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POWER PROPERTIES OF
INVARIANT TESTS FOR

SPATIAL AUTOCORRELATION
IN LINEAR REGRESSION

FEDERICO MARTELLOSIO
University of Reading

This paper derives some exact power properties of tests for spatial autocorrelation in
the context of a linear regression model. In particular, we characterize the circum-
stances in which the power vanishes as the autocorrelation increases, thus extending
the work of Krämer (2005). More generally, the analysis in the paper sheds new
light on how the power of tests for spatial autocorrelation is affected by the matrix
of regressors and by the spatial structure. We mainly focus on the problem of resid-
ual spatial autocorrelation, in which case it is appropriate to restrict attention to the
class of invariant tests, but we also consider the case when the autocorrelation is
due to the presence of a spatially lagged dependent variable among the regressors.
A numerical study aimed at assessing the practical relevance of the theoretical
results is included.

1. INTRODUCTION

Testing for spatial autocorrelation in the context of the linear regression model
(e.g., Cliff and Ord, 1981; Anselin, 1988; Cressie, 1993) is now recognized as a
crucial step in much empirical work in economics, geography, and regional sci-
ence. This paper analyzes exact power properties of tests used for this purpose.
We mainly focus on the case of regression models with errors following a first-
order simultaneous autoregressive (SAR(1)) process, but we also consider models
containing a spatially lagged dependent variable among the regressors. The for-
mer models are often referred to as spatial error models, the latter as spatial lag
models. For empirical applications of such models in economics, see, for instance,
Case (1991), Pinske and Slade (1998), and Bell and Bockstael (2000).

So far, power properties of tests for residual spatial autocorrelation have
received much less attention than the power properties of tests for residual serial
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autocorrelation, and have mainly been studied by Monte Carlo simulation (see
Florax and de Graaff, 2004, and references therein). Very few attempts have been
made to derive exact properties of such tests, notably King (1981) and Krämer
(2005). The former paper establishes that the most popular test for residual spa-
tial autocorrelation, the Cliff-Ord test, is locally best invariant in the case of a
Gaussian spatial error model. The latter paper identifies a possible problem with
tests of autocorrelation in the context of a Gaussian spatial error model with sym-
metric weights matrix, generalizing results available for tests of serial autocorre-
lation (see Krämer, 1985; Zeisel, 1989). In particular, Krämer (2005) considers
tests whose associated test statistics can be expressed as ratios of quadratic forms
in the regression errors, and shows that there are cases when the power vanishes
as the residual autocorrelation increases.

The present paper aims to extend the results in Krämer (2005). We show that
the vanishing limiting power problem is not confined to a particular class of tests.
The problem arises because a SAR(1) model tends, as the autocorrelation param-
eter goes to the right boundary of the parameter space, to a family of (improper)
distributions supported on a one-dimensional subspace of the sample space. The
limiting power disappears whenever the intersection between such a subspace and
the critical region has zero one-dimensional Lebesgue measure. In the context of
a spatial error model, it is natural to focus on invariant tests (e.g., Lehmann and
Romano, 2005). We formulate conditions for the limiting power of any given in-
variant test to be 0, 1, or in (0,1). Such conditions require neither Gaussianity
nor symmetry of the weights matrix. Allowing for nonsymmetric weights ma-
trices is important, especially because in applications weights matrices are often
row-standardized. It turns out that when the weights matrix is row-standardized
and the regression contains an intercept, the limiting power of any invariant test
for residual spatial autocorrelation is in (0,1). On the contrary, when the weights
matrix is not row-standardized, the limiting power of an invariant test is generally
either 0 or 1. An explanation of why some economic phenomena may be bet-
ter described by means of a non–row-standardized weights matrix is contained in
Kelejian and Prucha (2009).

Krämer’s results and our extensions are particularly relevant for empirical ap-
plications where a dependent variable is highly spatially autocorrelated and the
autocorrelation cannot be explained by conditioning on observable factors. For
example, this may occur in studies of the term structure of interest rates, where
pricing errors are likely to be strongly autocorrelated according to their distance
in terms of maturity (e.g., Kennedy, 1994; Goldstein, 2000). In this context, Huse
(2006) estimates a spatial error model and finds a very large value of the auto-
correlation parameter. Similarly, Gall, Pap, and van Zuijlen (2004) use a spatial
autoregression to account for the autocorrelation in the maturity space of forward
interest rates, and discuss explicitly the case when the autocorrelation parameter
tends to the right boundary of the parameter space. Two examples of economic
applications where non-observable factors may induce high residual autocorrela-
tion in the geographic space are hedonic market models for dwelling selling prices
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(see Militino, Ugarte, and Garcı́a-Reinaldos 2004), and the analysis of returns for
a set of firms within an industry.1

To complement the limiting power analysis, we discuss some conditions that
are sufficient for unbiasedness of invariant tests for residual spatial autocorrelation
and for monotonicity of their power functions. Although such conditions are not
necessary, they provide insights into the role played by the regressors and the
spatial structure in determining the power of the tests, and they help to understand
the causes of undesirable properties of the tests.

The rest of the paper is organized as follows. Section 2 presents the theoretical
framework. Our main results are in Section 3. In that section, we first consider
in some detail the limiting power of tests for spatial autocorrelation in a spatial
error model. Then, we discuss how the results change in the case of some other
spatial models, including a spatial lag model and a spatial moving average model.
The special case of pure SAR(1) processes is considered separately. To assess
the practical relevance of the limiting power analysis, Section 3 reports results
from a small numerical study. Section 4 analyzes the conditions for unbiasedness
of the tests and monotonicity of their power functions. Section 5 concludes. The
Appendices contain some technical material and all proofs.

2. FRAMEWORK

Section 2 presents the set-up in which our results will be derived. Section 2.1
defines the testing problem we are concerned with, and Section 2.2 introduces
invariant tests for that problem.

2.1. The Testing Problem

Consider a fixed and finite set of n observational units, such as the regions of a
country, and let y = (y1, . . . , yn)′, where yi denotes the random variable observed
at the i-th unit. The ordering of the units is arbitrary. We assume that yyy follows a
linear regression model

y = Xβββ +u, E(u) = 0, var(u) = σ 2ΣΣΣ(ρ), (1)

where X is an n ×k matrix of rank k < n, βββ is a k ×1 vector of unknown parame-
ters, σ 2 > 0 is an unknown parameter, and ρ is an unknown parameter belonging
to some connected open subset � of {ρ :ΣΣΣ(ρ) is positive definite}. The matrix
X contains only exogenous variables; either it is nonstochastic or all the analysis
is interpreted as conditional on X. As for the distribution of the error term u, we
only assume that the density of u is positive everywhere on Rn , is larger at 0 than
anywhere else, and is continuous in both y and the parameters σ 2 and ρ.

In the context of model (1), we are interested in testing

H0 : ρ = 0 versus Ha : ρ > 0. (2)

Here and throughout, ρ > 0 is to be understood as ρ ∈ R+ ∩� =: �+, that is,
we leave it implicit that ρ must belong to the parameter space of the model. The



POWER OF TESTS FOR SPATIAL AUTOCORRELATION 155

choice of a one-sided alternative rather than a two-sided one is dictated by the fact
that the former is empirically more relevant for many specifications of ΣΣΣ(ρ).

Throughout the paper we will be mainly concerned with the covariance struc-
ture ΣΣΣ(ρ) implied by a first-order simultaneous autoregressive (SAR(1)) process
(e.g., Whittle, 1954; Cliff and Ord, 1981; Anselin, 1988; Cressie, 1993). Such
a process is specified on the basis of a fixed n × n (spatial) weights matrix W,
chosen to reflect a priori information on relations among the n observations. Typ-
ically, for each i, j = 1, . . .,n, (W )i j = 0 if i and j are not neighbors according to
some metric deemed to be relevant for the phenomenon under analysis, whereas
(W )i j is set to some nonzero number, possibly reflecting the degree of interac-
tion, otherwise. For instance, when the observational units are the regions of a
country, one may set (W )i j = 1 if two distinct regions i and j share a common
boundary, (W )i j = 0 otherwise. In this paper we assume that a weights matrix (i)
has zero entries along its main diagonal, (ii) is entrywise nonnegative, and (iii) is
irreducible. Details concerning such assumptions are in Appendix A.

A SAR(1) process for the error vector u is specified by

u = ρWu+εεε, var(εεε) = σ 2V, (3)

where εεε is a vector of innovations and V is a fixed n × n symmetric and positive
definite matrix. The extension to the case when V depends on unknown param-
eters will be discussed in Section 3.5.1. Let I, or In , denote the n × n identity
matrix. For testing problem (2), there is no loss of generality in assuming that
ΣΣΣ(0) = I (if ΣΣΣ(0) �= I, just premultiply y by ΣΣΣ−1/2(0)). Hence, we can take
V = I.

Provided that ρ is different from the reciprocal of the nonzero real eigenvalues
of W, equation (3) implies

ΣΣΣ(ρ) = [(I−ρW ′ )(I−ρW )
]−1

. (4)

For SAR(1) processes, we take �+ = (0,λ−1
max), where λmax is the largest posi-

tive eigenvalue of W. While the condition ρ < λ−1
max is not necessary for positive

definiteness of (4), it guarantees connectedness of �+. In addition, the alterna-
tive hypothesis ρ ∈ (0,λ−1

max) represents positive autocorrelation,2 a much more
common phenomenon in practice than negative spatial autocorrelation.

