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AN EXPONENTIALLY CONVERGENT NONPOLYNOMIAL FINITE
ELEMENT METHOD FOR TIME-HARMONIC SCATTERING

FROM POLYGONS∗

A. H. BARNETT† AND T. BETCKE‡

Abstract. In recent years nonpolynomial finite element methods have received increasing atten-
tion for the efficient solution of wave problems. As with their close cousin the method of particular
solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions.
We present and analyze such a method for the scattering of two-dimensional scalar waves from a
polygonal domain that achieves exponential convergence purely by increasing the number of basis
functions in each element. Key ingredients are the use of basis functions that capture the singu-
larities at corners and the representation of the scattered field towards infinity by a combination
of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which
we discretize in such a way that a matrix least-squares problem is obtained. We give computable
exponential bounds on the rate of convergence of the least-squares functional that are in very good
agreement with the observed numerical convergence. Challenging numerical examples, including
a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around
10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with
MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed
by the authors. A code example is included.
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1. Introduction. Nonpolynomial finite element methods for wave problems such
as the PUFEM [3], the least-squares finite element method [24], or the ultraweak vari-
ational formulation [8] have recently received much attention in the mathematics and
engineering communities. The idea of these methods is to use Trefftz-type basis func-
tions, i.e., exact solutions to the PDE inside each element, then solve for the coeffi-
cients which best satisfy the interelement matching and/or boundary conditions. This
better captures solution behavior than standard polynomial bases, and it is closely
related to the method of particular solutions or collocation methods [23]. Typical
choices of basis functions are plane waves [26], Fourier–Bessel expansions [14, 27], and
fundamental solutions of the Helmholtz equation [6, 16, 4].

The main advantage of nonpolynomial finite element methods over standard
Galerkin methods is that they allow one to choose element sizes which are many
wavelengths in diameter, while standard Galerkin methods with linear elements typ-
ically need of order 10 elements per wavelength to resolve a wave to any reasonable
accuracy. Thus at high frequency the total number of degrees of freedom is much
reduced, and due to the high-order (often exponential) convergence of nonpolynomial
finite element methods, this advantage is even more pronounced if high accuracy is
required.
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1418 A. H. BARNETT AND T. BETCKE

Great progress has also been made in recent years in the development of wavenum-
ber independent boundary integral equation methods for the solution of scattering
problems (see, for example, [7, 18, 10, 13]). An excellent overview of these new meth-
ods is given in [9].

In this paper we analyze a nonpolynomial finite element method for time-harmonic
scattering from a sound-soft polygonally shaped bounded obstacle Ω ⊂ R2. That is,
we are looking for the solution u of the problem

∆u+ k2u = 0 in R2\Ω,(1.1)

u = 0 on ∂Ω,(1.2)

∂us

∂r
− ikus = o(r−1/2),(1.3)

where u = uinc + us is the total field in which uinc is the incident wave and us

the scattered field, and where r is the radial coordinate. The wavenumber is k =
2π/λ, where λ is the wavelength. The Sommerfeld radiation condition (1.3) is to be
understood to hold uniformly in all directions.

The main idea of the presented method is to use fractional order Fourier–Bessel
functions at the corners of the polygon to match the asymptotic behavior of u there,
and to represent the scattered field us towards infinity by fundamental solutions (i.e.,
effective sources), which automatically satisfy (1.3). The matching conditions between
different elements are implemented using a least-squares finite element formulation.
A related approach was proposed without analysis by Stojek in [27]. The main dif-
ferences in our formulation are the choice of basis functions towards infinity and the
setup of the discretized problem.

Least-squares finite element methods were also analyzed by Monk and Wang in
[24]. Their analysis focused on Helmholtz problems on smooth domains with local
absorbing boundary conditions. For such problems they also proved interior error
estimates based on the least-squares functional.

In this paper we choose each element as large as possible in such a way that each
of the finite subdomains contains one corner of the polygon. The accuracy is then
improved by increasing the number of basis functions in each subdomain. Hence,
h-refinement is not necessary. This is similar to the domain decomposition method of
Descloux and Tolley for the Laplace eigenvalue problem on polygonal domains [12].

We give exponential convergence bounds with a rate that can be numerically
computed using techniques from conformal maps (see also [5]). The asymptotic con-
vergence rate is wavenumber-independent. However, we observe that the minimum
number of basis functions N required to enter into the regime of exponential conver-
gence depends linearly on k, leading to a complexity of O(k3) for the fully discrete
scheme due to the need for solving dense linear systems. But due to the fast exponen-
tial convergence, and the relatively small preprocessing effort, the overall computation
time for this method is very attractive and is competitive for low to medium frequen-
cies with the wavenumber-independent approach recently introduced by Chandler-
Wilde and Langdon [10]. Furthermore, the method presented here works on convex
and nonconvex polygons, while the approach in [10] is restricted to convex polygons.
We will demonstrate that high accuracy (up to 10 digits) is easily achievable.

Another advantage of the proposed approach compared to boundary element (or
boundary integral) methods is that no quadrature of singular integrals close to the
corners is necessary. Furthermore, the proposed method can be easily adapted to
the sound-hard scattering case by a small change in the basis functions close to the



TIME-HARMONIC SCATTERING FROM POLYGONS 1419

Fig. 2.1. Geometry of subdomains, illustrated for the square scatterer. For the exterior angles
π/α1, . . . , π/α4 at the corners p1, . . . , p4, we have in this example that α1 = · · · = α4 = 2/3.
Left plot: The local coordinate systems of the Fourier–Bessel basis functions are oriented along
the boundary lines adjacent to the corners of the polygon. Right plot: Fundamental solutions basis
coordinate system, showing the charge points yj lying on a circle.

corners. In contrast, combined integral formulations for sound-hard scattering involve
the evaluation of hypersingular integral operators.

The paper is organized as follows. In section 2 we present the formulation of
the method. Section 3 describes how we discretize this into a linear system. The
approximation of the scattered field us towards infinity is done using fundamental
solutions approximations, which are presented in more detail in section 4. In particu-
lar, a combined monopole-plus-dipole formulation is given that avoids problems with
interior resonances. The convergence analysis in section 5 depends on approximation
theoretic results for Bessel functions and an analysis of the convergence of the funda-
mental solutions approximations. A detailed analysis of the exponential convergence
of fractional order Fourier–Bessel functions in cornered domains based on techniques
from complex analysis was given by Betcke in [5]. Here, we state only the main
convergence result of that paper adapted to our situation. Numerical examples are
given in section 6. All computations are implemented quite simply in MPSpack, a
MATLAB toolbox for wave computations developed by the authors; a short ex-
ample code to compute scattering from the square and plot Figure 6.3 is given in
Appendix A. Finally, since maintaining reasonably small coefficients is important for
high accuracy, the numerical stability of the method is discussed in section 7. We
conclude in section 8.

2. Formulation of the method. Let Ω be a polygonal domain with boundary
Γ having q corners at the points p1, . . . , pq ∈ R2 and associated exterior angles 0 <
π/αj < 2π, j = 1, . . . , q. We define the artificial exterior boundary Γe := ∂Ωe to be
an analytic Jordan curve whose simply connected interior Ωe completely contains Ω,
i.e., dist(Γ,Γe) > 0. We will also frequently need the exterior domain Ω+

e = R2\Ωe.
Also, denote by E := Ωe\Ω the part of Ωe exterior to Ω. The geometry and notation
are shown in Figure 2.1.

We subdivide E into q simply connected subdomains Ei, i = 1, . . . , q, with bound-
aries Γi = ∂Ei in such a way that the following conditions are satisfied:

• Ei ∩ Ej = ∅ for all i &= j,
•
⋃

i Ei = E,
• Γi ∩ ∂Ω consists of two straight lines which meet at the corner pi and whose
continuation towards infinity does not intersect Ei.1

1The continuation condition is a technical condition needed for the convergence estimates on the
finite subdomains (see [5, Fig. 6] for an example violating this condition).
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Remark 2.1. The requirement that every subdomain Ei contain a corner of Ω is
not strictly necessary and is used only to simplify the description. An extension to
the case of “free” elements that have no intersection with Ω is straightforward. This
is used in the cavity example in section 6.3.

