v(l+1)

i |j = Vj,max;

If (v(l+1)
i |j < −Vj,max) v(l+1)

i |j = −Vj,max;

where v|j denotes the jth element of v. Moreover, if
the velocity as given in (20) approaches zero, it is
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reinitialized proportional to Vj,max with a small factor
γ

If (v(l+1)
i |j == 0) v(l+1)

i |j = ±rand() ∗ γ ∗ Vj,max; (23)

Similarly, each element of u(l+1)
i is checked to ensure

that it stays inside the search space
If (u(l+1)

i |j > Pj,max) u(l+1)
i |j = Pj,max;

If (u(l+1)
i |j < Pj,min) u(l+1)

i |j = Pj,min;
Alternatively, if a particle is outside the search space, it
may be moved back inside the search space to a random
position, rather than forcing it to stay at the border [75].

d) Termination Condition Check: If the maximum number
of iterations, Imax, is reached, terminate the algorithm
with the solution gb(Imax); otherwise, set l = l + 1 and go
to Step b).

Ratnaweera and co-authors [73] reported that using a time
varying acceleration coefficient (TVAC) enhances the perfor-
mance of PSO. We adopt this mechanism, in which c1 is
reduced from 2.5 to 0.5 and c2 varies from 0.5 to 2.5 during
the iterative procedure

c1 = (0.5 − 2.5) ∗ l/Imax + 2.5

c2 = (2.5 − 0.5) ∗ l/Imax + 0.5.

(24)

The reason for good performance of this TVAC mechanism
can be explained as follows. At the initial stages, a large cog-
nitive component and a small social component help particles
to wander around or better exploit the search space, avoiding
local minima. In the later stages, a small cognitive component
and a large social component help particles to converge quickly
to a global minimum. We experiment with three choices of
the inertia weight, namely, wI = 0 as suggested in [73], which
removes the influence of the previous velocity, wI set to a
small positive constant, and wI = rand(). The third choice
sets wI as a uniform random number between 0 and 1 at each
iteration and it typically performs better than the other two
choices in our application.

The search space as given in (19) is defined by the spe-
cific problem to be solved, and the velocity limit can be
set to

Vj,max = 0.5 ∗ (Pj,max − Pj,min). (25)

An appropriate value of the small control factor γ in (23) for
avoiding zero velocity is empirically found to be γ = 0.1 for
our application. Our experimental results given in Section IV
show that a swarm size in the range of S = 10 to S = 20 is ap-
propriate for our application. We have also found empirically
that often the maximum number of iterations can be chosen as
Imax = 20. Thus, the PSO method is generally very efficient in
terms of the total required computational complexity. Let the
computational complexity of evaluating the cost function F (u)
once be Csingle. The total complexity of the above-mentioned
PSO algorithm in solving the optimization problem defined in
(18) is

Ctotal = Imax × S × Csingle. (26)

B. Regression Model Construction

Consider the modeling process that has produced the n-
unit RBF model. Denote the constructed n model columns
as �n = [φ1 φ2 · · · φn], the kth model output of this n-
unit model identified using the entire training set DN as
ŷ

[n]
k =

∑n
i=1 θiφi(k), and the corresponding kth modeling error

as e
[n]
k = yk − ŷ

[n]
k . If we “remove” the kth data point from DN

and use the remaining N − 1 data points to identify the n-unit
RBF network instead, the “test” error of the resulting model
can be calculated on the data point removed from training.
This LOO modeling error, denoted as e

[n,−k]
k , is given by [2]

e
[n,−k]
k = e

[n]
k /η

[n]
k (27)

where η
[n]
k is the LOO error weighting [2]. The LOO MSE for

the n-unit RBF network is then defined by

Jn =
1

N

N∑
k=1

(
e

[n,−k]
k

)2
. (28)

This LOO MSE is a measure of the model generalization
capability [2], [118]. For the orthogonal model of (8), the
computation of the LOO criterion Jn is very efficient because
e

[n]
k and η

[n]
k can be computed recursively using [48], [119]

e
[n]
k = yk −

n∑
i=1

θiφi(k) = e
[n−1]
k − θnφn(k) (29)

and

η
[n]
k = 1 −

n∑
i=1

φ2
i (k)

φT
i φi + λ

= η
[n−1]
k − φ2

n(k)

φT
n φn + λ

(30)

respectively, where λ ≥ 0 is a small regularization parameter.
The regularization parameter λ occurs in (30) because the
ROLS solution for weights is used [48]. The concept of LOO
cross validation, as well as the derivation of (29) and (30), are
detailed in Appendix B.

The OFR algorithm constructs the RBF nodes one by one
by minimizing the LOO MSE Jn. Specifically, at the nth stage
of the construction procedure, the nth RBF node is determined
by minimizing Jn with respect to the node’s center vector µn

and diagonal covariance matrix �n

min
µn,�n

Jn

(
µn, �n

)
. (31)

The construction procedure is automatically terminated when

JM ≤ JM+1 (32)

yielding an M-node RBF network. Note that the LOO criterion
Jn is at least locally convex with respect to the model size n,
that is, there exists an optimal size M such that, for n ≤ M, Jn

decreases as the model size n increases while the condition in
(32) holds [119]. After this OFR-LOO model construction, a
very small model set G, containing only M units, is obtained.
At this stage, the ROLS-LOO algorithm for the fixed-node
RBF model [48] may be applied to further reduce the model
size and to automatically update an individual regularization
parameter for each weight. This refinement requires a very
small amount of computation, as G is completely specified
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with only a few columns. Note that in the OFR-LOO algo-
rithm, the regularization parameter λ can simply be set to
zero (no regularization) or a very small value (e.g., 10−6). The
refinement using the ROLS-LOO will automatically optimize
each regularization parameter for individual weights without
involving cross validation [48]. Our previous experience [68],
[69] shows that for regression applications this refinement
involving the ROLS-LOO is beneficial but for classification it
is unnecessary (no further reduction in model size). It is also
unnecessary to apply this ROLS-LOO refinement at the end
of OFR-LOO construction for the tunable-node RBF density
estimate, as the MNQP algorithm used in computing the
weights of the constructed density model may further reduce
the model size [62], [65].