The regression model (1) with disturbances following process (3) is often re-
ferred to as a spatial error model. There are two important alternatives to a spatial
error model: the so-called spatial lag model, and the regression model with dis-
turbances following a first-order conditional autoregressive (CAR(1)) process. In
a spatial lag model, the spatial autocorrelation is introduced by including a spatial
lag Wy among the regressors. The problem of testing for this type of spatial auto-
correlation is different from the testing problem described above, and will be con-
sidered separately in Section 3.5.2. A CAR(1) process is a Gaussian model with

ΣΣΣ(ρ) = (I−ρW )−1L, (5)
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where L is a fixed n ×n diagonal matrix such that L−1W is symmetric (see Besag,
1974). Recall that there is no loss of generality in setting ΣΣΣ(0) = I, which, in
(5), corresponds to L = I. Thus, W can be assumed to be symmetric in CAR(1)
models (because it must be symmetric when L = I in (5)). In SAR(1) models, on
the contrary, we do need to allow for nonsymmetric W ’s.

For the sake of simplicity, the results in this paper will be stated only for
SAR(1) processes and not for CAR(1) processes. Nevertheless, from the proofs it
is straightforward to check that the results that hold for a SAR(1) process with a
symmetric W (corresponding to ΣΣΣ(ρ) = (I−ρW )−2) also hold for a process with
ΣΣΣ(ρ) = (I −ρW )−1. Under Gaussianity, the latter process can be interpreted as
a CAR(1) process; without Gaussianity, it can be interpreted as a general autocor-
relation process (see, e.g., Anderson, 1948; Kadiyala, 1970; Kariya, 1980; King,
1980).

2.2. The Tests

For the testing problem defined above, it is natural to focus on invariant tests.
These are now informally introduced; details on the theory of invariant tests are
available in standard references such as Lehmann and Romano (2005). Often a
testing problem does not change if any transformation in a certain group is applied
to the sample space. In this case, according to the “principle of invariance,” the
test itself should be invariant under the same group of transformations, that is,
it should be based on a test statistic that is constant on each orbit of that group.
A necessary and sufficient condition for this type of invariance is that the test
statistic is a function of a maximal invariant under that group.

Testing problem (2) is invariant with respect to the group of transformations
y → γ y + Xδδδ, with γ ∈ R\{0} and δδδ ∈ Rk (sometimes the smaller group with
γ > 0 is considered; see Appendix B). By an invariant test for testing problem
(2) we mean a test that is invariant under that group. Let C be an (n − k) × n
matrix such that CC ′ = In−k and C ′C = MX := In − X(X ′X)−1X ′, and let ‖·‖
denote the Euclidean norm. Fix, without any loss of generality, an arbitrary ı̄ =
1, . . .,n. Then a maximal invariant under the above group is v := sgn(yı̄ )Cy/‖Cy‖,
where sgn(yı̄ ) denotes the sign of yı̄ . In some cases, it is possible to derive a
closed-form expression for the density of v. For example, if the distribution of u
is elliptically symmetric, then it can be shown that the density of v, with respect to
the normalized Haar measure on the hemisphere

{
s ∈ Rn−k : ‖s‖ = 1,sı̄ ≥ 0

}
, is

f (v; ρ) = 2
∣∣CΣΣΣ(ρ)C ′∣∣− 1

2
[
v′ (CΣΣΣ(ρ)C ′)−1 v

]− n−k
2

(6)

(see Kariya, 1980, eqn. (3.7)).
Besides the principle of invariance, there are at least two other reasons why,

for our testing problem, it is appropriate to restrict attention to invariant tests.
First, the distribution of any invariant test statistic for our testing problem is free
of nuisance parameters. This is clearly seen by exploiting the standard result that
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the distribution of the maximal invariant depends only on the parameter maximal
invariant, which in our case is ρ. The absence of nuisance parameters means that
invariant tests are similar and that the power function of any invariant test does
not depend on βββ or σ 2. Second, expression (6) turns out to be proportional to the
Gaussian marginal likelihood of ρ (see Kalbfleisch and Sprott, 1970). Thus, at
least under Gaussianity, using an invariant test for our testing problem is equiv-
alent to drawing inference from the marginal rather than the full likelihood of
the data. The marginal likelihood has often been found to provide a better basis
for inference about ρ than the full likelihood of model (1), especially when k
is large with respect to n; see, e.g., Tunnicliffe Wilson (1989) and Rahman and
King (1997).

In general, despite the elimination of the nuisance parameters achieved by the
imposition of invariance, no uniformly most powerful invariant (UMPI) test exists
for testing problem (2), not even under Gaussianity (see, e.g., King and Hillier,
1985).3 Some examples of invariant tests for testing problem (2) are now pre-
sented. Throughout the paper, the critical value and the size of a test are denoted
by c and α, respectively. To avoid trivial cases and unless otherwise specified, α
is assumed to be in (0,1). Note that in view of the similarity of invariant tests, if
the distribution of u is fully specified (up to σ 2 and ρ), then the critical value c
corresponding to a given size can be obtained accurately by Monte Carlo or other
numerical methods.4 Often, however, critical values are derived from the asymp-
totic distribution of the test statistic. Asymptotic critical values may generate size
distortions, but, on the other hand, are generally obtained from standard distribu-
tions and may result in a test that is more robust to different distributions of u.

Let û be the vector of OLS residuals. Simple tests for our testing problem are
those that reject H0 when

û′Qû

û′û
> c (7)

for some fixed matrix Q. In particular, when Q equals a spatial weights matrix
W, we obtain the Cliff-Ord test (see Cliff and Ord, 1981; Kelejian and Prucha,
2001). In some circumstances, a test based on (7) has exact optimality properties.
In particular, it is locally best invariant (LBI) if u has an elliptically symmetric
distribution, and Q = dΣΣΣ(ρ)/dρ|ρ=0, for some differentiable ΣΣΣ(ρ) (King and
Hillier, 1985; Kariya, 1988). It follows that under the assumption of elliptical
symmetry, the Cliff-Ord test is LBI when ΣΣΣ(ρ) is that of a SAR(1) (or CAR(1))
process (see King, 1981).5 When the regression contains only an intercept, the
Cliff-Ord test reduces to the Moran test (Moran, 1950).

Other important invariant tests are the likelihood ratio (LR) test (based on the
full density of the data) and its “restricted” version based on the density of v.6 We
will also consider the tests that, for a fixed ρ̄ > 0 (with, of course, ρ̄ ∈ �+), reject
H0 when

v′ (CΣΣΣ(ρ̄)C ′)−1 v < c. (8)
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If u has an elliptically symmetric distribution, a test based on (8) is point optimal
invariant (POI), i.e., it is the most powerful invariant test against the specific alter-
native hypothesis ρ = ρ̄ > 0 (see King, 1988). POI tests define the power envelope
of invariant tests. More precisely, denoting by πρ̄(ρ) the power of the POI critical
region, the power envelope of size-α invariant tests is the function that associates
the value πρ(ρ) to each ρ ≥ 0.

Before we continue, some notation is in order. For a q ×q matrix Q, we denote
by col(Q) its column space. If Q is symmetric, we denote by λ1(Q), . . .,λq(Q) its
eigenvalues, labeled in nondecreasing order of magnitude; by mi (Q) the multi-
plicity of λi (Q), for i = 1, . . .,q; by f1(Q), . . ., fq(Q) a set of orthonormal (with
respect to the Euclidean norm) eigenvectors of Q, with the eigenvector fi (Q) being
pertinent to the eigenvalue λi (Q); by Ei (Q) the eigenspace associated to λi (Q),
for i = 1, . . .,q . Note that when W is symmetric, λn(W ) = λmax. When W is
nonsymmetric, λmax is still well-defined, because W always has a (real) positive
eigenvalue by Theorem A.2 All matrices considered in this paper are real.

3. LIMITING POWER

In Section 3 we extend the results in Krämer (2005) on the power of tests for resid-
ual spatial autocorrelation. Krämer’s results are briefly summarized in Section 3.1,
whereas our main results are presented in Section 3.2. In Section 3.3 we report
results from numerical experiments aimed at assessing the practical relevance of
our analysis. In Section 3.4 we discuss the particular case of pure SAR(1) pro-
cesses. Finally, in Section 3.5 we consider some models that are generalizations
of, or alternatives to, a spatial error model.