In each subdomain Ei we approximate the total field u by a linear combination
of Fourier–Bessel functions of the form

(2.1) u(r, θ) ≈
Ni∑

j=1

c(i)j Jjαi (kr) sin jαiθ.

The local polar coordinate systems of the Fourier–Bessel functions are shown in Fig-
ure 2.1. This guarantees that the basis functions automatically satisfy the zero bound-
ary conditions on Γ. We denote by Vi the finite dimensional linear space spanned by
all Fourier–Bessel functions of the form (2.1) in the subdomain Ei.

The approximation by Fourier–Bessel functions is motivated by the corner behav-
ior of Helmholtz solutions. One can show that in a wedge with interior angle π/α, any
Helmholtz solution u that satisfies zero Dirichlet boundary conditions on the sides of
the wedge has close to the corner the absolutely convergent expansion

u(r, θ) =
∞∑

j=1

cjJαj(kr) sinαjθ

for certain coefficients cj ∈ C [12]. If α &∈ N, then any nontrivial u has a singularity
at the corner of the wedge. Otherwise, if α ∈ N, then u can be analytically continued
across the corner of the wedge [23].

In Ω+
e we approximate as follows the scattered field us by a linear combination

of fundamental solutions whose origins lie in Ωe. Let ΓF ⊂ E be a closed analytic
Jordan curve, and choose points yj ∈ ΓF . Then our approximation, which satisfies
the Helmholtz equation in Ω+

e , is

(2.2) us(x) ≈
Ne∑

j=1

c(e)j

(
i

4

∂

∂ν(yj)
H(1)

0 (k|x− yj |)−
η

4
H(1)

0 (k|x− yj |)
)
, x ∈ Ω+

e ,

where ν(yj) is the outward-facing unit normal direction of the curve ΓF at the point

yj , H
(1)
0 is the outgoing Hankel function of zeroth order, and η &= 0 is a real param-

eter. Typically, by a scaling argument we choose η = k. Formulation (2.2) can be
interpreted as a discrete version of an integral equation of the first kind for approx-
imating u (see section 4). The finite dimensional space of all linear combinations of
the fundamental solutions in Ω+

e of form (2.2) is denoted by Ve.
Remark 2.2. One could alternatively approximate the scattered field us by a

multipole expansion of the form

us(r, θ) ≈
Ne∑

m=−Ne

αmH(1)
m (kr)eimθ .

This was proposed by Stojek in [27]. The disadvantage of this expansion is that when
Γe is anything other than a circle about the origin, severe numerical stability problems
arise at large wavenumber due to the huge dynamic range of Hankel functions at
large m. Fundamental solutions do not suffer from this problem, and hence allow
more flexibility (e.g., see section 6.2).
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Combining the above basis sets, the trial space V of the finite element method is
the space of functions v such that vi := v|Ei ∈ Vi for all i, and ve := v|Ω+

e
∈ Ve. It is

useful to express the number of basis functions in each subdomain as a multiplier of a
common factor N . Let Ni = niN , i = 1, . . . , q, and Ne = neN . The total dimension
of the trial space is then

(2.3) NV =

[
ne +

q∑

i=1

ni

]
N =: nV N.

We now explain the least-squares finite element formulation as proposed by Stojek
in [27] and Monk and Wang in [24]. Let Γij be the internal boundary between two
elements Ei and Ej . Let ν(x) be a unit normal to the curve Γij , i < j, defined for
almost every x ∈ Γij , pointing away from domain Ei. The jump of a function u
defined on Ei and Ej is

[u](x) := lim
ε→0

u(x+ εν(x))− u(x− εν(x)), x ∈ Γij .

Denoting by ∂ν := ∇ · ν the normal derivative in the sense explained above, and by
[∂νu] its jump, define the interelement matching error functional

J(v) :=
∑

i<j

∫

Γij

|[∂νv]|2 ds+ k2 |[v]|2 ds(2.4)

+
q∑

i=1

∫

Γi∩Γe

|[∂ν(ûinc + v)]|2 + k2 |[ûinc + v]|2 ds,

where

(2.5) ûinc(x) :=

{
uinc(x), x ∈ Ω+

e ,
0, x ∈ Ωe.

Here we need the restriction ûinc of the incoming wave uinc to Ω+
e since inside Ωe

we directly approximate the full field u, while in Ω+
e we approximate the scattered

field us.
The least-squares finite element approximation vLS is now defined as

(2.6) vLS = argmin
v∈V

J(v).

3. Implementation. In this section we give details of the numerical implemen-

tation of the least-squares formulation (2.6). Denote by c =
[
c(1), . . . , c(q), c(e)

]T ∈
CnV N the coefficient vector associated with all basis functions in the elements Ei,
i = 1, . . . , q, and Ω+

e . Since the basis functions in each element are linearly indepen-
dent, every v ∈ V has a unique representation in terms of a vector c ∈ CnV N . We can
therefore reformulate (2.6) equivalently as

cLS = arg min
c∈CNV

J(c).

For notational convenience we use the same name for the least-squares functional J(v)
defined in (2.4) and its parameterized version in terms of a coefficient vector c.

We now derive a matrix representation of J(c). Consider first two elements Ei

and Ej , within which basis functions are g(i)1 , . . . , g(i)Ni
and g(j)1 , . . . , g(j)Nj

, respectively.
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We assume that these functions and their derivatives are also defined on Γij . Denote
by ξτ , τ = 1, . . . ,mij , quadrature points on Γij with corresponding weights ωτ > 0
appropriate for integration with respect to arc length (e.g., in section 6 we use the
Clenshaw–Curtis rule). Then from Γij the contribution to J(c) is

∫

Γij

k2

∣∣∣∣∣∣

Ni∑

p=1

c(i)p g(i)p (s)−
Nj∑

p=1

c(j)p g(j)p (s)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

Ni∑

p=1

c(i)p ∂νg
(i)
p (s)−

Nj∑

p=1

c(j)p ∂νg
(j)
p (s)

∣∣∣∣∣∣

2

ds

≈
∥∥∥∥

[
Wij

Wij

] [
kAi −kAj

∂νAi −∂νAj

] [
c(i)

c(j)

]∥∥∥∥
2

2

,

where for each i = 1, . . . , q, Ai is the matrix with elements (Ai)τp = g(i)p (ξτ ), and

(∂νAi)τp = ∂νg
(i)
p (ξτ ) is the matrix of normal derivatives. Quadrature weights now

reside in the diagonal matrix Wij with elements (Wij)ττ = ω1/2
τ , τ = 1, . . . ,mij . On

each outer boundary the contribution to J(c) is

∫

Γi∩Γe

k2

∣∣∣∣∣

Ni∑

p=1

c(i)p g(i)p (s)−
Ne∑

p=1

c(e)p gp(s)− uinc(s)

∣∣∣∣∣

+

∣∣∣∣∣

Ni∑

p=1

c(i)p ∂νg
(i)
p (s)−

Ne∑

p=1

c(e)p ∂νgp(s)− ∂νuinc(s)

∣∣∣∣∣

2

ds

≈
∥∥∥∥

[
Wie

Wie

]([
kAi −kAe

∂νAi −∂νAe

] [
c(i)

c(j)

]
−
[
bi
b̃i

])∥∥∥∥
2

2

,

where g& is the ,th fundamental solutions basis function with source at y&, and,
analogous to the above, (Ae)τp = gp(ξτ ), (∂νAe)τp = ∂νgp(ξτ ), and quadrature points
now live on Γi∩Γe. The inhomogeneous vector is filled with the known values (bi)τ =
uinc(ξτ ) and (b̃i)τ = ∂νuinc(ξτ ) for i = 1, . . . ,mie.