How efficient this OFR construction procedure is for tunable
RBF models depends crucially on the algorithm used in
solving the optimization problem defined in (31). We propose
to use the PSO algorithm of Section III-A to perform this
optimization task. Let u be the parameter vector that contains
µn and �n. Then the dimension of u is m

′
= 2m and the cost

function is simply F (u) = Jn(u). The search space defined in
(19) is specified by

Pj,min = min
1≤k≤N

{xk|j},
Pj,max = max

1≤k≤N
{xk|j},

⎫⎬
⎭ 1 ≤ j ≤ m (33)

Pj,min = σ2
min and Pj,max = σ2

max, m + 1 ≤ j ≤ m
′

(34)

where σ2
min and σ2

max are the chosen lower and upper bounds
for the RBF variances σ2

n,j , respectively. Given the following
initial conditions

e
[0]
k = yk and η

[0]
k = 1, 1 ≤ k ≤ N

J0 = 1
N

yT y = 1
N

N∑
k=1

y2
k

⎫⎬
⎭ (35)

and the maximum number of iterations Imax as well as the
swarm size S, the PSO aided OFR algorithm for constructing
the nth RBF node takes the PSO procedure summarized in
Section III-A with the following detailed cost evaluation in
Step b):

The Orthogonalization and Cost Function Evaluation:
1) For 1 ≤ i ≤ S, generate gi)

n from u(l)
i , the candidates

for the nth model column, according to (4), and orthogonalize
them using the Gram–Schmidt orthogonalization [44]

α
i)
j,n = φT

j gi)
n /φT

j φj, 1 ≤ j < n (36)

φi)
n = gi)

n −
n−1∑
j=1

α
i)
j,nφj (37)

θi)
n =

(
φi)

n

)T
y/

((
φi)

n

)T
φi)

n + λ
)
. (38)

2) For 1 ≤ i ≤ S, calculate the LOO cost for each u(l)
i

e
[n]
k (i) = e

[n−1]
k − φi)

n (k)θi)
n , 1 ≤ k ≤ N (39)

η
[n]
k (i) = η

[n−1]
k −

(
φi)

n (k)
)2(

φi)
n

)T
φi)

n + λ
, 1 ≤ k ≤ N (40)

F
(
u(l)

i

)
=

1

N

N∑
k=1

(
e

[n]
k (i)/η[n]

k (i)
)2

(41)

where φi)
n (k) is the kth element of φi)

n .
When the PSO algorithm terminates, it yields the solution

gb(Imax), i.e., the center vector µn and diagonal covariance
matrix �n of the nth RBF node. The algorithm also generates
the nth model column gn, the orthogonalization coefficients
αj,n, 1 ≤ j < n, the corresponding orthogonal model column
φn, and the weight θn, as well as the n-node modeling
errors e

[n]
k and the associated LOO error weightings η

[n]
k for

1 ≤ k ≤ N. The next stage of the model construction can then
commence, and the construction is automatically terminated
when the condition in (32) is met.

C. Classifier Construction

The same LOO cross validation concept [2], as was used
in Section III-B for regression modeling, can be adopted to
provide a measure of a classifier’s generalization capability.
Denote the test output of the LOO n-node RBF classifier,
evaluated at the kth data sample of DN which has been
“removed” from training, as ŷ

[n,−k]
k . The associated LOO

signed decision variable is defined by

s
[n,−k]
k = sgn(yk)ŷ[n,−k]

k = ykŷ
[n,−k]
k (42)

where sgn(yk) = yk since yk ∈ {−1, +1}. The LOO misclassi-
fication rate is defined as [63]

Jn =
1

N

N∑
k=1

Id

(
s

[n,−k]
k

)
(43)

where the indicator function Id is defined by

Id (y) =

{
1, y ≤ 0

0, y > 0.
(44)

The LOO misclassification rate Jn can be evaluated efficiently
because s

[n,−k]
k can be calculated rapidly [63]. Specifically, the

LOO n-node modeling error is expressed as

yk − ŷ
[n,−k]
k =

(
yk − ŷ

[n]
k

)
/η

[n]
k . (45)

Multiplying both sides of (45) with yk and applying y2
k = 1

yield

1 − s
[n,−k]
k =

(
1 − ykŷ

[n]
k

)
/η

[n]
k (46)

which leads to

s
[n,−k]
k =

(
n∑

i=1

ykθiφi(k) −
n∑

i=1

φ2
i (k)

φT
i φi + λ

)
/η

[n]
k

= ψ
[n]
k /η

[n]
k . (47)

The recursive formula for the LOO error weighting η
[n]
k

is given in (30), while ψ
[n]
k can be represented using the

following recurrence relation:

ψ
[n]
k = ψ

[n−1]
k + ykθnφn(k) − φ2

n(k)

φT
n φn + λ

. (48)

As in the regression case, the OFR algorithm constructs the
classifier’s RBF units one by one by minimizing the LOO
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misclassification rate Jn defined in (43). At the nth stage of
construction, the nth RBF node is determined by minimizing
Jn with respect to µn and �n. The procedure is automatically
terminated when JM ≤ JM+1, yielding an M-node RBF
classifier.

The PSO algorithm used to construct the nth RBF node has
a similar form to the regression case with small modifications.
Specifically, the initial condition of (35) is replaced by

ψ
[0]
k = 0 and η

[0]
k = 1, 1 ≤ k ≤ N, and J0 = 1 (49)

while (39) and (41) in the calculation of the LOO cost for
each u(l)

i are replaced, respectively, by

ψ
[n]
k (i) = ψ

[n−1]
k + ykθ

i)
n φi)

n (k)

−
(
φi)

n (k)
)2

/
((

φi)
n

)T
φi)

n + λ
)
, 1 ≤ k ≤ N (50)

and

F (u(l)
i ) =

1

N

N∑
k=1

Id

(
ψ

[n]
k (i)/η[n]

k (i)
)

. (51)

At the nth stage of the classifier construction, when the PSO
algorithm terminates, it outputs gb(Imax) as the solution for µn

and �n. The algorithm also generates the nth model column
gn, the orthogonalization coefficients αj,n, 1 ≤ j < n, the
corresponding orthogonal model column φn, and the weight
θn, as well as ψ

[n]
k and η

[n]
k for 1 ≤ k ≤ N.

D. Density Estimate Construction

Since the density estimation can be expressed as a con-
strained regression modeling, the PSO aided OFR-LOO al-
gorithm detailed in Section III-B can be used to construct a
parsimonious density estimate. However, the model weights
obtained by the OFR-LOO algorithm do not necessarily meet
the nonnegative constraint of (14) and the unity constraint of
(15). This “deficiency” can easily be corrected by using the
MNQP algorithm to recalculate the weights of the constructed
model, as in the case of selecting a fixed-node RBF density es-
timate [64]. Specifically, the PSO aided OFR-LOO algorithm
presented in Section III-B is used to determine the structure
of the density estimate by constructing M RBF nodes. This
specifies the regression matrix G in the regression model of
(5). The model weight vector w is then recalculated using the
MNQP algorithm [62], [65], in order to meet the constraints
of (14) and (15). Formally, this task is defined as follows.
Given y and G, find w for the model of (5) subject to the
constraints of (14) and (15). Note that, since M is very small,
the computation involved is small.