3.1. Previous Results (Krämer, 2005)

Krämer (2005) considers distinguishing ρ = 0 from ρ > 0 in a spatial error model,
under Gaussianity and when W is symmetric. This is a particular case of the test-
ing problem described in Section 2.1. Krämer focuses on test statistics that can be
expressed as ratios of quadratic forms in regression errors. More specifically, he
considers tests that reject when u′Q1u/u′Q2u > c for some n ×n matrices Q1 and
Q2 that in general depend on X and W. For example, the Cliff-Ord test and a POI
test (8) belong to this class of tests (the former is obtained when Q1 = MXWMX

and Q2 = MX, the latter when Q1 = −C ′ (CΣΣΣ(ρ̄)C ′)−1 C and Q2 = MX).
Henceforth, by “limiting power” of a test for autocorrelation in the context of

a spatial autoregression, we mean the limit of the power function as ρ → λ−1
max

(from the left). We denote by fmax a particular eigenvector of W pertaining to
λmax (the precise definition is in Appendix A). Let ξ := f ′

max

(
Q1 − cQ2

)
fmax.

Theorems 1 and 2 in Krämer (2005) state that the limiting power of the above
tests is 0 if ξ < 0, 1 if ξ > 0, and, generally, in (0,1) if ξ = 0. The third case is
unlikely to occur because of the assumption that W is symmetric. Let us consider,
for example, the Cliff-Ord test. Then, ξ = 0 if and only if either fmax ∈ col(X) or
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c = f ′
maxMXWMX fmax/f ′

maxMX fmax. For fixed X and W, the latter condition is
hugely restrictive, since it requires the critical value c to be equal to a single spe-
cific value. The condition fmax ∈ col(X) is also restrictive: when W is symmetric
there is generally no reason why X should be such that fmax ∈ col(X).7

In Section 3.2.2 we shall prove the nontrivial fact that Krämer’s conditions can
be extended to models with nonsymmetric W. In many applications, the weights
matrices of SAR(1) models are nonsymmetric; for instance, a row-standardized
(so that all its row-sums are equal to 1) matrix is generally nonsymmetric. Note
that the condition fmax ∈ col(X) is satisfied whenever W is row-standardized and
an intercept is included in the regression.

3.2. Main Results

3.2.1. The General Case. Before investigating the case of a spatial error
model, it is convenient to consider our testing problem in the context of the gen-
eral model (1). Let us start from a simple observation. When ρ ∈ �+, ΣΣΣ(ρ) is
positive definite and hence y has positive density over the whole sample spaceRn .
Thus, for any ρ ∈ �+, any critical region for testing ρ = 0 has probability content
(i.e., power) strictly between 0 and 1.

For simplicity, we assume that �+ has a finite right boundary, to be denoted
by a.8 The power of a test for ρ = 0 as ρ → a requires more attention. Clearly,
the limiting power as ρ → a depends on the limiting behavior of the density of y,
but we will see below that important information can be obtained just by looking
at the limiting behavior of ΣΣΣ(ρ). There are three possibilities: (i) ΣΣΣ(a) exists
and is positive definite; (ii) ΣΣΣ(a) exists and is singular; or (iii) ΣΣΣ−1(a) exists
and is singular. By the argument in the previous paragraph, it is clear that in case
(i), the limiting power of any critical region must be in (0,1). Case (ii) applies,
for instance, to moving average models, and will be briefly dealt with in Section
3.5.4. Here, we focus on case (iii) and, in particular, on the case rank(ΣΣΣ−1(a)) =
n − 1, which, as we will see below, is the relevant one for spatial and stationary
time series autoregressive models. For the extension to the more general case
when rank(ΣΣΣ−1(a)) < n, see Remark 1 below. We denote by int(S), bd(S), and
cl(S), the interior, the boundary, and the closure of a set S, respectively. By an
invariant critical region we simply mean the subset of the sample space Rn where
an invariant test rejects the null hypothesis.

THEOREM 1. Consider an invariant critical region � for testing ρ = 0 against
ρ > 0 in model (1). Assume that ΣΣΣ(ρ) is positive definite as ρ → a, and that
rank(ΣΣΣ−1(a)) = n −1. The limiting power of � as ρ → a is:

• 1 if f1(ΣΣΣ
−1(a)) ∈ int(�);

• in (0,1) if f1(ΣΣΣ
−1(a)) ∈ bd(�); or

• 0 if f1(ΣΣΣ
−1(a)) /∈ cl(�).
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Theorem 1 asserts that, to some extent, the limiting power of an invariant test is
determined by the position of f1(ΣΣΣ

−1(a)) relative to the critical region. The result
is quite general, in that it holds for any ΣΣΣ(ρ) satisfying the stated conditions, any
X, and any invariant test.

The reason why the limiting power may disappear in the context of model (1)
is best understood geometrically. If ΣΣΣ−1(a) has reduced rank, then, as ρ → a,
the model is not supported on the whole sample space Rn , but only on a subspace
thereof (more precisely, the limiting model is a degenerate distribution on a trans-
lation of the nullspace of ΣΣΣ−1(a); see the proof of the theorem for details). As a
consequence, any critical region that does not (almost surely) intersect such a sub-
space has vanishing probability content, and hence vanishing power, as ρ → a.
On the contrary, a critical region has full limiting power if it contains (almost
surely) that subspace.

Let us now concentrate on the case when the limiting power is in (0,1). This
happens when f1(ΣΣΣ

−1(a)) falls in the boundary of �. Such a condition may seem
very restrictive. In fact, the boundary of an invariant critical region always con-
tains col(X),9 and therefore the condition is satisfied whenever f1(ΣΣΣ

−1(a)) ∈
col(X). This occurs, in particular, in models such that f1(ΣΣΣ

−1(a)) is a vector
with identical entries, and such that an intercept is included among the regressors.
For example, f1(ΣΣΣ

−1(a)) is a vector with identical entries in the case of covari-
ance stationary AR(1) processes (see Krämer, 1985, and below), or in the case of
a SAR(1) process with row-standardized W (see Section 3.2.2). Theorem 3.1 says
that in such models the limiting power of any invariant critical region cannot be
either 0 or 1, as long as an intercept is included in the regression.

The case of a regression model with AR(1) disturbances represents an im-
portant application of Theorem 1. More specifically, consider the error process
ui = ρui−1 + εi , for i = 1, . . .,n, with the initial condition u0 chosen so that the
process is covariance stationary (i.e., E(u0) = 0 and var(u0) = σ 2(1 − ρ2)−1).
Suppose that we are interested in the power of tests for ρ = 0 as ρ approaches
the unit root. Previous contributions in this context have focused on the power of
the Durbin-Watson and some related tests under Gaussianity; see, e.g., Krämer
(1985), Zeisel (1989), and Bartels (1992). Since, as is easily shown, the above
AR(1) process yields rank(ΣΣΣ−1(1)) = n − 1, Theorem 1 applies, and shows that
the results in those papers can be extended to any invariant test for residual se-
rial correlation and to non-Gaussian distributions. Note that the assumption on
u0 plays a crucial role here. In general, for an u0 other than the one leading to
covariance stationarity (e.g., a fixed u0), ΣΣΣ−1(1) is nonsingular, and hence the
limiting power as ρ → 1 is in (0,1), by the observation at the beginning of this
section.

Remark 1. Theorem 1 can be generalized to the case when 0 < rank(ΣΣΣ−1(a))
< n. Inspection of the proof of the theorem reveals that the formulation of the con-
ditions for the limiting power to be 0,1, or in (0,1) would be more complicated in
that case. For instance, the condition for a vanishing power should be replaced by
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the condition that E1(ΣΣΣ
−1(a))∩ cl(�) has rank(ΣΣΣ−1(a))-dimensional Lebesgue

measure zero.

Remark 2. Theorem 1 can be extended to non-invariant critical regions. Again,
this would involve a more complicated formulation, because, contrary to an in-
variant critical region, a non-invariant one may contain only a subset of the lim-
iting support of model (1). In particular, the lack of invariance with respect to
transformations y → y + Xδδδ, δδδ ∈ Rk would imply that the conditions in the theo-
rem depend on the unknown parameter βββ.

3.2.2. Spatial Error Model. In the case of the covariance structure ΣΣΣ(ρ) =
[(I−ρW ′)(I−ρW)]−1 of a SAR(1) process, the right boundary a of �+ is λ−1

max.
We now restrict our attention to the limiting power, as ρ → λ−1

max, of invariant tests
in a spatial error model (defined by equations (1) and (3)).

For a SAR(1) process, ΣΣΣ−1(λ−1
max) has rank n −1 for any W, by Lemma D.4. It

follows that Theorem 1 applies to any spatial error model, leading to the following
corollary.

COROLLARY 1. In a spatial error model, the limiting power of an invariant
critical region � for testing ρ = 0 against ρ > 0 is:

• 1 if fmax ∈ int(�);

• in (0,1) if fmax ∈ bd(�); or

• 0 if fmax /∈ cl(�).