Note that, by construction, all of the above quadratures involve smooth (in fact
analytic) functions on the respective segments; no quadrature near the corner singu-
larities is needed. However, the integrand is oscillatory on the wavelength scale, and
this will inform the choice of the number of quadrature nodes.

Stacking up all contributions from the different interfaces, we obtain

J(c) ≈ ‖W (Ac− b) ‖22.

The matrix A is built up from the subblocks Ai and ∂νAi as described above, and
the right-hand side vector b is zero apart from the contributions of the incident wave
at the quadrature points on Γe. In [27, 24, 17] the authors discretize the variational
derivative of J(v) to obtain a linear system of equations that they solve. This approach
is equivalent to solving the normal equation

(3.1) AHW 2Ac = AHW 2b.

However, as long as the problem size is not too large we can, and do, equivalently
solve directly the least squares problem

(3.2) min
c∈CNV

‖W (Ac− b) ‖2

using a dense least-squares solver, such as the backslash (mldivide) in MATLAB.
This is numerically more stable than solving (3.1) if WA is ill-conditioned.
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4. The method of fundamental solutions for scattering problems. In this
section we give a brief introduction to the method of fundamental solutions (MFS) for
Helmholtz problems in exterior domains and motivate the combined MFS formulation
(2.2). Overviews of the MFS, its theory, and applications are given in [6, 15]. The
results of this section form the basis for the convergence analysis in section 5.1.

Let D be a simply connected domain with analytic boundary ∂D. Let us be
the unique solution [11] to the Helmholtz equation (1.1) in R2\D and the Sommerfeld
condition (1.3) with boundary value data us = f on ∂D. The general idea of the MFS
is to choose charge points in D, with strengths (coefficients), whose combined field can
well approximate us in R2\D as the number of charges grows. We focus on the special
case where these charges lie on a closed curve ΓF ⊂ D some distance inside D. Then
the MFS may be viewed as a quadrature approximation to a single-layer potential of
the form

(4.1) us(x) ≈
∫

ΓF

i

4
H(1)

0 (k|x− y|)g(y)dsy.

However, the MFS is more general than merely a discretization of a standard boundary
integral representation: depending on the smoothness of us (or singularities of its
continuation into D), there might not exist any layer density g that can represent us

exactly. Nevertheless there still may exist a sequence of densities in suitable spaces
whose field converges to us. The discrete version of this statement is that, with the
MFS, there exists a sequence of charge points and strengths whose field converges
to us. If ΓF is suitably chosen, one can show that there are such sequences that give
rapid exponential convergence in certain norms (see [4] and our section 5.1).

Unlike boundary integral methods which enable a second kind formulation, (4.1)
is necessarily first kind. However, it has the advantages of easily provable convergence
rate, of simplicity of evaluation arbitrarily close to ∂D, and of no singular quadrature
schemes being required. Disadvantages of the MFS are that the right choice of ΓF

and the quadrature points yj on ΓF can be difficult for complicated domains, and
that the MFS typically leads to ill-conditioned linear systems. In our case the exterior
boundary Γe is typically a very simple shape (circles or simple analytic curves), making
it easy to automate the choice of ΓF , and the effects of the ill-conditioning can be
controlled in such a way that computing u to many digits of accuracy is still possible
(see section 7).

We now focus on the case that D is a disk with radius r and ΓF is a circle with
radius R < r (see Figure 2.1, which shows this geometry for the case D = Ωe that
we will use in section 5.1). We identify the plane R2 with C. Define the single-layer
operator S : L2[0, 2π] → L2[0, 2π] by

(Sg)(θ) =

∫ 2π

0

i

4
H(1)

0 (k|reiθ −Reiφ|)g(φ)dφ.

The task is to find a density g such that the boundary data is matched, that is, Sg ≈ f .
For the interior Helmholtz problem on the disk, this was analyzed in [4]. Here, we
focus on the eigenvalue expansion of S in order to reveal some stability properties for
exterior problems and to lay the groundwork for section 5.1.

Using Graf’s addition formula [1, eq. 9.1.79] we obtain

i

4
H(1)

0 (k|reiθ −Reiφ|) =
∑

m∈Z

i

4
H(1)

m (kr)e−imφJm(kR)eimθ.
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Defining the Fourier coefficient ĝ(m) of a function g ∈ L2[0, 2π] by ĝ(m) = 1
2π

∫ 2π
0

g(φ)e−imφdφ, it follows that

(Sg)(θ) =
∑

m∈Z
ŝ(m)ĝ(m)eimθ,

where the eigenfunctions of S are the complex exponentials, and the eigenvalues of S
are

ŝ(m) =
iπ

2
H(1)

m (kr)Jm(kR).

If kR hits a zero of the Bessel function of order m, then ŝ(m) = 0. This occurs if and
only if k2 is a Dirichlet eigenvalue of the disk of radius R. But the exterior Helmholtz
problem has a unique solution for all k > 0, and therefore we need a formulation that
is not affected by interior resonances. We achieve this by a combined formulation
analogous to those for boundary integral equations [11].

We define the modified operator Sη : L2[0, 2π] → L2[0, 2π] by

(4.2)

(Sηg)(θ) =
i

4

∫ 2π

0

(
∂

∂R
H(1)

0 (k|reiθ −Reiφ|) + iηH(1)
0 (k|reiθ −Reiφ|)

)
g(φ)dφ.

This combines single- and double-layer densities. Its eigenvalues ŝη(m) are easily
computed as

ŝη(m) =
π

2
H(1)

m (kr)

[
i
∂

∂R
Jm(kR)− ηJm(kR)

]
(4.3)

=
π

2
H(1)

m (kr)

[
ik

2
(Jm−1(kR)− Jm+1(kR))− ηJm(kR)

]
.

Lemma 4.1. Let η ∈ R\{0}. Then ŝη(m) &= 0 for all m ∈ Z.
Proof. For Hankel functions of the first kind, it holds that |H(1)

m (z)| &= 0 for all
z ∈ C [25, Chap. 7]. Then from the first expression in (4.3) we have ŝη(m) = 0
if and only if ∂

∂RJm(kR) = 0 and Jm(kR) = 0. But this is not possible, since
otherwise by Green’s representation theorem the function v(r, θ) := Jm(kr)eimθ would
be identically zero in the disk with radius R.

We now claim that the eigenvalues ŝη(m) and their derivatives with respect to
the outer disc radius r decay exponentially with a rate that depends on the radius
ratio of R to r.

Lemma 4.2. For η &= 0 and ε > 0 arbitrarily small there exist constants cs > 0
and Cs > 0 such that for m ∈ Z, both the following hold:

cs
( r
R

)−|m|
≤ |ŝη(m)| ≤ Cs

( r
R

)−|m|
,(4.4)

∣∣∣∣
∂

∂r
ŝη(m)

∣∣∣∣ ≤ Cs

[( r
R

)
− ε
]−|m|

,(4.5)

where cs and Cs depend on k, R, and r, and Cs additionally depends on ε.
Proof. Consider the three terms in (4.3). Large-order asymptotics for Bessel

functions [1, eq. 9.3.1] yield

Jm(kR) ∼ 1√
2πm

(
ekR

2m

)m
, Ym(kr) ∼ −

√
2

πm

(
ekr

2m

)−m
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for fixed z and m → ∞. Since Hm(z) = Jm(z) + iYm(z) it follows that Hm(z) ∼
iYm(z), and therefore

H(1)
m (kr)Jm(kR) ∼ − i

πm

(
R

r

)m
,

H(1)
m (kr)Jm−1(kR) ∼ − 2i

ekRπ

(
R

r

)m
,

H(1)
m (kr)Jm+1(kR) ∼ −ekRi

2π

1

m2

(
R

r

)m
.

Inserting these into (4.3), we get

ŝη(m) ∼ 1

2eR

(
R

r

)m
− Rek2

8m2

(
R

r

)m
+

iη

2m

(
R

r

)m
∼ 1

2eR

(
R

r

)m
.