More specifically, the weight vector of the constructed den-
sity estimate is obtained by solving the following constrained
nonnegative quadratic programming [65]:

min
w

{ 1
2 wT Dw − zT w}

s.t. wT 1M = 1 and wi ≥ 0, 1 ≤ i ≤ M
(52)

where D = GT G =
[
di,j

] ∈ RM×M is the related design
matrix and z = GT y = [z1 z2 · · · zM]T . Although there exists
no closed-form solution for this optimization problem, the

solution can readily be obtained iteratively using a modified
version of the MNQP algorithm [65]. Since the elements of
D and z are strictly positive, the auxiliary function for the
nonnegative quadratic programming of (52) is given by [65]

1

2

M∑
i=1

M∑
j=1

di,j

w
(t)
j

(
w

(t+1)
i

)2

w
(t)
i

−
M∑
i=1

ziw
(t+1)
i (53)

and the Lagrangian associated with this auxiliary problem can
be formed as [62]

L =
1

2

M∑
i=1

M∑
j=1

di,j

w
(t)
j

(
w

(t+1)
i

)2

w
(t)
i

−
M∑
i=1

ziw
(t+1)
i

−h(t)

(
M∑
i=1

w
(t+1)
i − 1

)
(54)

where the index t denotes the iteration index and h is the
Lagrangian multiplier. Setting

∂L
∂w

(t+1)
i

= 0 and
∂L
∂h(t)

= 0 (55)

leads to the following updating equations:

r
(t)
i = w

(t)
i

⎛
⎝ M∑

j=1

di,jw
(t)
j

⎞
⎠

−1

, 1 ≤ i ≤ M (56)

h(t) =

(
M∑
i=1

r
(t)
i

)−1 (
1 −

M∑
i=1

r
(t)
i zi

)
(57)

w
(t+1)
i = r

(t)
i

(
zi + h(t)

)
. (58)

It is easy to check that, if w(t) meets the constraints of (14)
and (15), w(t+1) updated according to (56) to (58) also satisfies
the constraints of (14) and (15). The initial condition can be
set to w

(0)
i = 1

M
, 1 ≤ i ≤ M. During the iterative procedure,

some of the weights may be driven to (near) zero [62], [65].
The corresponding RBF units can then be removed from the
model, leading to a further reduction in the model size.

E. Computational Complexity Comparison

The complexity of one LOO cost evaluation and the asso-
ciated model column orthogonalization, as defined in (36) to
(41), can be shown to be the order of N, O(N) (also see [120]).
Thus, Csingle = O(N), and the computational requirements of
the PSO-aided OFR-LOO algorithm in constructing an M-
node RBF model can readily be given as

CPSO−OFR = (M + 1) × Imax × S × O(N). (59)

For regression modeling, this complexity does not include
the complexity of using the ROLS-LOO refinement at the
end of model construction, which is negligible, while for
classification application, CPSO−OFR accounts for the total
complexity. For PDF estimate construction, CPSO−OFR does not
include the complexity of the MNQP algorithm for updating
the model weights but this complexity is small and can be
neglected.

The ROLS-LOO algorithm [48], [63], [64] is an efficient
construction algorithm for selecting fixed-node RBF models.
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Fig. 1. Engine data set (a) input υk , and (b) output yk .

The complexity of the ROLS-LOO algorithm in selecting
M

′
RBF nodes from the N-candidate set with a given RBF

variance is readily determined by

CROLS =

⎛
⎝M

′
+1∑

i=1

(N − (i − 1))

⎞
⎠ × O(N)

≈ (
M

′
+ 1

) × N × O(N) (60)

where the approximation is arrived because the selected
model size M

′
is usually much smaller than the training

data size N. For regression application, this complexity only
accounts for the complexity of the first iteration of the
ROLS-LOO algorithm, but the complexity of subsequent
iterations is much smaller and can be neglected [48]. For
density estimation, CROLS does not take into account the
complexity of the MNPQ updating, which is negligible. Only
for classification application, CROLS is the total account of
complexity.

We can now draw some comparison for the two meth-
ods. The number of cost function evaluations is proportional
to the training data size N for the ROLS-LOO algorithm,
while for the PSO aided OFR-LOO algorithm, the number
of cost function evaluations is somewhat independent of N.
This suggests that the PSO aided OFR-LOO algorithm has
clearly computational advantage for large training data sets.
Specifically, since the model size M obtained by the PSO
aided OFR-LOO algorithm is generally much smaller than

the model size M
′

selected by the ROLS-LOO algorithm,
the PSO aided OFR-LOO algorithm will require less compu-
tation than the ROLS-LOO algorithm whenever the training
data size N is larger than Imax × S. In our experimental
investigation, we will show that Imax = 20 and S = 10 are
often adequate for the PSO algorithm. Thus for N ≥ 200,
we always have CPSO−OFR < CROLS. Note that this com-
putational advantage is largely due to the efficiency of the
PSO method. In fact, we can also apply other optimiza-
tion methods such as the genetic algorithm [121], [122],
the adaptive simulated annealing algorithm [123], [124], or
the RWBS [67] to perform the optimization task defined
in (31). However, these alternative OFR-LOO algorithms
typically require higher computational complexity than the
ROLS-LOO algorithm, as shown in our previous works [68],
[69].

A significant advantage of the OFR-LOO approach for
constructing tunable RBF models is that the learning algorithm
does not contain any hyperparameters which require costly
cross validation to tune. The complexity CPSO−OFR represents
the true computational requirement of the PSO-aided OFR-
LOO algorithm, while the complexity CROLS is the compu-
tational requirement of the ROLS-LOO algorithm with the
given RBF variance ρ2. Since this variance is not provided
by the learning algorithm, it is a hyperparameter and must be
determined typically based on a grid-search cross validation.
Thus, the true computational advantage of the PSO-aided
OFR-LOO algorithm over the ROLS-LOO algorithm is even
more significant.

IV. Empirical Data Modeling Results

Several examples, taken from regression, classification and
density estimation applications, were used to demonstrate
the effectiveness of the proposed unified regression model-
ing approach based on the PSO aided OFR-LOO algorithm.
Comparison with the ROLS-LOO modeling technique was
made. For the PSO aided OFR-LOO, the tunable Gaussian
basis function of (3) was employed. For the ROLS-LOO, the
N-candidate set was obtained by placing a Gaussian basis at
each training data point with a common RBF variance ρ2. The
value of ρ2 was determined separately via cross validation.
Other modeling results, including nonlinear optimization based
algorithms for constructing RBF models, were also quoted
from the literature for comparison.