There are three main differences between Corollary 1 and the results summa-
rized in Section 3.1. First, Corollary 1 holds for the whole class of invariant tests,
which is much larger than the class of tests that can be expressed as ratios of
quadratic forms in the regression errors. In particular, Corollary 1 holds regard-
less of the analytical form of the invariant test statistic, and therefore, it also holds
for invariant tests whose test statistics are analytically complicated, or—as it is the
case for an LR test—unavailable in closed form. It should be noted that Corollary 1
implies that the zero limiting power phenomenon cannot be attributed to the form
of a specific test (contrary to what is argued, for instance, in Krämer, 2005,
p. 490). Instead, the phenomenon is due to the fact that a SAR(1) model tends,
as ρ → λ−1

max, to be supported on a subspace of the sample space, namely the
one-dimensional space spanned by fmax; see the proof and the discussion of
Theorem 1 for details. Second, Corollary 1 is not restricted to Gaussian models.
Third, it does not require symmetry of W. This is important, because in SAR(1)
models W is very often row-standardized, which generally entails asymmetry. For
a row-standardized W, fmax is a vector with identical entries. Recall from Sec-
tion 3.2.1 that whenever a critical region � is invariant, col(X) ⊂ bd(�). Thus,
when W is row-standardized and the regression contains an intercept, Corollary 1
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establishes that the limiting power of any invariant test is in (0,1). Conversely,
when W is not (a scalar multiple of) a row-standardized matrix, the limiting power
of an invariant test is generally either 0 or 1, because it is unlikely that fmax falls
in col(X) or more generally in bd(�).10

In view of the above observations, one might be tempted to regard row-
standardization of W as a simple device to avoid the zero limiting power prob-
lem. Such a temptation should be resisted. Instead, as emphasized by Kelejian and
Prucha (2009), the decision as to whether or not to row-standardize W should be
based on theoretical considerations concerning the particular phenomenon under
analysis. It should also be noted that, even if the limiting power cannot be exactly
zero when W is row-standardized and the regression contains an intercept, it can
still be very low.11

The practical usefulness of the conditions stated in Corollary 1 stems from
the fact that such conditions are generally simple to check. Let us consider the
invariant critical region � that rejects ρ = 0 for large values of some univariate
statistic T (y), i.e.,12

� = {y ∈ Rn : T (y) > c
}

. (9)

The boundary of such a critical region consists of not only {y ∈ Rn : T (y) = c}
but also, as pointed out in Section 3.2.1, col(X). While it is very unlikely that fmax
falls in the former set (in general, there is only one value of c in a continuum of
points such that T ( fmax) = c), we have already noted above that in some impor-
tant cases fmax ∈ col(X). Theorem 1 then says that the limiting power of the critical
region (9) is: 1 if T ( fmax) > c; 0 if T ( fmax) < c; and in (0,1) if T ( fmax) = c or
fmax ∈ col(X). Such conditions are simple to check as long as fmax is known or can
be computed efficiently. Consider, for example, the Cliff-Ord test. For the ΣΣΣ(ρ)
implied by a SAR(1) process, its limiting power is 1, 0, or in (0,1), depend-
ing on whether f ′

max (MXWMX − cMX) fmax is, respectively, positive, negative,
or 0.13

So far we have focused on a fixed test for spatial autocorrelation. Corollary 1
also has consequences for the power envelope πρ(ρ) of invariant tests. Indeed,
since it asserts that any critical region that includes fmax in its interior must have
full limiting power, Corollary 1 implies that, under the condition fmax /∈ col(X),
πρ(ρ) approaches 1 as ρ→λ−1

max.14 Conversely, under the condition fmax∈ col(X),
the corollary implies that the limit of πρ(ρ) as ρ → λ−1

max must be strictly between
α and 1. This leads us to the conclusion that the null hypothesis ρ = 0 can be
distinguished from the limiting alternative ρ → λ−1

max with zero type II error prob-
ability if and only if fmax /∈ col(X).

Remark 3. In the context of a spatial error model, consideration of the ex-
treme case ρ → λ−1

max corresponds, in general, to studying power when it is most
needed, i.e., when the efficiency of the OLS estimator of βββ, relative to (some
feasible version of) the GLS estimator, is low. Indeed, for most combinations of
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X and W and according to most measures of efficiency, the relative efficiency
of the OLS estimator is decreasing in ρ (see, e.g., Cordy and Griffith, 1993).
There are exceptions: for instance, the measure of efficiency used in Krämer and
Donninger (1987) may be increasing in ρ in some circumstances, but see Dielman
and Pfaffenberger (1989) for problems with that measure.

Remark 4. Corollary 1 admits an interpretation in terms of the Cliff-Ord statis-
tic û′Wû/û′û. Besides being used to test for spatial autocorrelation, the Cliff-Ord
statistic is often regarded as an index of autocorrelation. When W is symmetric,
û′Wû/û′û achieves a maximum at û = fmax, by Lemma D.1 Thus, Corollary 1
asserts that, for fixed X and fixed symmetric W, an invariant critical region has
full limiting power only if it contains the points in the sample space that maxi-
mize the Cliff-Ord statistic. Indeed, according to the interpretation of the Cliff-
Ord statistic as an autocorrelation coefficient, it certainly makes sense to reject
ρ = 0 when a large value of û′Wû/û′û is observed. The situation is, however,
less intuitive when W is nonsymmetric. In that case, û′Wû/û′û is maximized
by the eigenvectors of W + W ′ associated to the largest eigenvalue of W + W ′.
Observe that fmax does not need to be one of such eigenvectors. Hence, for SAR(1)
models with nonsymmetric W, Corollary 1 implies that an invariant critical re-
gion may have vanishing limiting power even if it contains the values of y that
maximize the Cliff-Ord statistic. We shall come back to the role played by the
symmetry of W in Section 3.4.

3.3. Numerical Examples

In Section 3.3 we report results from a small Monte Carlo experiment aimed at
illustrating how the matrices X and W affect the exact power of tests for residual
spatial autocorrelation. In particular, our objective is to show how sensitive the
power can be to X, when ρ is large but not necessarily very close to λ−1

max. For
brevity, we restrict our attention to the Cliff-Ord test and to Gaussian models.
Related numerical investigations are contained in Krämer (2005).

We consider 106 replications of the n×2 matrix X = (ιιι : z), where ιιι := (1, . . .,1)′
and z ∼ N(0,I).15 The weights matrices are derived from the maps of the n = 17
counties in Nevada and the n = 23 counties in Wyoming; see Figure 1. We con-
sider both a binary W, specified according to the queen criterion (i.e., (W )i j = 1
if two distinct counties i and j share a common boundary or a common point,
(W )i j = 0 otherwise), and its row-standardized version. The average number
of neighbors of a county is 4.35 in Nevada and 4.52 in Wyoming, whereas the
sparseness of W (as measured by the percentage of zero entries) is 74.40 for
Nevada and 80.34 for Wyoming. We shall see that, despite their similarities, these
two spatial configurations are very different from the point of view of testing for
autocorrelation.

In order to show how sensitive the power of the Cliff-Ord, denoted by πC O(ρ),
is to X, in Table 1 we display the percentage frequency distribution. The size is set
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FIGURE 1. Maps of the 17 counties in Nevada (left) and the 23 counties in Wyoming
(right).

to 0.05, and the power is computed by the Imhof method (Imhof, 1961). We report
values for ρ = 0.9λ−1

max and ρ = 0.95λ−1
max. To give an indication of how close

such points are to λ−1
max, the third column of Table 1 gives the average correlation

between pairs of neighboring counties (there are 37 such pairs in Nevada and
54 in Wyoming; averages over non-neighbors, not reported, are much lower).16

TABLE 1. Average correlation between neighbors and percentage frequency dis-
tribution of the power πC O(ρ) of the Cliff-Ord test, in model y = Xβββ +u, where u
is a Gaussian SAR(1) process and X contains an intercept and a standard normal
variate

Average πC O (ρ)
neigh.

ρλmax correlation 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1

Nevada

binary W 0.90 0.85
(0.70−0.93)

0.11 0.25 28.42 71.05 0.17 · ·
0.95 0.95

(0.87−0.98)
0.29 5.75 36.29 53.43 4.11 0.13 ·

row-st W 0.90 0.88
(0.81−0.93)

· · 0.02 0.16 41.47 58.35 ·
0.95 0.96

(0.93−0.98)
· · 0.01 0.05 1.56 98.38 ·

Wyoming

binary W 0.90 0.80
(0.60−0.92)

· · · 0.02 0.69 99.29 ·
0.95 0.92

(0.77−0.98)
· · · 0.02 0.10 1.76 98.12

row-st W 0.90 0.85
(0.76−0.92)

· · · · · 0.50 99.50

0.95 0.95
(0.90−0.97)

· · · · · · 100

Notes: Minimum and maximum correlations are given in parentheses.
The power is computed by the Imhof method over 106 replications of X, with α = 0.05.
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It appears from Table 1 that in the case of Nevada, πC O(ρ) depends to a very
large extent on X, even for values of ρ that are not in a very small neighborhood
of λ−1

max. The dependence is less pronounced in the case of Wyoming.
Before carrying on with our numerical example, it is convenient to introduce

a general measure of the difficulty of testing for spatial autocorrelation as ρ →
λ−1

max. Consider some invariant test. By Corollary 1, whether or not its limiting
power vanishes depends on α, because whether or not fmax ∈ cl(�) depends on
the size of �. In particular, the limiting power of a test may vanish for some fixed
size but be positive for some larger size. In the following definition, by exact test
we mean a test whose critical value is selected from the exact null distribution of
the test statistic.

DEFINITION 1. For an exact invariant test of ρ = 0 against ρ > 0 in a SAR(1)
model, α∗ is the infimum of the set of values of α ∈ (0,1] such that the limiting
power does not vanish.