Together with the reflection laws J−m(z) = (−1)mJm(z) andH(1)
−m(z) = (−1)mH(1)

m (z),
the upper bound in (4.4) follows. Furthermore, by Lemma 4.1 there exists cs > 0 such
that also the lower bound in (4.4) is valid. We apply similar estimates to the expres-
sion

(4.6)

∂

∂r
ŝη(m) =

kπ

4

[
H(1)

m−1(kr) −H(1)
m+1(kr)

] [ ik
2
(Jm−1(kR)− Jm+1(kR))− ηJm(kR)

]

to obtain

∂

∂r
ŝη(m) ∼ Cm

( r
R

)−|m|

for some constant C ∈ C. The dominant contribution is H(1)
m+1(kr)Jm−1(kR). Ab-

sorbing the algebraic factor m into the exponential bound and choosing Cs sufficiently
large yields (4.5).

The MFS is now obtained by applying to the above layer potential formulation

the discrete sources ansatz g(φ) =
∑N

j=1 cjδ(φ − φj), where φj = 2πj
N , j = 1, . . . , N .

It follows that

(4.7) (Sηg)(θ) =
N∑

j=1

cj

[
i

4

∂

∂R
H(1)

0 (k|reiθ −Reiφj |)− η

4
H(1)

0 (k|reiθ −Reiφj |)
]
.

Note g &∈ L2[0, 2π], but Sη has a smooth bounded kernel so is well defined with g
merely integrable.

We will also need the Fourier series for this choice of g, which we note converges
only distributionally. Denote by ĉ the discrete Fourier transform of the coefficient
vector c =

[
c1, . . . , cN

]
defined by

ĉs =
1

N

N∑

j=1

cje
−isφj , −N

2
< s ≤ N

2
.

Then applying our ansatz to the definition of the Fourier coefficients,

(4.8) ĝ(m) =
1

2π

N∑

j=1

cje
imφj =

N

2π
ĉ(m mod N),
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where m mod N denotes the unique integer lying in the range −N/2 + 1, . . . , N/2
which differs from m by an integer multiple of N . This “wrapping” of the vector ĉ is
due to the delta-comb in g.

Equation (4.7) is a special case of the general monopole-plus-dipole formulation
(2.2), with ΓF circular and the evaluation restricted to the concentric circle ∂D.
The basis functions in (2.2), viewed as functions on R2\D, automatically satisfy the
Sommerfeld radiation conditions. Thus the only remaining way to solve the boundary
value problem laid out at the start of this section would be to choose the coefficients
cj to match the boundary data f , e.g., by collocation or a least-squares method on
∂D. We remind the reader that in this work we instead couple the MFS (with the
choices D = Ωe and N = Ne) to other basis representations in E.

5. Convergence analysis. Let u be the exact solution of (1.1)–(1.3) with given
uinc. Since u and its derivative are continuous across element boundaries, we may
study the convergence of approximations to u independently in each subdomain. In
particular, we will make use of the rate of approximation by Fourier–Bessel functions
in each subdomain Ei, and the rate of approximation on the boundary Γe by funda-
mental solutions. Convergence to u then automatically leads to a minimization of the
jump on the interfaces, as we now show. Using the triangle inequality and estimating
the boundary L2 norm by the L∞ norm over the whole domain, we estimate (2.4) by

J(v) =
∑

i<j

∫

Γij

|[∂νv − ∂νu]|2ds+ k2|[v − u]|2ds

+
q∑

i=1

∫

Γi∩Γe

|[∂ν(ûinc + v − u)]|2 + k2|[ûinc + v − u]|2ds

≤ C1

∑

i

{
k2‖us − ve‖2L2(Γi∩Γe)

+ ‖∂νus − ∂νve‖2L2(Γi∩Γe)

}

+C2




k
2
∑

i

‖u− vi‖2L∞(Ei) +
∑

i<j

‖∂νu− ∂νvi‖2L∞(Γij)




 ,(5.1)

where v ∈ V (recalling the definitions of vi, ve from section 2), and C1, C2 are mesh-
dependent constants.

The analysis of the rate of convergence of approximating u by vi ∈ Vi in each
subdomain Ei is based on transforming the approximation problem involving Bessel
functions into a polynomial approximation problem in the complex plane. For this it
is useful to work in the L∞ norm. On Γe the rate of convergence of the fundamental
solutions will be analyzed using Fourier series estimates, for which the natural space
is L2.

The convergence analysis for approximating solutions of ∆u + λu = 0 with frac-
tional Bessel functions on domains with one corner singularity and zero Dirichlet
boundary conditions at the wedges forming the singular corner was given by Betcke
in [5]. The only notable new feature here is that now complex rather than real func-
tions are approximated. This can easily be achieved by splitting the approximation
problem on the subdomains Ei into separate problems for the approximation of the
real and imaginary parts of u.

The following theorem summarizes the results of [5, Thm. 5.2 and Lem. 5.5]
adapted to our notation in this paper. We refer to [5, sect. 5] for the proof.

Theorem 5.1. For every element Ei, i = 1, . . . , q, the following statement holds.
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There exists ρi > 1 such that, for every 1 < τ < ρi and each interface Γij between Ei

and a neighboring subdomain Ej, it holds that

min
v∈Vi

(
‖∇u−∇v‖2L∞(Γij)

+ k2‖u− v‖2L∞(Ei)

)
= O(τ−2Ni)

as Ni → ∞.
The rates ρi may be computed; they are the conformal distance of the nearest

singularity in u to (a conformal map of) the domain Ei [5].
To estimate the convergence on Γe of the fundamental solutions approximation

to the scattered field us, we consider (as in section 4) only the case of concentric
circles.2 The source points for the fundamental solutions are given by yj = Reiφj ,

j = 1, . . . , Ne, with φj = 2πj
Ne

, and the exterior circle Γe has radius r. We im-
pose maxi |pi| < R < r. The proof of the following theorem is given in section 5.1.

Theorem 5.2. Let ε > 0 and ε̃ > 0 be arbitrarily small. Define ρ := mini
r

|pi|
and ρε := ρ− ε. Let ν be the outward normal direction at the disk with radius r and
assume that Ne is even. Then

(5.2)

min
v∈Ve

(
‖∂νus − ∂νv‖2L2(Γe)

+ k2‖us − v‖2L2(Γe)

)
=





O
((

r
R − ε̃
)−2Ne
)
, r

R < ρ
1
2
ε ,

O
(
ρ−Ne
ε

)
, r

R > ρ
1
2
ε

as Ne → ∞.
Remark 5.3. If we consider only the rate of convergence for approximating the

boundary value of us by v ∈ Ve and not the normal derivatives, then ε̃ = 0 is possible.
Combining (5.1), Theorem 5.1, and Theorem 5.2, we immediately obtain the

following.
Theorem 5.4. Let ρ1, . . . , ρq be the measures of the exponential convergence

rates given in Theorem 5.1, let ρe := min
{ (

r
R

)2
,mini

r
|pi|
}
, and let n1, . . . , nq and

ne be the multipliers for the number of basis functions as defined in (2.3). Assume
that ne is even, and let ω > 1 be defined by

ω2 := min{ρ2n1
1 , . . . , ρ2nq

q , ρne
e }.

Then

min
v∈V

J(v) = O
(
(ω − ε)−2N

)

for any ε > 0 arbitrarily small.
Remark 5.5. An ideal choice of the multipliers n1, . . . , nq and ne is such that

ρ2n1
1 ≈ · · · ≈ ρ2nq

q ≈ ρne
e .

This choice keeps to a minimum the number of basis functions required for a certain
accuracy.

2The convergence analysis of the MFS for integral equations with periodic kernels on more general
domains has recently been considered by Kangro [22]. To understand the method presented in this
paper, the case of the MFS in the exterior of a disk is sufficient for many applications and can be
treated completely using arguments from Fourier analysis.
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Remark 5.6. It is an open question whether there exists C > 0 such that

(5.3) ‖u− v‖2L2(E) ≤ CJ(v).