Our extensive experience showed that the TVAC of (24)
was very effective for PSO and was used in our application.
The control factor γ = 0.1 was found to be adequate for
the mechanism of (23) and was used for all the examples.
For our application, it was found that setting wI = rand()
generally performed better than choosing a zero or constant
inertia weight. The maximum number of iterations was set
to Imax = 20, as increasing Imax further did not improve
performance but imposed higher complexity in our applica-
tion. An adequate swarm size was determined in terms of
algorithmic computational complexity and performance. In
our application, typically S = 10 to 20 were found to be
adequate.
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TABLE I

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Engine Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity
ROLS-LOO Fixed 22 0.000453 0.000490 4830 × O(210)
PSO OFR-LOO Tunable 15 0.000426 0.000466 3200 × O(210)

Fig. 2. Modeling of the engine data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

A. Regression Applications

1) Engine Data Set: This example constructed a model
representing the relationship between the fuel rack position
(input υk) and the engine speed (output yk) for a Leyland
TL11 turbocharged, direct injection diesel engine operated
at low engine speed [125]. Detailed system description and
experimental setup can be found in [125]. The data set,
depicted in Fig. 1, contained 410 samples. The first 210 data
points were used in modeling and the last 200 points in model
validation. The previous results [125] have shown that this data
set can be modeled adequately as

yk = fs(xk) + εk (61)

where fs(•) describes the unknown underlying system, εk

denotes the system noise, and xk = [yk−1 υk−1 υk−2]T . We
first applied the ROLS-LOO algorithm [48] to fit a fixed-node
RBF model with a common RBF variance ρ2 to the data set.

Fig. 3. Modeling of the engine data set by the 15-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

An appropriate value for the RBF variance was found to be
ρ2 = 1.69 via cross validation. Given ρ2 = 1.69, the algorithm
automatically selected M

′
= 22 RBF nodes, and this obtained

fixed-node RBF model is listed in Table I.
We next applied the PSO-aided OFR-LOO algorithm to

construct a tunable-node RBF model. The maximum number
of iterations was set to Imax = 20. Fig. 2(a) shows the
performance of the PSO algorithm, in terms of LOO MSE, for
three different choices of the inertia weight while fixing the
swarm size S = 10. It can be seen that for this example the case
wI = rand(), although less efficient, attained a smaller LOO
MSE than the choices of wI = 0 and wI = 0.7. Fig. 2(b) depicts
the efficiency of the PSO algorithm, in terms of the total
number of cost function evaluations, for three different swarm
sizes, while fixing wI = rand(). It can be seen that S = 5
was too small for guaranteeing adequate performance, while
S = 10 achieved the same excellent performance as S = 20 but
imposed much lower complexity. Hence, wI = rand(), S = 10,
and Imax = 20 were used for this example.
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TABLE II

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Gas Furnace Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity
ROLS-LOO Fixed 12 0.047448 0.080491 1924 × O(148)
PSO OFR-LOO Tunable 8 0.041639 0.078884 1800 × O(148)

Fig. 4. Gas furnace data set (a) input vk and (b) output yk .

The PSO algorithm automatically constructed M = 15 RBF
nodes, and this model is also listed in Table I, in comparison
with the 22-term RBF model selected by the ROLS-LOO
algorithm. Fig. 3 depicts the model prediction ŷk and the
prediction error εk = yk − ŷk generated by the 15-node RBF
model constructed by the PSO aided OFR-LOO algorithm.
In comparison with the benchmark ROLS-LOO algorithm,
the PSO aided OFR-LOO algorithm not only produced a
smaller RBF model with better test MSE performance but
also was more efficient in modeling process. Note that the
computational advantage of the PSO aided OFR-LOO was
much more significant than shown in Table I, as we did not
count the computational requirements for determining the RBF
variance ρ2 = 1.69 needed by the ROLS-LOO algorithm.

2) Gas Furnace Data Set: The gas furnace data set (the
time series J in [1]) contained 296 pairs of input-output points
as depicted in Fig. 4, where the input υk was the coded
input gas feed rate and the output yk represented the CO2

concentration from the gas furnace. From the 296 pairs of
input and output data, we constructed 296 data points {xk, yk}

Fig. 5. Modeling of the gas furnace data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

with xk given by

xk = [yk−1 yk−2 yk−3 υk−1 υk−2 υk−3]T . (62)

From Fig. 4, it can be observed that the second half of the data
set was different from the first half. Therefore, we used the
even-number pairs of {xk, yk} for training and the odd-number
pairs of {xk, yk} for testing. Both the training and testing
sets had 148 data points. For the fixed-node RBF modeling,
an adequate RBF variance was found to be ρ2 = 1000.0
after a grid search based cross validation for the ROLS-LOO
algorithm, and the algorithm automatically selected a model
of 12 RBF nodes. The performance of this fixed-node RBF
model is given in Table II.

For constructing the tunable-node RBF model, we set
S = 10 and Imax = 20 while using wI = rand(). This set
of the PSO algorithmic parameters was appropriate, as clearly
demonstrated by the results shown in Fig. 5(a) and (b). The
model construction using the PSO-aided OFR-LOO algorithm
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TABLE III

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Liquid Level Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity
ROLS-LOO Fixed 30 0.001400 0.002532 15500 × O(500)
PSO OFR-LOO Tunable 20 0.001461 0.002463 4200 × O(500)

Fig. 6. Modeling of the gas furnace data set by the 8-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

automatically terminated with a 8-node RBF network, and this
8-node tunable RBF model is listed in Table II, in comparison
with the 12-term fixed-node RBF model selected by the
ROLS-LOO algorithm. Fig. 6 depicts the model prediction
ŷk and the prediction error εk = yk − ŷk produced by the
8-node RBF model constructed using the PSO-aided OFR-
LOO algorithm. Even though this example had a relatively
small training data size N = 148, the PSO-aided OFR-LOO
algorithm still offered clear advantages in producing a more
parsimonious model and better generalization performance as
well as less computation in model construction, compared with
the benchmark ROLS-LOO algorithm. The true complexity of
the ROLS-LOO algorithm, including the cost of determining
ρ2 = 1000.0, was several times larger than CROLS listed in
Table II, since several values of ρ2 needed to be tested in the
grid search based cross validation.

3) Liquid Level Data Set: The data set was collected from
a nonlinear liquid level system, which consisted of a DC water
pump feeding a conical flask which in turn fed a square tank.
The system input υk was the voltage to the pump motor and

Fig. 7. Liquid level data set (a) input υk , and (b) output yk .

the system output yk was the water level in the conical flask.
A description of this nonlinear process can be found in [126],
and Fig. 7 shows the 1000 data points of the data set used in
this experiment. From the data set, 1000 data points {xk, yk}
were constructed with xk given by

xk = [yk−1 yk−2 yk−3 υk−1 υk−2 υk−3 υk−4]T . (63)

The first 500 pairs of the data were used for training and
the remaining 500 pairs for testing. For the fixed-node RBF
model with every training input data used as a candidate RBF
center vector, an appropriate RBF variance was found to be
ρ2 = 2.0 via a grid search based cross validation for the ROLS-
LOO algorithm. With ρ2 = 2.0, the ROLS-LOO algorithm
automatically selected a model set of M

′
= 30 nodes, and this

fixed-node model is shown in Table III.
Based on the empirical results shown in Fig. 8(a) and (b),

we again set S = 10 and Imax = 20 while adopting wI = rand().
The PSO-aided OFR-LOO algorithm automatically produced
a model set of M = 20 nodes. The results produced by
the PSO-aided OFR-LOO and the ROLS-LOO are compared
in Table III. Fig. 9 shows the model prediction ŷk and the
prediction error εk = yk − ŷk produced by the 20-node RBF
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Fig. 8. Modeling of the liquid level data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

model constructed using the PSO-aided OFR-LOO algorithm.
For this example, the PSO-aided OFR-LOO algorithm has
clear advantages over the benchmark ROLS-LOO algorithm,
in terms of model size and generalization capability, as well
as complexity of model construction.