For fixed X, W, and � such that fmax /∈ bd(�), α∗ is a measure of the dis-
tinguishability between the null hypothesis ρ = 0 and the limiting alternative
ρ → λ−1

max.17 A large α∗ indicates that a large critical region is necessary to avoid
the zero limiting power problem. We stress that α∗ depends on W, on the invari-
ant test under consideration, and on X (through col(X), because of the invariance
property of the tests). A simple way of computing α∗ is provided by Lemma D.2.

We can now go back to our numerical example. Recall that col(X) is contained
in the boundary of any invariant critical region. It follows, by Corollary 1, that
in our experiment the limiting power is either 0 or 1 when W is binary (as, in
that case, fmax /∈ col(X) almost surely), whereas it is in (0,1) when W is row-
standardized (as, in that case, fmax is a scalar multiple of ιιι, and hence is in
col(X)). Thus, in order to study the zero limiting power phenomenon, we restrict
attention to the binary specification of W. In columns 2–4 of Table 2 we display
some statistics regarding the realizations of α∗ over the 106 replications of X. Ob-
serve that α∗ depends to a very large extent on col(X). In the case of Nevada, on

TABLE 2. Minimum, maximum, average α∗, frequency of zero limiting power,
and average shortcoming of the Cliff-Ord test, for a binary W

Average shortcoming Average shortcoming
at ρλmax = 0.90 at ρλmax = 0.95

Min α∗ Max α∗ Average α∗ Frequency πC O (ρ) → 0 πC O (ρ) → 1 πC O (ρ) → 0 πC O (ρ) → 1

Nevada 2.8 ·10−4 0.994 0.082
(0.061)

0.77 0.20 0.16 0.32 0.24

Wyoming 8.6 ·10−7 0.430 5.6 ·10−4

(2.8·10−3)
5.2·10−4 0.15 0.03 0.26 0.02

Note: Standard deviations of α∗ are given in parentheses.
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average it is necessary to use a critical region of size α ≥ 0.082 in order to achieve
a nonzero limiting power. For one particular value of X, α∗ was as large as 0.994,
meaning that in the presence of such an X the critical region of the Cliff-Ord test
has vanishing limiting power unless its size is at least 0.994. Column 5 of Table 2
contains the observed relative frequency of the zero limiting power problem. It is
also useful to look at the impact of a zero limiting power on the performance of the
Cliff-Ord test at values of ρ that are large but not too close to λ−1

max. As above, we
consider the values 0.9λ−1

max and 0.95λ−1
max. As a measure of performance, we take

the shortcoming, defined as the difference between the power envelope πρ(ρ) and
the power πC O(ρ) of the Cliff-Ord test (see, e.g., Lehmann and Romano, 2005,
p. 337). The last four columns of Table 2 display the average of the shortcom-
ing over the replications of X yielding a zero limiting power (columns 6 and 8)
and the average over the replications yielding a full limiting power (columns 7
and 9). Observe that, on average, an X yielding a zero limiting power causes
shortcomings at ρ = 0.9λ−1

max and ρ = 0.95λ−1
max that are significantly larger than

the corresponding shortcomings associated to an X yielding a full limiting power.
This suggests that the impact of the zero limiting power problem is not localized
only in a very small neighborhood of λ−1

max.
It is clear from Tables 1 and 2 that the numerical results regarding Nevada and

Wyoming are extremely different. In particular, the zero limiting power frequency
is very large in the case of Nevada and very small in the case of Wyoming. On
repeating our simulations for different weights matrices and different tests, we
have found that the zero limiting power frequency is generally very sensitive not
only to W, but also to α, k, the choice of a test, and the distribution of X. For
most matrices W likely to be used in applications and for most distributions of X,
the zero limiting power frequency is generally small when n − k is large. From a
practical perspective, this suggests that the zero limiting power problem is mainly
a small sample problem. It should be noticed, however, that for any W, the prob-
ability of a zero limiting power is positive as long as X is unrestricted, regardless
of n, and that it is possible to construct matrices W such that, for some distri-
butions of X, the probability of a zero limiting power is large even when n − k is
large. Examples of such matrices are the adjacency matrix of a star graph
(i.e., a graph with one vertex having n −1 neighbors and all other vertices having
1 neighbor) or a very dense matrix. When W is defined on a regular grid, one can
study how the zero limiting power frequency depends on n explicitly (cf. Table 1
of Krämer, 2005).

To summarize, the main conclusion of our numerical study is that, in some
cases, the probability that the limiting power of the Cliff-Ord test vanishes may
well be nonnegligible. This obviously induces a large dependence of the power
of the Cliff-Ord test on X as ρ → λ−1

max, but the numerical results indicate that
both the power and the shortcoming may still depend to a large extent on X for
values of ρ in a rather large neighborhood of λ−1

max. As mentioned in Remark 3,
this is cause of concern, because such values may induce a large inefficiency of
the ordinary least squares estimator of βββ.
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3.4. Pure SAR(1) Model

We have seen above that tests for autocorrelation in the context of a regres-
sion model with SAR(1) disturbances do not necessarily achieve full power as
ρ → λ−1

max. This is so even when the tests have some finite sample optimality
properties, as in the case of LBI and POI tests. It is natural to wonder whether
such a phenomenon should be completely ascribed to the presence of regressors.
To investigate this issue, we now consider pure SAR(1) processes, that is, SAR(1)
processes with E(y) = 0. The extension to models with known mean can be triv-
ially obtained by taking y to be a demeaned variable.

Recall from Section 3.2.2 that, for an invariant critical region � of the form (9),
bd(�) = col(X )∪{y ∈ Rn : T (y) = c}. In the case of a pure model, col(X ) =∅.
Thus, it is very unlikely that fmax ∈ bd(�), as this would require the critical value
c to be precisely equal to T ( fmax). Neglecting this possibility, the limiting power
of � can only be 0 or 1, by Corollary 1. One might hope that, at least when � is
LBI or POI, the limiting power is 1 for any size α. This is not the case, as shown
by the following proposition.

PROPOSITION 1. Consider testing ρ = 0 against ρ > 0 in a pure SAR(1)
model. The limiting power of the Cliff-Ord test or of a test (8) is 1 irrespective of
α if and only if fmax is an eigenvector of W ′.

The tests considered in Proposition 1 are obtained from (7) and (8) when X = O,
and thus reject when y′Wy/y′y > c and y′(I− ρ̄W ′)(I− ρ̄W)y/y′y < c. Recall that
such tests are, respectively, LBI and POI when the distribution of y is elliptically
symmetric.

The condition in Proposition 1 is always satisfied when W is symmetric. Hence,
for a pure SAR(1) model with symmetric W, the Cliff-Ord test and a test (8) al-
ways achieve full limiting power, regardless of their size. Conversely, when W
is nonsymmetric, the condition in Proposition 1 is generally not met; for details,
see Appendix C, where, in particular, it is shown that the condition is never met
when W is a nonsymmetric matrix obtained by row-standardization of a symmet-
ric matrix. Thus, in a pure SAR(1) model with nonsymmetric W, there generally
are values of α such that the limiting power of the Cliff-Ord test or of a test (8)
vanishes. A simple example follows.

Example 1

A random variable is observed at n units placed along a line and, in the context
of a pure Gaussian SAR(1) process, it is to be tested whether ρ = 0 or ρ > 0.
Suppose that it is believed that there is only first-order interaction, and that the
interaction among first-order neighbors is stronger in one direction than in the
other. Accordingly, W is taken so that (W )i j , for i, j = 1, . . . ,n, is equal to some
fixed positive scalar w �= 1 if i − j = 1, to 1 if j − i = 1, and to 0 otherwise.
In Figure 2, we plot the power function of the Cliff-Ord test, and the envelope



168 FEDERICO MARTELLOSIO

FIGURE 2. The power function of the Cliff-Ord test (solid line) and the envelope πρ(ρ)
(dashed line) for the pure SAR(1) model described in Example 1.

πρ(ρ) for n = 6, w = 10, and α = 0.01. The power has been computed numeri-
cally, via the Imhof method, and is plotted against ρλmax, which ranges between
0 and 1.

Although it is based on an artificial W, Figure 2 shows that the performance of
a test for spatial autocorrelation may be extremely disappointing even in models
that are not contaminated by regressors. It is of some interest to investigate which
matrices W are particularly problematic from the point of the limiting power of
tests of autocorrelation in pure SAR(1) models. The measure α∗ introduced in
Definition 1 can be used to this purpose, as we discuss next.

Example 2

Consider the testing problem in Example 1. The measure α∗ is, as one would ex-
pect, decreasing in n and increasing in |w −1| (this can be shown by using the
Imhof method or other accurate numerical approximations to the null distribution
of the statistic y′Wy/y′y). For the particular case of Figure 1, α∗ is about 0.056,
i.e., any critical region of size less than 0.056 has vanishing limiting power.
To give another example, if n = 30 and w = 50, then α∗ is about 0.063. Inter-
estingly, if one “closes the line” (by setting (W)1n = w and (W )n1 = 1), then W
becomes a scalar multiple of a doubly stochastic matrix, and consequently α∗ = 0
by the combination of Proposition 1 and Lemma C.1.