In [24, Thm. 3.1] such an estimate was proved for the case that Ω is a sufficiently
smooth domain and Γe has the impedance condition ∂νu − iku = 0. The crucial
difference here is that we use fundamental solutions approximations instead of lo-
cal absorbing boundary conditions. Similar estimates have also been investigated by
Hiptmair, Moiola, and Perugia in the context of plane wave discontinuous Galerkin
methods [21]. In section 6 we present numerical examples which support the conjec-
ture (5.3).

5.1. Convergence of the MFS approximations. In this section we give a
proof of Theorem 5.2. The proof proceeds along similar lines as the proof of [4,
Thm. 3]. We proceed by finding a specific function v ∈ Ve, for which we show that
(5.2) holds. In the following, C > 0 will always denote an unspecified constant that
may change in the course of the derivation and that depends on k, R, r, and ε but
not on Ne.

Let t[v] := ‖us−v‖L2(Γe) for v ∈ Ve. The multipole (Laurent-type) representation
of us is

us(r, θ) =
∑

m∈Z
αmH(1)

m (kr)eimθ

for r > maxi |pi| and θ ∈ [0, 2π]. It follows immediately that the Fourier coefficients
ûs(m) of the angular function us(r, ·) are

ûs(m) = αmH(1)
m (kr).

The following lemma gives a bound on the decay of ûs(m) as m → ∞.
Lemma 5.7. Let ρ := mini

r
|pi| and ρε := ρ− ε. Then

(5.4) |ûs(m)| ≤ Cρ−|m|
ε

for any arbitrarily small ε > 0, where C depends on k, R, r, and ε.
Proof. Let f(t) := us(r, 2πt) for t ∈ [0, 1]. We need to show that f can be analyti-

cally continued as a holomorphic function to the strip t+ iτ for |τ | < 1
2π log ρ. Denote

by p̃ := argmaxi |pi| the corner of ∂Ω with largest absolute value. Reparameterize
the scattered field us(x, y) in the Cartesian (x, y) coordinates as Us(z, z) := us(x, y),

where z = x + iy. Let Ωp̃ := {z : |p̃| < |z| < r2

|p̃| , Im{z} > 0} be a half annulus, and

define Ω∗
p̃ := {z : z ∈ Ωp̃}. By a result from Vekua [19, 28], Us can be analytically

continued as a holomorphic function of two independent complex variables z and z∗

into the whole of Ωp̃ × Ω∗
p̃, such that Us(z, z∗) = us(x, y) if and only if z∗ = z. From

the definition of f it follows that f(t) = Us(rei2πt, re−i2πt). Hence, by the analyticity
of Us we have that f(t+ iτ) = Us(re−2πτ+i2πt, re2πτ−i2πt) is analytic for 0 < t < 1/2
and − 1

2π log ρ < τ < 1
2π log ρ. By rotating the half annulus and repeating the argu-

ment, the analyticity in this strip can be extended to the whole interval t ∈ [0, 1]. The
estimate (5.4) now follows from the decay of Fourier coefficients of analytic functions
(see, for example, [20, sect. 13.2]).

The Fourier series representation of v ∈ Ve, associated with density g, restricted
to the circle of radius r is given by (see section 4)

v̂(m) = Ŝηg(m) = ŝη(m)ĝ(m),
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where g(θ) =
∑Ne

j=1 cjδ(φ− φj) and ĝ(m) = Ne
2π ĉ(m mod Ne).

By reparameterizing the L2 integral over Γe and using Parseval’s identity, it
follows that

(5.5) t[v]2 = 2πr
∑

m∈Z
|ûs(m)− v̂(m)|2.

We now take a specific v ∈ Ve by choosing the MFS coefficients of v such that for
all −Ne/2 < m ≤ Ne/2, we have

(5.6) ĝ(m) =
ûs(m)

ŝη(m)
=

αmH(1)
m (kr)

π
2H

(1)
m (kr)

[
ik
2 (Jm−1(kR)− Jm+1(kR))− ηJm(kR)

] .

Then the terms involving −Ne/2 < m ≤ Ne/2 cancel out in (5.5) and we can
estimate

t[v]2 ≤ C




∑

m (∈[−Ne
2 +1,...,Ne

2 ]

|ûs(m)|2 +
∑

m (∈[−Ne
2 +1,...,Ne

2 ]

|ŝη(m)ĝ(m)|2


 =: C(E2
u+E2

s ).

Using (5.4) we can now estimate E2
u as

(5.7) E2
u ≤ C

∑

m (∈[−Ne
2 +1,...,Ne

2 ]

ρ−2|m|
ε ≤ Cρ−Ne

ε .

In order to estimate E2
s we rewrite it as

E2
s =

Ne
2∑

n=−Ne
2 +1

ĝ(n)2
∑

b∈Z\{0}
ŝη(bNe + n)2.

Bounding the inner sum and substituting |ĝ(n)| =
∣∣ ûs(n)
ŝη(n)

∣∣ ≤ C
(

r
Rρε

)|n|
gives

(5.8) E2
s ≤ C

Ne
2∑

n=−Ne
2 +1

|ĝ(n)|2
( r
R

)−2Ne+2|n|
≤ C
( r
R

)−2Ne

Ne
2∑

n=−Ne
2 +1

(
r2

R2ρε

)2|n|
.

If ρε > r2

R2 , it follows from (5.8) that E2
s ≤ C
(
r
R

)−2Ne . This decays slower than the

estimate in (5.7). Hence, we have t[v]2 ≤ C
(
r
R

)−2Ne . If ρε <
r2

R2 , it follows from (5.8)
that

E2
s ≤ C
( r
R

)−2Ne
(

r2

R2ρε

)Ne

= Cρ−Ne
ε ,

which has the same exponential rate of decay as (5.7), and therefore t[v]2 ≤ Cρ−Ne
ε

in this case.
We now show that up to an arbitrarily small correction in rate ε̃ > 0 the error

t′[v] := ‖∂νus−∂νv‖L2(Γe) has the same exponential bounds as t[v]. Similarly to (5.5)
we have

(5.9) t′[v] = 2πr
∑

m∈Z
|∂̂νus(m)− ∂̂νv(m)|2,
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where

∂̂νus(m) =
∂

∂r
ûs(m)

and

∂̂νv(m) =
∂

∂r
v̂(m) =

(
∂

∂r
ŝµ(m)

)
ĝ(m).

The second equality follows from the fact that ĝ(m) is independent of r (see (5.6)).
Furthermore, from (5.6) it follows that

∂
∂r ûs(m)
∂
∂r ŝµ(m)

=
ûs(m)

ŝη(m)
= ĝ(m)

for −N/2 < m ≤ N/2. Hence, the Fourier coefficients involving −N/2 < m ≤ N/2
also cancel out for t′[v]. By Lemma 4.2, ∂

∂r ŝη(m) has, up to an arbitrarily small
rate correction ε̃, the same exponential upper bound as ŝη(m). Also, since ∂

∂rus has
its only possible singularities at the corners pi, its Fourier coefficients ∂

∂r ûs(m) have
the same exponential bound (5.4) as those of us. We can therefore apply the same
arguments to estimate t′[v] as we did for t[v] and arrive (up to ε̃ coming from the
bound on ∂

∂r ŝη(m)) at the same exponential bounds as for t[v], which concludes the
proof of Theorem 5.2.

6. Numerical examples. In this section we demonstrate the numerical prop-
erties of the method and present computational results for scattering on a square, a
snowflake domain, and a cavity. All computations were performed using MATLAB
2009a on a dual processor workstation with two 2.8 GHz Intel Xeon quad-core pro-
cessors and 64GB RAM. However, the MATLAB multithreading rarely utilized more
than one CPU core. Hence, the timings will be comparable on a standard desktop
machine.