B. Classification Applications

1) Breast Cancer Data: This classification benchmark data
set was originated in the UCI repository [127] and the data set
used in our experiment was obtained from [128]. The feature
input space dimension was m = 9. The data set contained
100 realizations, each having 200 training patterns and 77
test patterns. In [129], seven existing state-of-the-art RBF and
kernel classifier construction algorithms were compared and
the performance averaged over all the 100 realizations was
given. For the first five methods studied in [129], the RBF
network with five optimized nonlinear Gaussian units was
used. The kernel Fisher discriminant was the optimal non-
sparse method that placed a Gaussian kernel on every training
data sample. For the SVM method with the Gaussian kernel,
no average model size was given in [129] but it was certainly
larger than, say, 50. We applied both the ROLS-LOO algorithm
to select sparse fixed-node Gaussian RBF classifiers and the
PSO-aided OFR-LOO algorithm to construct small tunable-
node Gaussian RBF classifiers, and the results obtained are
listed in Table IV, in comparison with the benchmark results
quoted from [129]. For the PSO-aided OFR-LOO, S = 10,

Fig. 9. Modeling of the liquid level data set by the 20-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

Imax = 20, and wI = rand() were empirically found to be
appropriate. From Table IV, it can be seen that the PSO
aided OFR-LOO algorithm compared favorably with other
RBF modeling methods, in terms of classification accuracy
and model size. The PSO aided OFR-LOO algorithm is
also seen to impose less computational complexity in model
construction than the efficient ROLS-LOO algorithm.

2) Diabetes Data: This was another benchmark data set
originated from the UCI repository [127] and we obtained the
data set from [128]. The feature space dimension was m = 8.
There were 100 realizations of the data set, each having 468
training patterns and 300 test patterns. We applied both the
ROLS-LOO and PSO-aided OFR-LOO algorithms to the data
set. For the PSO-aided OFR-LOO, the swarm size and the
maximum number of iterations were set to S = 10 and Imax =
20, respectively, while the random inertia weight wI = rand()
was adopted. The results obtained by these two algorithms
are listed Table V, in comparison with the seven benchmark
RBF classifiers studied in [129]. For the first five methods
studied in [129], the Gaussian RBF network with 15 optimized
nonlinear RBF units was used. For the SVM with RBF kernel,
no average model size was given in [129] but we could safely
assume that it might be larger than 100. It can be seen from
Table V that the PSO-aided OFR-LOO method produced the
best classification accuracy with the smallest RBF classifier.
It is also seen to impose much lower complexity in model
construction than the ROLS-LOO method.
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TABLE IV

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Breast Cancer Data Set Obtained

by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity
RBF-Network Tunable 27.64 ± 4.71 5 NA
AdaBoost with RBF-Network Tunable 30.36 ± 4.73 5 NA
LP-Reg-AdaBoost (-"-) Tunable 26.79 ± 6.08 5 NA
QP-Reg-AdaBoost (-"-) Tunable 25.91 ± 4.61 5 NA
AdaBoost-Reg (-"-) Tunable 26.51 ± 4.47 5 NA
SVM with RBF-Kernel Fixed 26.04 ± 4.74 Not available NA
Kernel Fisher Discriminant Fixed 24.77 ± 4.63 200 NA
ROLS-LOO Fixed 25.74 ± 5.00 6.0 ± 2.0 1400 × O(200)
PSO OFR-LOO Tunable 23.04 ± 3.41 2.8 ± 0.9 760 × O(200)

The first seven results were quoted from [129].

TABLE V

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Diabetes

Data Set Obtained by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity
RBF-Network Tunable 24.29 ± 1.88 15 NA
AdaBoost with RBF-Network Tunable 26.47 ± 2.29 15 NA
LP-Reg-AdaBoost (-"-) Tunable 24.11 ± 1.90 15 NA
QP-Reg-AdaBoost (-"-) Tunable 25.39 ± 2.20 15 NA
AdaBoost-Reg (-"-) Tunable 23.79 ± 1.80 15 NA
SVM with RBF-Kernel Fixed 23.53 ± 1.73 Not available NA
Kernel Fisher Discriminant Fixed 23.21 ± 1.63 468 NA
ROLS-LOO Fixed 23.00 ± 1.70 6.0 ± 1.0 3276 × O(468)
PSO OFR-LOO Tunable 21.87 ± 1.24 3.5 ± 1.4 900 × O(468)

The first seven results were quoted from [129].

TABLE VI

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Thyroid

Data Set Obtained by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity
RBF-Network Tunable 4.52 ± 2.12 8 NA
AdaBoost with RBF-Network Tunable 4.40 ± 2.18 8 NA
LP-Reg-AdaBoost (-"-) Tunable 4.59 ± 2.22 8 NA
QP-Reg-AdaBoost (-"-) Tunable 4.35 ± 2.18 8 NA
AdaBoost-Reg (-"-) Tunable 4.55 ± 2.19 8 NA
SVM with RBF-Kernel Fixed 4.80 ± 2.19 Not available NA
Kernel Fisher Discriminant Fixed 4.20 ± 2.07 140 NA
ROLS-LOO Fixed 4.80 ± 2.20 4.6 ± 1.0 784 × O(140)
PSO OFR-LOO Tunable 2.48 ± 1.41 3.5 ± 0.8 1800 × O(140)

The first seven results were quoted from [129].

3) Thyroid Data: This was also a benchmark data set in
the UCI repository [127] and again we obtained the data set
from [128]. The input space dimension was m = 5. There
were 100 realizations of this data set, each containing 140
training patterns and 75 test patterns. Nine RBF classifiers
are compared in Table VI, with the first seven quoted from
[129]. Again it is seen that the PSO-aided OFR-LOO method
produced the best classification accuracy with the smallest
RBF classifier. The PSO algorithmic parameters were found
empirically to be S = 20, Imax = 20, and wI = rand().
For this example, the complexity of the PSO aided OFR-
LOO algorithm is seen to be higher than that of the ROLS-
LOO algorithm when the latter’s RBF variance ρ2 was given.
However, several points of ρ2 needed to be tested via grid
search for the ROLS-LOO algorithm and, therefore, its true
complexity was likely to be higher than that of the PSO aided
OFR-LOO algorithm even for this example of small N.