Numerical experiments not reported here suggest that the message delivered
by Example 2 is very general. Namely, for a fixed n, large values of α∗ are
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typically associated to weights matrices W such that (W )i j/(W )j i is large for
at least one pair (i, j). When W is the row-standardized version of a (0,1) matrix
(i.e., a matrix containing only zeros and ones), (W )i j/(W )j i cannot be larger than
the ratio, say r , of the largest to the smallest row-sum of the (0,1) matrix, for any
i, j = 1, . . . ,n. This implies that the asymmetry introduced by the popular prac-
tice of row-standardizing a (0,1) symmetric matrix does not yield large values of
α∗ in pure SAR(1) models. The largest possible value of r over all n × n (0,1)
symmetric matrices is n − 1, achieved by the adjacency matrix of a star graph.
Even in the case of a star graph, the value of α∗ associated to the correspond-
ing row-standardized W is very small, and decreasing in n; for the Cliff-Ord test,
α∗ < 0.01 whenever n > 6; that is, the limiting power of the Cliff-Ord test test is
1 as long as n > 6 and α > 0.01.

We have thus found that, although asymmetry of W may cause the limiting
power of POI and LBI tests to disappear when X = O, this typically occurs only
for very small values of α or n if the asymmetry of W is due to row-standardization
of a (0,1) matrix. As we have seen in Section 3.2.2, the situation is very different
when conditioning on regressors. In that case, the limiting power of POI and LBI
may vanish even for large α or large n, regardless of W.

3.5. Other Spatial Models

In this section we discuss how the analysis in Section 3.2 can be extended to study
the limiting power of tests for autocorrelation in some more general models, and
in some different spatial models.

3.5.1. Nuisance Parameters in the Innovation Variance Matrix. In applica-
tions, it is often useful to allow the innovation variance matrix σ 2V in (3) to
depend on a vector of parameters θθθ . A particular case is when V(θθθ) is diagonal,
so that θθθ controls the heteroskedasticity of the innovations εεε.18

For the problem of testing ρ = 0 in a spatial error model, θθθ is a nuisance pa-
rameter that cannot be eliminated by invariance. Consequently, invariant tests are
not similar, and their whole power function depends on θθθ . This is not a prob-
lem for the validity of Theorem 1. Indeed, it is straightforward to check that
Theorem 1 continues to hold, provided that ΣΣΣ(ρ) is replaced by ΣΣΣ(ρ,θθθ) :=
(I −ρW)−1V(θθθ)(I −ρW ′)−1. The problem is that, in general, f1(ΣΣΣ

−1(λ−1
max,θθθ))

depends on θθθ , and hence the conditions stated by the theorem cannot be checked.
It should also be noted that, when V depends on θθθ , Corollary 1 does not obtain.

Theorem 1, however, may still provide useful information. This occurs when-
ever one is able to identify a set � such that one or more of the conditions in the
theorem are satisfied for all θθθ ∈ �. Suppose, for example, that for given W, X,
and �, one finds that f1(ΣΣΣ

−1(λ−1
max,θθθ)) ∈ int(�) for all θθθ ∈ �. Then, Theorem 1

guarantees that the limiting power of � is 1 as long as θθθ ∈ �. Identification of a
set � may involve computational difficulties that will not be discussed here.



170 FEDERICO MARTELLOSIO

3.5.2. Spatial Lag Model. An alternative to a spatial error model is the so-
called spatial lag model

y = ρWy+Xβββ +εεε, E(εεε) = 0, var(εεε) = σ 2I. (10)

Model (10) is also known as a mixed regressive, spatial autoregressive model,
and is widely used both in the applied and the theoretical spatial econometric
literature; see, e.g., Ord (1975), Anselin (1988), and Lee (2002). In (10) we have
taken var(εεε) = σ 2I, which can be done without any loss of generality as long as
σ−2var(εεε) is fixed; for the case when var(εεε) depends on extra parameters, the
same considerations as in Section 3.5.1 apply.

Similarly to the case of a spatial error model, in the context of model (10) we
are concerned with testing ρ = 0 against ρ ∈ �+ = (0,λ−1

max). For any ρ ∈ �+,
the two models imply the same variance matrix, but different expectations for
y (E( y) = Xβββ in a spatial error model, E(y) = (I − ρW )−1Xβββ in a spatial lag
model). As a consequence, the problem of testing for a spatially lagged dependent
variable is quite different from that of testing for residual spatial autocorrelation.
In particular, the former testing problem is not invariant under the transformations
y → y + Xδδδ, δδδ ∈ Rk . Thus, when testing ρ = 0 in model (10), there is no reason
to focus on tests that are invariant under those transformations. The analog of
Corollary 1 for a spatial lag model is the following result.

PROPOSITION 2. Consider testing ρ = 0 against ρ > 0 in model (10) by
means of a critical region ϒ that is invariant under y → γ y, γ ∈ R\{0}. The
limiting power as ρ → λ−1

max is:

• 1 if fmax ∈ int(ϒ);
• in (0,1) if fmax ∈ bd(ϒ); or
• 0 if fmax /∈ cl(ϒ).

Contrary to Corollary 1, Proposition 2 does not require invariance with re-
spect to the transformations y → y + Xδδδ, δδδ ∈ Rk . In Section 3.2.1 we have seen
that, in the context of a spatial error model, any critical region � that is invari-
ant under such transformations has limiting power in (0,1) whenever W is row-
standardized and the regression contains an intercept. This was due to the fact that
fmax ∈ col(X ) ⊂ bd(�). In contrast, for a critical region ϒ that is not invariant un-
der the transformations y → y + Xδδδ, col(X) is generally not a subset of bd(ϒ).
Proposition 2 then implies that the limiting power of a critical region ϒ for test-
ing ρ = 0 against ρ > 0 in model (10) is typically either 0 or 1, even when W is
row-standardized and the regression contains an intercept.

3.5.3. Spatial Autoregressive Model with Autoregressive Disturbances. The
tests for residual spatial autocorrelation or for spatial lag dependence considered
so far can be generalized to tests in model

y = ψWy+Xβββ +u, u = ρWu+εεε, E(εεε) = 0, var(εεε) = σ 2V(θθθ) (11)
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(e.g., Anselin, 1988; Case, 1991). That is, one may be interested in testing ρ = 0
allowing for ψ �= 0 (as, for instance, in Kelejian and Prucha, 2001), or in testing
ψ = 0 allowing for ρ �= 0.

Model (11) implies that var(y) tends to a singular matrix as ρ → λ−1
max or ψ →

λ−1
max . Thus, the main argument of Section 3.2.1 continues to apply, both when

testing ρ = 0 and when testing ψ = 0: as ρ → λ−1
max (resp. ψ → λ−1

max), model
(11) tends to be supported on a subspace of the sample space, and hence any
critical region for ρ = 0 against ρ > 0 (resp. ψ = 0 against ψ > 0) that intersects
such a subspace only on a set of measure zero will have vanishing limiting power.
However, large values of ψ or ρ are less likely to occur in model (11) than in
spatial error or spatial lag models.

3.5.4. Spatial MA(1) Model. A spatial first-order moving average (SMA(1))
process for the regression errors u (e.g., Anselin, 1988) is

u = εεε +ρWεεε, E(εεε) = 0, var(εεε) = σ 2I.

Let us assume that W admits at least one (real) negative eigenvalue,19 and let
λmin denote the smallest negative eigenvalue of W. The largest interval of values
of ρ containing the origin such that the model is invertible, i.e., I+ρW is invert-
ible, is (−λ−1

max,−λ−1
min). The results in Section 3.2 can be extended to show that,

in the context of a SMA(1) model, the limiting power of a test for ρ = 0 does not
necessarily achieve full power as ρ → −λ−1

min.
For our purposes, the main difference from the case of a SAR(1) process is that,

for a SMA(1) process, ΣΣΣ(ρ), rather than ΣΣΣ−1(ρ), is well-defined and singular at
ρ = a (with a = λ−1

max for a SAR(1) process, a = −λ−1
min for a SMA(1) process).

Now, a model with singular ΣΣΣ(a) tends, as ρ → a, to be supported on the sub-
space of Rn orthogonal to the nullspace of ΣΣΣ(a).20 Let us denote such a subspace
by �, and its dimension by dim(�). Then, any critical region for ρ = 0 has vanish-
ing limiting power if its intersection with � has dim(�)-dimensional Lebesgue
measure zero. For a SMA(1) process, � is the orthogonal complement of the
eigenspace of W associated to λmin, and hence dim(�) = n − mmin(W ), where
mmin(W ) denotes the geometric multiplicity of λmin. Recall that the limiting sup-
port of a SAR(1) model is one-dimensional. On the other hand the limiting support
� of a SMA(1) model has generally higher dimension, because n−mmin(W ) > 1,
except for very special cases. Since a critical region has vanishing limiting power
when it does not intersect (almost surely) the limiting support, it can be argued
that the zero limiting power problem is more relevant for a SAR(1) process than
for a SMA(1) process.