6.1. Scattering from a square. Let Ω be the unit square given by Ω =
(−0.5, 0.5)2. We use a domain decomposition as shown in Figure 2.1. Γe is a cir-
cle with radius r, and the source points for the fundamental solutions are given by
yj = Reiφj , φj = 2πj

Ne
, j = 1, . . . , Ne. We found that the fundamental solutions basis

size Ne := 2N was sufficient, where N is the number of Fourier–Bessel sine functions
in each element Ei. For the fundamental solutions we use the combined formulation
(2.2) with η = k. For quadrature we used the Clenshaw–Curtis rule with a number
of nodes chosen high enough that further increases had negligible effect; typically this
number is a small multiple of N per interface Γij . (Code for this setup is given in
Appendix A.)

Rate of convergence. In Figure 6.1 we show the rate of convergence of t[vLS ] :=
J(vLS)1/2, which measures the norm of the jumps in function values and normal
derivatives on the interfaces. We fix R = 0.8 and the wavenumber k = 1. The left
plot shows the case r = 0.9 and the right plot r = 1.3. The measured convergence
(solid-dotted line) for the latter is much faster than for the former. In both cases
we have also plotted the asymptotic bound ω−N from Theorem 5.4. The asymptotic
estimates for the convergence on the finite elements E1, . . . , E4 can be computed using
numerical conformal mapping techniques (see [5] for more details). The convergence
of the MFS approximations is directly given by Theorem 5.2.
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What is the optimal value of r? If r is small, then the singular corners of the
square have a large relative distance to the neighboring elements, suggesting a fast
convergence on these elements. However, the rate of convergence for the MFS ap-
proximations will be slow since the radius r is close to the radius of the corners of the
polygon. If r is large, then the MFS approximations converge fast but the relative
distance of a singular corner to a neighboring element Ei is very small, leading to
slow convergence on the finite elements. This suggests that there is an optimal radius
r = ropt, which is achieved when the asymptotic rate of convergence of the MFS is
identical to the asymptotic rate of convergence on the finite elements.

In the left plot of Figure 6.2 we compute (using conformal mapping) the asymp-
totic exponential convergence factor ω from Theorem 5.4 as a function of the radius
r of the outer circle Γe. The optimum asymptotic rate is achieved for r ≈ 1.036. In
that case the rates of convergence on the finite elements Ej and on Ω+

e are almost
identical, with a rate of approximately 1.465−N . The right plot of Figure 6.2 shows
the convergence of t[vLS] in this case. For N = 80 the value of t[vLS ] is close to
machine precision.

Sound-hard boundary conditions. In this paper we have analyzed the case of
sound-soft boundary conditions for u, that is, u = 0 on ∂Ω. However, the scheme
presented in this paper can be trivially extended to sound-hard boundary conditions,
that is, ∂νu = 0, where ∂ν denotes the outward pointing normal derivative on ∂Ω.
For this we switch from Fourier–Bessel sine function approximations to Fourier–Bessel
cosine function approximations in each Ei, replacing (2.1) by

u(r, θ) ≈
Ni∑

j=0

c(i)j Jjαi (kr) cos jαiθ.

It is simple to check that these functions satisfy the homogeneous boundary condi-
tions for the normal derivative. The fundamental solutions basis functions in Ω+

e do
not change. This is a great advantage compared to combined integral equation formu-
lations, which usually involve the approximation of a hypersingular integral operator
for the sound-hard scattering case.

Timing results. In Figure 6.3 we show the real part of the full field for the sound-
soft scattering case (left plot) and the sound-hard scattering case (right plot) for
k = 50, i.e., about 8 wavelengths on a side. The incident field is a plane wave with
direction −π

6 .
The solution time was approximately 11 seconds in both cases. This includes the

setup of the problem and the time for solving the least-squares problem minc ‖W (Ac−
b)‖2, where A is of dimension 4816×600 (sound-soft case), or 4816×604 (sound-hard
case), corresponding to N = 100 and mij = 200 Clenshaw–Curtis quadrature points
on each interface Γij . In the sound-soft case we have t[vLS ] ≈ 1.3× 10−10 and in the
sound-hard case t[vLS ] ≈ 9.2× 10−11. Creating the solution plots takes longer, since
the solution needs to be evaluated on a large number of grid points.

6.2. Scattering from a snowflake domain. We now show results for a snow-
flake domain, which is nonconvex but star-shaped. The domain and the corresponding
decomposition are shown in the top two plots of Figure 6.4. Note that the external
boundary ΓE is not a circle but an equipotential line of the exterior (Laplace) Green’s
function of the domain. Although we have given the analysis only for ΓE being a circle,
we demonstrate in this example that domain-adapted analytic curves also work well.
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Fig. 6.1. Left plot: Convergence of t[vLS ] (solid-dotted line) for growing N for the case r = 0.9
compared to the estimated rate of convergence from Theorem 5.4 (dashed line). Right plot: Same as
left plot but now with r = 1.3. The convergence is much faster for this choice of r.
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Fig. 6.2. Left plot: Asymptotic convergence factor ω in dependence of r. Large values of ω
indicate faster convergence of t[vLS ]. Right plot: Measured (solid-dotted line) and estimated (dashed
line) convergence for the optimal radius r = 1.036.
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Fig. 6.3. Real part of the full field for sound-soft scattering on the square (left plot) and sound-
hard scattering on the square (right plot). In both cases k = 50 and the incident wave is a plane
wave with angle −π

6 .
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Table 6.1
Results for different wavenumbers for sound-soft scattering on the snowflake domain.

k N m NV t[vLS ] Time
50 70 1980 1071 3 · 10−8 8 s
100 90 2460 1377 4 · 10−9 15 s
200 130 3660 1989 5 · 10−9 44 s
500 260 8700 3978 2 · 10−7 7 m

In the bottom two plots of Figure 6.4 we show the scattered field (left) and the
full field (right) for sound-soft scattering by an incident plane wave with angle −π

3
and wavenumber k = 100. Setting up and solving the dense least-squares problem
takes 15 seconds. The error t[vLS ] is approximately 4 · 10−9.

In Table 6.1 we show results for different wavenumbers. N was chosen such
that the error t[vLS] is in the approximate range 10−7 to 10−9. The number of
fundamental solutions used was Ne = 3.3N . m and NV denote the dimensions of the
matrix A ∈ Cm×NV in the least-squares problem minc ‖W (Ac− b)‖2. The table lists
the total times for setting up the matrix and solving the least-squares problem. Up to
around k = 200 the solution time is excellent. For higher k the O(k3) dependence of
the solution time becomes a problem. Also at this high wavenumber, we have noticed
that the best achievable t[vLS ] seems to be around 10−7. By contrast, Figure 6.5
shows that, at lower k, accuracies approaching machine precision are achievable. This
figure also shows that a small increase in the number of basis functions leads to a
large decrease of t[vLS ], once the number of basis functions is high enough to get
into the regime of exponential convergence. From our experiments the number of
basis functions required to enter this regime grows approximately linearly with k, as
supported by Figure 6.5. Once this regime is entered, the convergence rate appears
to be independent of k, as suggested by the analysis in section 5.

In Remark 5.6 we stated the conjecture that ‖u − v‖2L2(E) ≤ CJ(v) for some
C > 0. To support this conjecture we also plotted in Figure 6.5 the convergence of
the scattered field us. This was done by first computing an approximate solution us

for N = 100 and then approximating the L∞ error ‖u(N)
s − us‖L∞(R2\Ω), where u(N)

s

is the approximate scattered field in step N , by evaluating it on the same grid that
was used to plot the solution in Figure 6.4. Notice that the L∞ errors are always
at least a factor of 50 smaller than t[vLS]. Therefore this plot supports the stronger
conjecture

‖u− ûinc − v‖2L∞(R2\Ω) ≤ CJ(v),

where ûinc is as defined in (2.5) and C > 0 is a constant, which is, however, expected
to be large if exterior resonance effects occur.