C. Density Estimation Applications

For each density estimation case, a data set of N randomly
drawn samples was used to construct a density estimate, and
a separate test data set of Ntest = 10 000 samples was used to
calculate the L1 test error for the resulting estimate according
to

L1 =
1

Ntest

Ntest∑
k=1

|p(xk) − p̂(xk)| . (64)

The Kullback–Leibler divergence (KLD) is a measure of the
difference between the two probability distributions, p(x) and
p̂(x), and is defined by

DKL(p|p̂) =
∫
Rm

p(x) log
p(x)

p̂(x)
dx. (65)

For a 1-D problem, by partitioning the integration range
[xmin, xmax] into the Npar small equal-length intervals, the
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Fig. 10. (a) A PW estimate, (b) a ROLS-LOO estimate, (c) a PSO-aided OFR-LOO estimate, and (d) a GMM estimate, in comparison with the true density,
for the 1-D example of Gaussian and Laplacian mixture.

KLD can be approximated accurately using the summation

DKL(p|p̂) ≈
Npar∑
k=1

p(k) log
p(k)

p̂(k)
�x (66)

where �x = (xmax − xmin)/Npar, p(k) = p(xmin + k�x), and
p̂(k) = p̂(xmin + k�x). In the experiment, Npar ≥ 10 000
was used to ensure the accuracy of approximation. For a 2-D
problem, by partitioning the integration range [x1,min, x1,max]×
[x2,min, x2,max] into the Npar ×Npar small equal-area intervals,
the KLD is approximated by the summation

DKL(p|p̂) ≈
Npar∑
k=1

Npar∑
l=1

p(k, l) log
p(k, l)

p̂(k, l)
(�x)2 (67)

where �x = (x1,max − x1,min)/Npar = (x2,max − x2,min)/Npar,
p(k, l) = p(x1,min + k�x, x2,min + l�x), and p̂(k, l) = p̂(x1,min +
k�x, x2,min + l�x). To ensure the accuracy of approximation,
we chose Npar > 100. For higher-dimensional problems, cal-
culation of the KLD becomes too expensive. The experiment
was repeated by Nrun different random runs for each example.

Four PDF estimators, the PW estimator, the ROLS-LOO
estimator, the PSO-aided OFR-LOO estimator and the Gaus-
sian mixture model (GMM) based on the EM algorithm (see
Appendix C) were compared. The optimal values of the kernel
variances ρ2

Par and ρ2 for the PW and ROLS-LOO estimators,
respectively, with the fixed-kernel model were found via cross
validation. Instead of using costly cross validation to determine
the number of mixture components for the GMM, we simply

set the number of mixture components to the average model
size obtained by the PSO-aided OFR-LOO estimator, rounded
to an integer.

1) 1-D Example: The density to be estimated was the
mixture of Gaussian and Laplacian distributions defined by

p(x) =
1

2
√

2π
e− (x−2)2

2 +
0.7

4
e−0.7|x+2|. (68)

The number of data points for density estimation was N = 100,
and the experiment was repeated Nrun = 100 times. For
the PSO-aided OFR-LOO estimator, S = 9, Imax = 20 and
wI = rand() were found to be adequate. For this example,
the average model size obtained by the PSO-aided OFR-LOO
estimator was 4.8. Therefore, for the GMM, we set M = 5.
Table VII lists the performance of the four density estimators,
in terms of the L1 test error and the KLD, as well as the
number of kernels required. Fig. 10(a) to (d) plot a PW
estimate obtained, a ROLS-LOO estimate selected, a PSO-
aided OFR-LOO estimate constructed and a typical GMM
estimate obtained, in comparison with the true density. For this
example, it is seen that the PSO-aided OFR-LOO estimator
achieved the best test performance with the most compact
estimate. The complexity of the ROLS-LOO estimate listed
in Table VII was for the given RBF variance. Since several
points of ρ2 needed to be tested for the ROLS-LOO algorithm,
its true computational complexity was likely to be higher than
that of the PSO-aided OFR-LOO algorithm.
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TABLE VII

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO, and GMM Estimators for the 1-D Example of Gaussian and Laplacian

Mixture, Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM
Kernel type Fixed Gaussian, ρPar = 0.54 Fixed Gaussian, ρ = 1.1 Tunable Gaussian Tunable Gaussian
L1 error (1.9963 ± 0.6179) × 10−2 (2.0213 ± 0.6535) × 10−2 (1.9784 ± 0.7039) × 10−2 (2.4597 ± 0.8117) × 10−2

KLD (8.0003 ± 5.1662) × 10−2 (8.1419 ± 5.0102) × 10−2 (6.5097 ± 4.0160) × 10−2 (12.7724 ± 9.5317) × 10−2

Kernel no. 100 5.1 ± 1.2 4.8 ± 0.8 5
Complexity NA 610 × O(100) 1044 × O(100) NA

TABLE VIII

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO, and GMM Estimators for the 2-D Example of Gaussian and Laplacian

Mixture, Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM
Kernel type Fixed Gaussian, ρPar = 0.42 Fixed Gaussian, ρ = 1.1 Tunable Gaussian Tunable Gaussian
L1 error (4.0358 ± 0.6925) × 10−3 (3.8379 ± 0.7797) × 10−3 (3.8550 ± 0.8658) × 10−3 (3.1319 ± 0.8567) × 10−3

KLC (1.4661 ± 0.2281) × 10−1 (1.4028 ± 0.5337) × 10−1 (1.0279 ± 0.3848) × 10−1 (0.4380 ± 0.1328) × 10−1

Kernel no. 500 15.3 ± 3.9 6.1 ± 1.6 7
Complexity NA 8150 × O(500) 2840 × O(500) NA

Fig. 11. (a) True density and (b) contour plot for the 2-D example of the
Gaussian and the Laplacian mixture.

Fig. 12. (a) A PW estimate and (b) its contour plot for the 2-D example of
the Gaussian and the Laplacian mixture.
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Fig. 13. (a) A ROLS-LOO estimate and (b) its contour plot for the 2-D
example of the Gaussian and the Laplacian mixture.

2) 2-D Example: The density to be estimated was defined
by the mixture of Gaussian and Laplacian distributions given
as follows

p(x1, x2) =
1

4π
e− (x1−2)2

2 e− (x2−2)2

2

+
0.35

8
e−0.7|x1+2|e−0.5|x2+2|. (69)

Fig. 11 shows this density distribution and its contour plot.
The estimation data set contained N = 500 samples, and
the experiment was repeated Nrun = 100 times. The swarm
size and the maximum number of iterations were set to
S = 20 and Imax = 20 while the inertia weight was chosen
as wI = rand() for the PSO-aided OFR-LOO algorithm.
Because an average model size of 6.1 was obtained by the
PSO-aided OFR-LOO estimator, M = 7 was used for the
GMM. Table VIII lists the L1 test errors and the KLD values
as well as the numbers of kernels required for the four density
estimates, namely, the PW, ROLS-LOO, PSO-aided OFR-LOO
and GMM estimators. For this example, the GMM estimator
achieved the best test performance. The PSO-aided OFR-LOO

Fig. 14. (a) A PSO-aided OFR-LOO estimate and (b) its contour plot for
the 2-D example of the Gaussian and the Laplacian mixture.

estimator also did well with the second best test performance,
and it imposed much lower complexity than the ROLS-LOO
estimator. Typical PW, ROLS-LOO, PSO-aided OFR-LOO
and GMM estimates obtained are depicted in Figs. 12–15,
respectively.