4. UNBIASEDNESS AND MONOTONICITY

So far, we have analyzed power properties of tests for problem (2) as ρ approaches
the right extreme of �+. In Section 4, we turn to global power properties of the
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tests, i.e., properties that hold for any ρ ∈ �+. One crucial property is unbiased-
ness. A stronger property is that the power function of the test is monotonic in ρ.
We already know that tests for our testing problem may not satisfy such proper-
ties, because a zero limiting power implies both biasedness and nonmonotonic-
ity. Below, we study conditions that guarantee unbiasedness and monotonicity.
The conditions are not necessary, but, as we shall see, (i) they are important to
understand the structure of the testing problem under analysis; and (ii) in the
case of spatial autoregressions, they admit a simple interpretation. To achieve
analytical tractability, we assume Gaussianity, and we focus on LBI and POI
tests.

Before focusing on the case of a spatial error model, we study the unbiasedness
of LBI and POI tests for a general ΣΣΣ(ρ) in regression model (1). LBI or POI tests
for problem (2) are certainly unbiased if X and ΣΣΣ(ρ) are such that a UMPI test
exists.21 As we have already pointed out in Section 2.2, this is a very restrictive
condition. We now formulate two conditions that guarantee unbiasedness of LBI
and POI tests, even when a UMPI test does not exist. Following Horn and Johnson
(1985), a commuting family of matrices is a finite or infinite set of matrices that
are pairwise commutative (under standard multiplication).

Condition A. The matrices ΣΣΣ(ρ), for ρ > 0, form a commuting family.

Condition B. For a fixed ρ̃ > 0, col(X) is spanned by k linearly independent
eigenvectors of ΣΣΣ(ρ̃).

For a fixed covariance structure ΣΣΣ(ρ), Condition A may or may not be satisfied.
The restriction implied by Condition A in the particular case of a SAR(1) model
is clarified in Lemma 1 below. A well-known property of commuting symmetric
matrices is that they share the same eigenvectors. Thus, when Condition A holds,
Condition B does not depend on ρ̃. Condition B, in any of its many equivalent
formulations, has often been used in the theoretical analysis of regression models
with nonspherical errors since Anderson (1948). In applications, Condition B is
unlikely to be satisfied exactly, but in some circumstances it may be satisfied
approximately; see Durbin (1970) for the case of serial correlation, and the end
of this section for the case of spatial autoregressions. There is some evidence
in the literature that the power properties of tests for ρ = 0 when Condition B
holds approximately are similar to the power properties when Condition B holds
exactly; e.g., Tillman (1975, p. 971). It is worth remarking that Condition B is
trivially satisfied by pure models (k = 0).

We denote by col⊥(X) the orthogonal complement of col(X). We are now in a
position to prove the following result.

PROPOSITION 3. Consider testing ρ = 0 against ρ > 0 in model (1). Assume
that u has a Gaussian distribution, and that Conditions A and B hold. Then, LBI
and POI tests are unbiased. The unbiasedness is strict except when col⊥(X) is
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contained in one of the eigenspaces of ΣΣΣ(ρ), in which case the power is α for
any ρ > 0.

Although they guarantee unbiasedness of the tests considered in Proposition 3,
Conditions A and B are not sufficient for the monotonicity in ρ of the power
functions of those tests (even when X = O). This is simply because, starting
from a ΣΣΣ(ρ) satisfying Condition A, a reparametrization ρ → f (ρ) may destroy
the monotonicity of the power function without causing Condition A to fail.
Monotonicity of the power function is a much stronger property than unbiasedness
and may or may not be desirable depending on the specification of ΣΣΣ(ρ). In gen-
eral, it is desirable whenever ρ is interpreted as an autocorrelation parameter, as
in a SAR(1) model. Next, we discuss the impact of Conditions A and B on the
monotonicity of the power function of tests for autocorrelation in a spatial er-
ror model. Such a discussion is relevant also outside a formal hypothesis testing
setting, because nonmonotonicity of the power function makes it difficult to in-
terpret the underlying test statistic—the Cliff-Ord statistic, say—as an index of
spatial autocorrelation. Indeed, one would expect that the probability of an index
of autocorrelation being greater than some constant (i.e., the power of the asso-
ciated test) is nondecreasing in ρ over the interval (0,λ−1

max) (as all correlations
between pairs of variables yi and yj ).

For a SAR(1) process, Condition A boils down to a condition on W. A matrix
is said to be normal if it commutes with its transpose (e.g., Horn and Johnson,
1985, p. 100).

LEMMA 1. For a SAR(1) process, Condition A is satisfied if and only if W is
normal. In particular, Condition A is not satisfied if W is a nonsymmetric matrix
obtained by row-standardization of a symmetric matrix.

The requirement of matrix normality is very restrictive also for more general
nonsymmetric weights matrices, whereas it is trivially satisfied when W is sym-
metric. Thus, from a practical point of view, the class of SAR(1) processes satis-
fying Condition A is essentially equivalent to the class of SAR(1) processes with
symmetric W. For this reason, we now focus on the case of a symmetric W.

PROPOSITION 4. Consider testing ρ = 0 against ρ > 0 in a Gaussian spatial
error model with symmetric W. Assume that Condition B holds (for one value, and
hence all values, ρ̃ > 0). Then, the power functions of the LBI and POI tests are
increasing in ρ. They are strictly increasing except when col⊥(X) is contained in
one of the eigenspaces of W, in which case the power is α for any ρ > 0.

Proposition 4 can be related to the analysis in Section 3. Of course, monotonic-
ity of the power function implies that the limiting power cannot be smaller than
α. In fact, the following stronger result can be proved.

PROPOSITION 5. Consider testing ρ = 0 against ρ > 0 in a spatial error
model with symmetric W by means of the Cliff-Ord test or a test (8). Assume that
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Condition B holds (for one value, and hence all values ρ̃ > 0), and that the critical
value c is not equal to T ( fmax), where T ( y) is the test statistic. Then, the limiting
power is in (α,1) if fmax ∈ col(X) and col⊥(X ) is not contained in any of the
eigenspaces of W; it is 1 if fmax /∈ col(X ); and it is α otherwise.

Observe that Proposition 5 does not require Gaussianity, so that the Cliff-Ord
test or a test (8) are not necessarily LBI and POI. Under the conditions stated
in the proposition, for the Cliff-Ord test and tests (8) to have full limiting power
it is sufficient that fmax /∈ col(X ). It is worth pointing out that Proposition 5, as
Propositions 3 and 4, holds for any α. Extensions of these three propositions to a
spatial lag model are possible, along the same lines as in Section 3.5.2.

We conclude Section 4 by describing cases in which Condition B holds in appli-
cations of spatial autoregressions, exactly or at least approximately. The CAR(1)
model specified by equations (1) and (5) satisfies Condition B exactly when the
mean is assumed to be unknown but constant across observations, and W is the
row-standardized version of a symmetric matrix.22 If other regressors are included
alongside the intercept in a CAR(1) or SAR(1) model, it is unlikely that Condition
B is satisfied, unless W is symmetric and the number of eigenspaces of W (and
hence of ΣΣΣ(ρ)) is small relative to n. This typically occurs when W is invariant
under a large group of permutations of its index set (see Biggs, 1993). For ex-
ample, a weights matrix W with constant off-diagonal entries and zero diagonal
entries has only two eigenspaces: the line spanned by ιιι and the hyperplane or-
thogonal to it (weights matrices of this type have been considered, for instance, in
Kelejian and Prucha, 2002, and Baltagi, 2006). Hence, for such a W, Condition B
is satisfied if the entries of each regressor other than the intercept sum to zero.

Turning to the circumstances when Condition B can be expected to hold at
least approximately, let us consider, for simplicity, a spatial error model with
symmetric W and with only one regressor, denoted by x = (x1, . . . , xn)

′. Call j
a neighbor of i if (W )i j > 0, and let x̄i := ∑j �=i (W )i j xj . For a given W, the
ratio xi/x̄i may be regarded as a measure of “similarity” between unit i and its
neighbors (as far as x is concerned). Now, in SAR(1) models with symmetric W
the eigenvectors of ΣΣΣ(ρ) are the same as those of W, so Condition B is met if and
only if x is an eigenvector of W, i.e., Wx = λx, for some scalar λ. Since the i th row
of the equation Wx = λx is x̄i = λxi , for i = 1, . . . ,n, it follows that Condition B
is equivalent to the condition that xi/x̄i does not depend on i . This suggests that
Condition B is approximately met, and hence the power of LBI and POI tests has
desirable properties when x is such that the degree of similarity between i and its
neighbors does not vary substantially with i .23 On the contrary, Condition B is
far from being satisfied when different clusters of neighbors have very different
degrees of similarity.

5. CONCLUSION

This paper has investigated some exact properties of tests for spatial autocorre-
lation in the context of a linear regression model. We have mainly focused on
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the case when the disturbances follow a spatial autoregressive process. We have
studied the limiting power of tests as the autocorrelation parameter goes to the
right boundary of the parameter space, and we have discussed conditions for un-
biasedness and monotonicity of the power function of the tests. The results call for
caution in interpreting the outcome of tests for spatial autocorrelation. In some cir-
cumstances, it may prove very difficult to detect spatial autocorrelation by means
of a certain test when the autocorrelation is in fact large. Our results are also rele-
vant outside a formal hypothesis testing framework, because nonmonotonicity of
the power function implies that the underlying test statistic, the Cliff-Ord statistic,
say, cannot be properly interpreted as an autocorrelation index.