6.3. A cavity domain. To conclude this section we demonstrate the example
of scattering from a non-star-shaped cavity domain, which allows strong resonances
to occur. The domain decomposition is shown in the left plot of Figure 6.6. Note that
the leftmost element does not share a corner with the cavity domain; in this element
we use a regular Fourier–Bessel expansion, that is, (2.1) with αi = 1 and both sin and
cos terms, whose origin is chosen inside the element. The reason for using this new
type of element is to reduce the size of the elements at the corners of the entrance
to the cavity, which increases the relative distance to neighboring singularities and
thereby increases their rate of exponential convergence. Even though an extra basis
set is required, at high accuracy the total basis size is reduced, and hence efficiency
is improved. The previous convergence analysis would easily extend to this case.
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Fig. 6.4. Top plots: A snowflake-shaped domain and the corresponding domain decomposition.
Bottom plots: The scattered (left) and full (right) fields for sound-soft scattering on the snowflake
domain with k = 100.
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Fig. 6.6. Sound-soft scattering from a cavity domain.

In the right plot of Figure 6.6 we show the solution of sound-soft scattering by
an incoming plane wave with direction −π/10 for k = 100, i.e., 16 wavelengths on the
longest edge. The setup and solution of the associated least-squares problem takes
14 seconds (matrix size 1938× 1521) for an error of t[vLS ] ≈ 3 ·10−8. To evaluate and
plot the solution on 6 · 104 points (a square grid of spacing 0.01) takes an additional
46 seconds.

7. Numerical stability of the method. The method discussed in this pa-
per requires the solution of least-squares problems of the form (3.2), where A ∈
Cm×NV is highly ill-conditioned and W is a diagonal matrix containing quadrature
weights. Sources of the ill-conditioning in A are the large dynamic range of the
Fourier–Bessel basis functions and the ill-conditioning of fundamental solutions bases.
The ill-conditioning of the Fourier–Bessel functions can be improved by rescaling these
functions so that they have unit value at the subdomain’s maximum radius from the
corner, which is what we have done in all example calculations. By contrast, ill-
conditioning of the fundamental solutions is inextricably linked to the fast exponential
decay of the eigenvalues ŝη(m) of the associated layer potential operator Sη, and thus
cannot be removed by scaling.

Denote by cLS the solution of the least-squares problem (3.2). If we have suf-
ficiently many quadrature points, then t[vLS ] is well approximated by the discrete
error td[vLS ] := ‖W (AcLS − b)‖2. Solving (3.2) using a backward stable least-squares
solver—such as mldivide in MATLAB—returns a solution c̃LS, which is the exact
minimizer of

min
c∈CNV

‖(WA+ E)c− (Wb+ f)‖2,

where E and f are small perturbations bounded by

(7.1) ‖E‖2, ‖f‖2 ≤ Cεmach,

where the constant C > 0 is small and the machine precision is εmach [2]. Because
of ill-conditioning, c̃LS may differ drastically from cLS . However, the following shows
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that the corresponding discrete least-squares functional can deviate from its true
minimum only under certain conditions.

Lemma 7.1. Let c̃LS be defined as above, and let ṽLS be the corresponding solution
field. Then,

(7.2) td[vLS ] ≤ td[ṽLS ] ≤ td[vLS ] + C(2 + ‖cLS‖2 + ‖c̃LS‖2)εmach.

Proof. Using the property that cLS minimizes the unperturbed least-squares
problem, and also using the triangle inequality, results in

‖WAcLS −Wb‖2 ≤ ‖WAc̃LS −Wb‖2
≤ ‖(WA+ E)c̃LS − (Wb+ f)‖2 + C(1 + ‖c̃LS‖2)εmach.

Exchanging perturbed and unperturbed quantities in the above gives similarly

‖(WA+ E)c̃LS − (Wb+ f)‖2 ≤ ‖WAcLS −Wb‖2 + C(1 + ‖cLS‖2)εmach.

Combining the two estimates gives (7.2).
Thus, if the basis coefficient 2-norms at the approximate and exact minima are

small, the numerical least-squares solution must converge at the same exponential rate
(Theorem 5.4) as the exact least-squares solution. To rigorously apply this lemma we
need bounds on the norms of ‖cLS‖2 and ‖c̃LS‖2. A partial result towards deriving
such bounds is given in the following theorem, which establishes under which con-
ditions on ΓF the coefficients of the fundamental solutions basis functions in Ωe are
bounded independently of N . A similar result for approximating interior Helmholtz
problems with fundamental solutions was given in [4].

Theorem 7.2. Consider a sequence of fundamental solutions approximations,

each of the form v(x) =
∑Ne

j=1 c
(e)
j

(
i
4

∂
∂ν(yj)

H(1)
0 (k|x − yj |) −

η
4H

(1)
0 (k|x − yj |)

)
, with

growing numbers Ne (Ne even) of charge points, that attains the error bound from The-

orem 5.2 as Ne → ∞. Let each coefficient vector be written as c(e) :=
[
c(e)1 , . . . , c(e)Ne

]T
.

If R > maxi |pi|, then the sequence of norms ‖c(e)‖2 is bounded independently of Ne.
Proof. In the following, C > 0 denotes an unspecified constant that depends on

k, R, r, and ε but not on Ne, and may change throughout the proof. By assumption
maxi |pi| < R < r.

Let g(θ) =
∑Ne

j=1 c
(e)
j δ(φ − φj) and let ĝ(m) = Ne

2π ĉ
(i)
(m mod Ne)

be the Fourier

coefficients of g (see section 5.1). The proof follows by showing that ĝ(m) is bounded
for m in the interval [−Ne/2 + 1, . . . , Ne/2] and by applying the discrete version of
Parseval’s identity. For the specific choice of the coefficients c(e), such that ĝ(m) =
ûs(m)
ŝη(m) , which was used for the convergence analysis in section 5.1, boundedness already

follows for sufficiently small ε from

|ĝ(m)| ≤ C

(
r

Rρε

)|m|

and the assumption R > maxi |pi|.
To establish boundedness of |ĝ(m)| for any sequence c(e) that attains the optimal

rate of convergence from Theorem 5.2 we proceed as follows. From (5.2) and (5.5) we
have that

k
√
2πr|ûs(m)− ŝη(m)ĝ(m)| ≤ Cτ−Ne , m ∈ N,
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where τ = min{
(
r
R

)
, ρ1/2ε } (note that by Remark 5.3, ε̃ = 0 in Theorem 5.2 is possible

since we use only the estimate for the function and not for the normal derivative). It
follows that

|ĝ(m)| ≤ |ŝη(m)|−1
(
Cτ−Ne(2πr)−1/2 + |ûs(m)|

)
, m ∈ N.

Now restrict m to the interval [−Ne/2 + 1, . . . , Ne/2]. If R >
√
rmaxi |pi|, then for

sufficiently small ε it follows that τ = r
R . Using (4.4) and (5.4) we have

(7.3) |ĝ(m)| ≤ C
( r
R

)|m|
[( r

R

)−Ne

+ ρ−|m|
ε

]
≤ C
( r
R

)|m|
[( r

R

)−|m|
+ ρ−|m|

ε

]

since r > R and |m| ≤ Ne
2 . From maxi |pi| < R it follows for sufficiently small ε that

ρ−|m|
ε ≤

(
r
R

)−|m|
. Inserting this into (7.3) gives

|ĝ(m)| ≤ C,

where all constants are absorbed into C. If R <
√
rmaxi |pi|, then for sufficiently

small ε it holds that τ = ρε. We obtain, absorbing constants into C,

|ĝ(m)| ≤ C
( r
R

)|m| [
ρ−Ne/2
ε + ρ−|m|

ε

]

≤ C
( r
R

)|m| [
ρ−|m|
ε + ρ−|m|

ε

]
≤ C

(
r

Rρε

)|m|
≤ C

for ε sufficiently small, since maxi |pi| < R, and therefore ρε >
r
R .