3) 6-D Example: The underlying density to be estimated
was given by the mixture of three Gaussian distributions

p(x) =
1

3

3∑
i=1

1

(2π)6/2

1

det1/2 |�̄i|
e− 1

2 (x−µ̄i)
T �̄

−1

i (x−µ̄i) (70)

with

µ̄1 = [1.0 1.0 1.0 1.0 1.0 1.0]T

�̄1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0} (71)

µ̄2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T

�̄2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0} (72)

µ̄3 = [0.0 0.0 0.0 0.0 0.0 0.0]T

�̄3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}. (73)
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TABLE IX

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO and GMM Estimators for the 6-D Example of Three-Gaussian Mixture,

Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM
Kernel type Fixed Gaussian, ρPar = 0.65 Fixed Gaussian, ρ = 1.2 Tunable Gaussian Tunable Gaussian
L1 error (3.5195 ± 0.1616) × 10−5 (3.1134 ± 0.5335) × 10−5 (2.4979 ± 0.2749) × 10−5 (1.5309 ± 0.2995) × 10−5

Kernel no. 600 9.4 ± 1.9 4.3 ± 0.9 5
Complexity NA 6240 × O(600) 2120 × O(600) NA

Fig. 15. (a) A GMM estimate and (b) its contour plot for the 2-D example
of the Gaussian and the Laplacian mixture.

The estimation data set contained N = 600 samples, and the
experiment was repeated Nrun = 100 times. For the PSO-aided
OFR-LOO algorithm, S = 20, Imax = 20 and wI = rand() were
again found to be sufficient. For the GMM estimator, M = 5
was used. The results obtained by the four density estimators
are summarized in Table IX, where it can be seen that both the
PSO-aided OFR-LOO and GMM estimators performed well. It
can also be seen from Table IX that for this multi-dimensional
example the PSO-aided OFR-LOO algorithm for constructing
tunable-node density estimate offered clear advantages over

the ROLS-LOO algorithm for selecting fixed-node density
estimate, in terms of achievable test performance and estimator
model size, as well as complexity in model construction.

V. Conclusion

A unified regression framework has been proposed for data
modeling applications that include supervised regression and
classification, as well as unsupervised density estimation. A
novel algorithm has been developed for constructing the RBF
network with tunable nodes. Unlike most of the sparse RBF or
kernel modeling methods, the RBF centers are not restricted
to the training input data points and each RBF node has
an individually adjusted diagonal covariance matrix. On the
other hand, it does not attempt to optimize all the RBF
network’s parameters together using nonlinear optimization.
Rather the RBF units are optimized one by one using the
PSO assisted OFR algorithm based on LOO criteria. The RBF
network construction is fully automatic and the user does not
need to specify any additional termination criterion. Compared
with the state-of-the-art ROLS-LOO algorithm for selecting
fixed-node RBF models, the proposed PSO-aided OFR-LOO
algorithm offers significant advantages in terms of better
generalization performance and smaller model size, as well
as imposes lower complexity in model construction process.
Moreover, the proposed approach gains further computational
advantages because the model construction algorithm does not
have any hyperparameter that requires costly tuning based on
cross validation. Several examples taken from regression and
classification, as well as PDF estimation applications have
been used in our experimental study, and the results obtained
have demonstrated that the proposed PSO-aided tunable RBF
network construction algorithm compares favorably with many
existing benchmark RBF network learning algorithms.

Appendix A

Density Estimation as a Constrained Regression

One way of transferring the unsupervised density estimation
problem into a supervised learning problem is to convert
the kernels into the associated CDFs and to adopt the EDF
calculated using the training data as the desired response for
the unknown CDF of the PDF p(x) to be estimated, as in the
various fixed-kernel density estimation methods of [59]–[61],
[130], [131]. The true CDF of the PDF p(x) is defined as

F (x) =
∫ x

−∞
p(u) du (74)
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and the CDF associated with kernel gi(x) is given by

qi(x) =
∫ x

−∞
gi(u) du (75)

where x = [x1 x2 · · · xm]T ∈ Rm. Further define the EDF on
the training set DN as

F̂ (x) =
1

N

N∑
k=1

m∏
j=1

ω
(
xj − xj,k

)
(76)

with

ω(x) =

{
1, x > 0
0, x ≤ 0.

(77)

Using F̂ (x) as the desired response for F (x), the density
estimation can be expressed as a regression modeling

F̂ (x) =
M∑
i=1

wiqi(x) + ê(x) (78)

subject to the constraints of (14) and (15), where ê(x) denotes
the modeling error at x.

An alternative approach is the direct modeling in the PDF
space by using the PW estimate defined in (16) as the desired
response for the unknown true PDF p(x) to be estimated, as
in the fixed-kernel density estimation method of [64]. Using
p̂Par(x) as the desired response for p(x), the density estimation
can be expressed as a regression modeling

p̂Par(x) =
M∑
i=1

wigi(x) + ẽ(x) (79)

subject to the constraints of (14) and (15), where ẽ(x) is the
modeling error at x.

Reformulating the density estimation as a regression prob-
lem by using the PW estimate as the target function of the
true PDF has some advantages over the regression approach
based on using the EDF as the target function of the true
CDF. The former approach can use any type of kernel function
and it is computationally simpler, as it does not need to
compute the values of regressors of (75) on the training data
set DN . Computing the associated CDFs for the kernels can
be inconvenient and may be difficult for certain types of
kernels. Computing the values of the PW estimator on DN

is no more complex than calculating the values of F̂ (x) on
DN . The only drawback of using the PW estimate is that
the kernel variance for the PW estimator must be deter-
mined. Although we develop the tunable kernel model using
the PW estimate as the target function in this contribution,
the construction algorithm developed is equally applicable
for the both approaches.

Appendix B

Leave-One-Out Cross Validation

A commonly used cross validation for model selection is the
LOO cross validation [2], [118]. Consider the model selection
problem where a set of mS models have been identified using
the training data set DN . Denote these models, identified using
all the N data points of DN , as ŷ

[j]
k and the corresponding

modeling error as e
[j]
k = yk − ŷ

[j]
k with index j = 1, 2, · · · , mS .

The concept of LOO cross validation is as follows. For every
model, each data point in the training set DN is sequentially
set aside in turn, a model is estimated using the remaining
N −1 data points, and the test error is derived using the single
data point that was removed from training. Specifically, let
DN \ (xl, yl) be the resulting data set by removing the lth data
point from DN , and denote the jth model estimated using DN\
(xl, yl) as ŷ

[j,−l]
k . The test error of the model ŷ

[j,−l]
k calculated

on the data point (xl, yl) not used in training is given by

e
[j,−l]
l = yl − ŷ

[j,−l]
l . (80)

The mean square LOO test error for the jth model is obtained
by averaging all these test errors

E
[(

e
[j,−l]
l

)2] ≈ 1

N

N∑
l=1

(
e

[j,−l]
l

)2
(81)

where E[•] denotes the expectation. The LOO MSE is a
measure of the mode generalization capability [2], [118]. To
select the best model from the mS model candidates ŷ

[j]
k ,

1 ≤ j ≤ mS , the same LOO cross validation procedure is
applied to each of the mS models, and the model with the
minimum LOO MSE is selected.