From (4.8) it follows that ĝ(m) = Ne
2π ĉ

(e)(m) for m ∈ [−Ne/2 + 1, . . . , Ne/2],

where the vector ĉ(e) ∈ CNe is the discrete Fourier transform of c(e). Hence, using
the boundedness of ĝ(m) for m ∈ [−Ne/2 + 1, . . . , Ne/2] together with the discrete
version of Parseval’s identity ‖c(e)‖22 = Ne‖ĉ(e)‖22, we obtain

‖c(e)‖22 = Ne‖ĉ(e)‖22 =
(2π)2

Ne

Ne
2∑

j=−Ne
2 +1

|ĝ(m)|2 ≤ (2π)2C2,

which concludes the proof.
Hence, the coefficient vector of the MFS approximations stays bounded in norm

as long as maxi |pi| < R. In [4] this was studied numerically for interior Helmholtz
problems, in the general case of analytic MFS and boundary curves. In that work we
also showed that a large coefficient norm forces a corresponding loss of accuracy in
solution evaluation due to round-off error.

Consider again the problem of sound-soft scattering on the square (section 6.1).

We have |pi| =
√
2
2 for all corners of the square Ω = (−1/2, 1/2)2. If the radius of

the source points yj is R = 0.4, then for k = 100 and N = 150 we find that the
computed coefficient vector c̃LS has ‖c̃LS‖ ≈ 3 · 109. The measured boundary error
td[ṽLS ] ≈ 3.6 is terrible. On the other hand, if R = 0.8 > maxi |pi|, then ‖c̃LS‖ ≈ 6.2,
and td[ṽLS ] ≈ 7 · 10−10 is excellent. Note that in both cases the matrix WA is
numerically singular with a condition number of around 1020.

To summarize this section, the crucial factor limiting the accuracy of the method
is not the condition number of WA, but the norm of the basis coefficients vector. This
can be kept small by rescaling Fourier–Bessel functions and by an informed choice of
the fundamental solutions curve.
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8. Conclusions. In this paper we have demonstrated that efficient and highly
accurate computation of scattering from a variety of convex and nonconvex polygons
can be achieved by using a small number of elements, one for each corner, with the
right kind of basis functions on each element. This allows one to tackle problems tens
of wavelengths across quite rapidly, even with dense linear algebra. An advantage
of the latter is that a dense factorization would allow multiple right-hand sides (e.g.,
incident wave directions) to be solved at minimal extra cost. Once the coefficients
have been solved for, the user may choose where to evaluate the solution at a constant
cost per point—this may be slow on large grids, but is trivially parallelizable.

For high-frequency sound-soft scattering of plane waves on convex polygons, the
method analyzed in this paper cannot compete with specialized high-frequency bound-
ary element methods (see, e.g., [10]). However, the approach in this paper is much
more general. It allows for the computation of convex and nonconvex polygons, sound-
soft or sound-hard boundary conditions, and non–plane wave incident fields. Due to
its fast exponential convergence, up to medium frequencies (≤ 50 wavelengths in size),
it is very competitive.

Our implementation is also much simpler than boundary element or boundary in-
tegral methods. At high frequency these usually need a careful treatment of oscillatory
integrals with complicated basis functions and weakly oscillatory kernels, or spectral
quadrature schemes for (hyper)singular kernels. In addition they require careful mesh-
refinement or quadrature schemes for corner singularities. None of this complexity
is needed in our approach. Moreover, with MPSpack we have created a simple-to-use
software tool that allows rapid and flexible implementation of our methods, and more
(see Appendix A).

The approach in this paper can easily be generalized to multiple scattering prob-
lems. For example, Figure 8.1 shows the solution for sound-soft scattering with
incident angle −π

3 from a disk near a snowflake domain, at wavenumber k = 100.
Setting up and solving the matrix problem takes around 7.5 minutes with an error
of t[vLS ] ≈ 4 · 10−7. Here we used an additional basis of fundamental solutions with
charge points lying on a circle inside the disk domain.

Full Field (Real Part)
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Fig. 8.1. Multiple scattering from a disk and a snowflake domain.

The exponential convergence analyzed in this paper relies on asymptotic series
for Helmholtz solutions at corners, and their convergence properties, which are known
analytically for sound-soft and sound-hard boundary conditions on straight bound-
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aries. For impedance, transmission, and curved-wall corner problems, the solution is
not separable close to a corner, and an open problem is what kind of basis functions
to choose here to obtain fast exponential convergence.

Another open problem is optimal mesh (subdomain) generation. The mesh should
be chosen in such a way that fast exponential convergence on each element is guar-
anteed by keeping the relative distance of mesh elements to neighboring singularities
large. But at the same time the mesh should not contain too many elements, so that
the overall numbers of basis functions and matching points remain small.

Finally, the efficient solution of the least-squares linear algebra problem needs to
be further investigated. At the moment we use a dense, backward stable solver, which
works well for medium wavenumbers. However, it would be desirable to have iterative
solvers for large, structured, ill-conditioned least-squares problems in order to remove
the O(k3) bottleneck at high wavenumbers.

Appendix A. MPSpack example: Scattering from a square. MPSpack is an
object-oriented MATLAB toolbox developed by the authors to solve two-dimensional
Helmholtz/Laplace PDE problems with particular and fundamental solutions meth-
ods. The code can be obtained from http://code.google.com/p/mpspack. The down-
load section of that Web page also includes an extensive tutorial and a technical
manual.

% Exponentially accurate sound-soft time-harmonic scattering from the square
k = 50; % Wavenumber
r = 1.0; % Radius of outer artificial circle
M = 100; % Number of quadrature points on each segment
N = 90; % Number of basis funcs in each corner subdomain
a = 0.5; % Half-size of the square
R = sqrt(0.5); % Radius of the fundamental solutions curve

% Define segments...
s = segment.polyseglist(M, [1i*r 1i*a a+1i*a a r]); % straight
s = [s(1:3) segment(3*M, [0 r 0 pi/2])]; % add arc
s = [s rotate(s, pi/2) rotate(s, pi) rotate(s, 3*pi/2)]; % add 3 copies
sart = s([1 4 5 8 9 12 13 16]); % list of all artificial boundaries
sext = s([4 8 12 16]); % segments forming outer circle

% Define domains...
for j=1:4, d(j) = domain(s(1+mod(4*(j-1)+[0 1 2 12 3],16)),[1 1 1 -1 1]); end
ext = domain([], [], sext(end:-1:1), -1);
sart.setmatch([k -k], [1 -1]); % matching conditions between elements

% Basis functions...
nuopts = struct(’type’,’s’, ’cornermultipliers’,[0 0 1 0 0], ’rescale_rad’,1);
for j=1:4, d(j).addcornerbases(N,nuopts); end % frac-order FB
Z = @(t) R*exp(2i*pi*t); Zp = @(t) 2i*pi*R*exp(2i*pi*t); % fund soln curve
ext.addmfsbasis({Z, Zp}, N, struct(’eta’,k, ’fast’,2, ’nmultiplier’,2.1));

p = scattering(ext, d); % now set up problem, solve, and plot...
p.setoverallwavenumber(k);
p.setincidentwave(-pi/6);
p.solvecoeffs;
fprintf(’least-square err = %g, coeff norm = %g\n’, p.bcresidualnorm, norm(p.co))
p.showfullfield(struct(’bb’,[-1.5 1.5 -1.5 1.5], ’dx’,0.02));

Fig. A.1. MATLAB code for sound-soft scattering from a square using MPSpack toolbox.
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The short, human-readable code in Figure A.1 implements scattering from the
square as in section 6.1, giving least-squares error 8 × 10−11 in 6 seconds of CPU
time, and a further 11 seconds to plot the solution. The code is explained in more
detail in the tutorial. Here we will mention only that segments are first created as in
Figure 2.1, and then subdomains E1 through E4 and Ω+

e are created. Fractional-order
Bessel function bases are added to subdomains with the command addcornerbases,
and fundamental solutions are added with addmfsbasis. Finally, a scattering object
is created which contains methods to construct the matrix WA from section 3, solve
the least-squares linear system, and plot the solution.
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