For the linear-in-the-weights models, which the model of
(1) is when the regression matrix G has been determined, the
LOO test errors can be generated, without actually sequen-
tially splitting the training data set and repeatedly estimating
the associated models, by applying the Sherman–Morrison–
Woodbury theorem [2], [118]. Furthermore, within the OFR
model selection procedure, the LOO test errors for the n-term
model can be computed very efficiently [48], [119]. More
specifically, consider the n-term model with the associated
orthogonal regression matrix

�n = [φ1 φ2 · · · φn]. (82)

The regularized least squares solution for the parameter vector
θn = [θ1 θ2 · · · θn]T is [48]

θn =
(
�T

n �n + λIn

)−1
�T

n y = B̃−1
n �T

n y (83)

where λ is the regularization parameter, In denotes the n × n

identity matrix, B̃n = �T
n �n + λIn is diagonal. The modeling

error at the kth training data sample is given by

e
[n]
k = yk − θT

n φn(k) = yk − yT �nB̃−1
n φn(k) (84)

where φT
n (k) denotes the kth row of �n. Let the kth data

sample be deleted from the training data set DN , and the
resulting LOO training set is used to estimate the model
parameter vector. The corresponding regularized least squares
solution is defined by

θ[−k]
n =

((
�[−k]

n

)T
�[−k]

n + λIn

)−1 (
�[−k]

n

)T
y[−k]

=
(
B̃[−k]

n

)−1 (
�[−k]

n

)T
y[−k] (85)

where �[−k]
n and y[−k] denote the resulting LOO regression

matrix and LOO desired output vector, respectively. The model
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output for this LOO n-term model evaluated at the kth data
sample not used in training is given by

ŷ
[n,−k]
k =

(
θ[−k]

n

)T
φn(k). (86)

By definition, it can be shown that

B̃[−k]
n = B̃n − φn(k)φT

n (k), (87)

(
y[−k]

)T
�[−k]

n = yT �n − ykφ
T
n (k). (88)

The LOO test error evaluated at the kth data sample not used
for training, denoted as e

[n,−k]
k = yk − ŷ

[n,−k]
k , is given by

e
[n,−k]
k = yk − (

θ[−k]
n

)T
φn(k)

= yk − (
y[−k]

)T
�[−k]

n

(
B̃[−k]

n

)−1
φn(k). (89)

Applying the matrix inversion lemma to (87) yields(
B̃[−k]

n

)−1
= B̃−1

n +
B̃−1

n φn(k)φT
n (k)B̃−1

n

1 − φT
n (k)B̃−1

n φn(k)
(90)

and (
B̃[−k]

n

)−1
φn(k) =

B̃−1
n φn(k)

1 − φT
n (k)B̃−1

n φn(k)
. (91)

Substituting (88) and (91) into (89) results in

e
[n,−k]
k = yk −

(
yT �n − ykφ

T
n (k)

)
B̃−1

n φn(k)

1 − φT
n (k)B̃−1

n φn(k)

=
yk − yT �nB̃−1

n φn(k)

1 − φT
n (k)B̃−1

n φn(k)

=
e

[n]
k

1 − φT
n (k)B̃−1

n φn(k)
=

e
[n]
k

η
[n]
k

(92)

where the n-term modeling error

e
[n]
k = yk −

n∑
i=1

φi(k)θi = e
[n−1]
k − φn(k)θn (93)

and the associated LOO error weighting

η
[n]
k = 1 − φT

n (k)
(
�T

n �n + λIn

)−1
φn(k)

= 1 −
n∑

i=1

φ2
i (k)

φT
i φi + λ

= η
[n−1]
k − φ2

n(k)

φT
n φn + λ

. (94)

Appendix C

Gaussian Mixture Model

A general finite mixture model (FMM) [132] is described
by

p̂(x; �) =
M∑
i=1

wiK
(
x; µi, �i

)
(95)

where M is the number of mixture components, the weights
wi satisfy the constraints given in (14) and (15), µi =
[µi,1 · · · µi,m]T and �i = diag{σ2

i,1, · · · , σ2
i,m} are the mean

vector and covariance matrix of the ith component, respec-
tively, and � = {wl, µl, �l}Ml=1 denotes all the parameters of

the FMM. When the Gaussian function of (3) is used, the
FMM of (95) is the GMM.

The EM algorithm for estimating the parameters of the
GMM takes an explicit iterative form [133]. Given a value
of �, labeled as �old, define

P(l|xk, �
old) =

wold
l K(xk; µold

l , �old
l )

M∑
i=1

wold
i K(xk; µold

i , �old
i )

(96)

for 1 ≤ l ≤ M and 1 ≤ k ≤ N. Then a new value of � is
obtained according to [133]

wnew
l =

1

N

N∑
k=1

P(l|xk, �
old) (97)

µnew
l =

N∑
k=1

xkP(l|xk, �
old)

N∑
k=1

P(l|xk, �
old)

(98)

�new
l =

N∑
k=1

P(l|xk, �
old)diag{(�lxk,1)2, · · · , (�lxk,m)2}

N∑
k=1

P(l|xk, �
old)

(99)

where

�lxk,i = xk,i − µnew
l,i (100)

denotes the ith element of xk − µnew
l .

This simple EM algorithm for the GMM, however, is
generally ill-posed. In particular, the updating (99) may cause
numerical problems, which leads to divergence. Often more
complicated robust techniques such as the bootstrap [32], [134]
may need to be used to overcome numerical difficulties. The
choice of the initial � is also critical, as the algorithm can only
converge to local minima, and whether or not the algorithm
converges may depend on the initial parameter value. Based
on our previous experience [32] we found that it is necessary
to impose a minimum bound, σ2

min, for all the variances σ2
l,i,

1 ≤ i ≤ m and 1 ≤ l ≤ M. During the iteration process, any
σ2

l,i goes below the value σ2
min is reset to this minimum value.

This helps to alleviate numerical problems and improve the
chance of convergence. Appropriate σ2

min values are problem
dependant and can only be found by experiment.

In the experiment study, all the initial mixing weights wl can
be set to 1.0

M
, the initial center vectors µl are randomly chosen

from the region [a, b]m ∈ Rm, and all the initial variances σ2
l,i

are set to the same value σ2
ini. If some runs of the EM algorithm

are observed to diverge, the region [a, b]m, the values of
σ2

ini and/or σ2
min are re-chosen until all the Nrun of the EM

algorithm are converged.
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