For a fixed weights matrix and a fixed test, it is possible to characterize the
matrices X such that the limiting power vanishes. This will be the object of a
separate paper. Another possible extension of our results would be to allow for
misspecification of W (cf. Kelejian and Prucha, 2001, p. 225). For instance, it
would be of interest to study the power properties of a Cliff-Ord test based on
some W, when the data generating process is a spatial autoregression based on a
different weights matrix.

NOTES

1. In some noneconomic fields, such as image analysis and agriculture, it is well established that
simultaneous or conditional autoregressions often lead to a very large value of the autocorrelation pa-
rameter (e.g., Besag and Kooperberg, 1995; Bhattacharyya, Richardson, and Franklin, 1997). When
data are observed over a regular lattice, this is usually interpreted as an indication of a type of nonsta-
tionarity similar to that due to near unit roots in time series. Extensions of this concept of nonstation-
arity have been attempted also for the case of irregular lattices (e.g., Fingleton, 1999).

2. This can be easily seen writing (I −ρW )−1 = ∑ρr W r , for |ρ| < λ−1
max. The expansion shows

that when ρ ∈ (0,λ−1
max), cov(yi , yj ) > 0 for any i, j = 1, . . . ,n, and that when ρ ∈ (−λ−1

max,0), the
covariances may be positive or negative, but not all of them are positive in any left neighborhood
of λ−1

max.
3. One interesting exception is a CAR(1) model satisfying Condition B of Section 4; see King

(1988, p. 187).
4. For example, suppose that the distribution of u is elliptically symmetric. Then, according to (6),

under H0 v is uniformly distributed on a hemisphere. It follows that in the presence of any test statistic
that can be expressed as a quadratic form in v (as, for instance, in (7) and (8)), critical values can be
obtain by resorting to one of the many numerical approximations available for the distribution of a
quadratic form in a vector uniformly distributed on a sphere.

5. Similarly, in the case of an AR(1) model, a test based on the serial correlation coefficient for û
is LBI and the Durbin-Watson test is approximately LBI; e.g., Kariya (1988).

6. For a proof that an LR test based on the full likelihood of y is invariant, see, e.g., Cox and
Hinkley (1974, p. 173). The restricted LR test is invariant by definition.

7. One exception is a symmetric k-nearest-neighbors weights matrix. A k-nearest-neighbors
weights matrix is a (0,1) matrix specified by taking the same number, k, of neighbors for each unit.
In this case, fmax is a vector of identical entries, and hence it belongs to col(X) whenever the regression
contains an intercept.

8. The results to follow can be trivially extended to study the limit of the power as ρ → ∞ when
�+ = (0,∞), provided that we intepret ΣΣΣ(a) as limρ→∞ΣΣΣ(ρ).

9. A critical region � is invariant if y ∈ � implies γ y + Xδδδ ∈ �, for any γ ∈ R\{0} and any
δδδ ∈Rk . Thus, if � is invariant, then col(X) ∈ bd(�) (i.e., any n-ball centered at some point y ∈ col(X)
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contains at least one point in � and at least one point not in �), since otherwise α would be either
0 or 1.

10. Here it is irrelevant whether W refers to a model before or after normalization to ΣΣΣ(0) = I
imposed in Section 2.1, because the condition fmax ∈ col(X) is invariant under any invertible linear
transformation of y, when y follows a spatial error model.

11. Analyzing the circumstances in which power is low but positive goes beyond the scope of this
paper.

12. Here and throughout, we do not distinguish notationally between a random variable and its
realizations.

13. Since the Cliff-Ord test statistic can be expressed as a ratio of quadratic forms in regression
errors, such conditions reduce, in the case of a Gaussian SAR(1) model with symmetric W, to the
condition stated in Krämer (2005).

14. A practical recommendation, thus, is to always check that the conclusion of a single test is robust
over different tests.

15. Because of its invariance property, the power of the Cliff-Ord test depends on X only through
col(X). Thus, it would be natural to draw X from N(O,In ⊗ Ik ), as this would imply that col(X) is
uniformly distributed on the Grassmann manifold Gk,n (see James, 1954). In our simulations, we
have modified such a distribution to take into account the fact that, in practice, an intercept is always
included in the regression.

16. As ρ → λ−1
max, corr(yi , yj ) → 1, for any i, j and W. This follows easily from observing that: (i)

a SAR(1) model tends, as ρ → λ−1
max, to be concentrated on a one-dimensional subspace of the sample

space (see Section 3.2.2); (ii) corr(yi , yj ) > 0 when ρ > 0.
17. By Corollary 1, when fmax ∈ bd(�), α∗ is always zero and hence uninformative. In order to

study power when fmax ∈ bd(�), one could define α∗ as the infimum of the set of values such that the
limiting power is greater than some positive value, but this is not pursued in the present paper.

18. Recall from Section 2.1 that the heteroskedasticity induced by a fixed V �= I can be eliminated
by normalizing to V = I, and hence does not pose any problem from the point of view of applying the
results in Section 3.2. Small (1993) considers the limiting power of the Durbin-Watson test when the
innovation variance matrix of an AR(1) model is nonspherical but fixed.

19. Such an assumption is satisfied in virtually all weights matrices used in applications. In particu-
lar, it is certainly satisfied when W is symmetric or, more generally, similar to a symmetric matrix. In
the latter case, which occurs for instance when W is row-standardized, all eigenvalues of W are real,
and consequently one of them must be negative, because tr(W ) = 0 by assumption and λmax > 0 by
Theorem A.2

20. This can be shown by straightforward extension of the proof of Theorem 1. Another exam-
ple of an econometric model such that ΣΣΣ(ρ) tends to be singular as ρ → a is a fractionally inte-
grated white noise, with ρ being the differencing parameter and a = 1/2 (see Kleiber and Krämer,
2005).

21. If a UMPI test exists, then the power function of POI and LBI tests is the envelope πρ(ρ). But,
as long as ΣΣΣ(ρ1) = ΣΣΣ(ρ2) implies ρ1 = ρ2, we have πρ(ρ) > α for any ρ > 0, by Theorem 1 in
Kadiyala (1970), or, more directly, by Corollary 3.2.1 in Lehmann and Romano (2005).

22. To see this, write W = D−1A, where A is a symmetric weights matrix and D is the diagonal
matrix with (D)i i = ∑n

j=1(A)i j , i = 1, . . . ,n. On setting L = D−1 and normalizing to ΣΣΣ(0) = I,
the mean of the model becomes proportional to D1/2ιιι, and the variance matrix becomes σ 2ΣΣΣ(ρ) =
σ 2(I−ρD−1/2AD−1/2)−1. Since ιιι is an eigenvector of D−1A, it follows that D1/2ιιι is an eigenvector

of D−1/2AD−1/2 and hence of ΣΣΣ(ρ), which implies that Condition B is satisfied.
23. It should be noted that the fact that xi /x̄i is not very sensitive to i does not imply that x is

highly autocorrelated. To see this, suppose, for simplicity, that E(x) = 0, so that the Cliff-Ord statistic
associated to x is x′Wx/x′x. Then, under Condition B, x = fj (W ) and x′Wx/x′x = λj (W ) for some
j = 1, . . . ,n. Note that λ1(W ) ≤ x′Wx/x′x ≤ λn(W ), so whether x is highly autocorrelated or not
(according to the Cliff-Ord statistic) depends on j .
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APPENDIX A: The Weights Matrices

Appendix A discusses the conditions we have imposed on the weights matrices W. In
Section 2.1, we have assumed that (i) (W )i i = 0, for i = 1, . . .,n; (ii) (W )i j ≥ 0, for
i, j = 1, . . .,n; and (iii) W is an irreducible matrix. Condition (i) is assumed for SAR(1)
models only for convenience, whereas it is required for the validity of CAR(1) models
(see, e.g., Besag, 1974). Condition (ii) is not required by the definition of the models, but
is virtually always satisfied in empirical applications. Moving to condition (iii), let us first
define an irreducible matrix (e.g., Gantmacher, 1974, Ch. 13).

DEFINITION A.1. A square matrix Q is said to be reducible if there exists a permu-

tation matrix P such that P ′QP can be written in the form
[

R T
O S

]
, where R and S are

square matrices; otherwise, Q is said to be irreducible.

Irreducibility of W is a natural assumption in a spatial context, because it is equivalent
to the condition that the graph with adjacency matrix W (that is, the graph with n vertices
and an edge from vertex i to vertex j if and only (W )i j �= 0) has a path from any vertex i
to any vertex j (see, e.g., Cvetković, Doob, and Sachs, 1980, p. 18). The weights matrices
W used in spatial autoregressions typically satisfy this property. In some cases, reducible
block diagonal weights matrices with irreducible blocks are used; e.g., Case (1991). Ex-
tensions to cover such matrices are straightforward, but not pursued in the present paper
for the sake of simplicity. More generally, our analysis can be easily extended to cover
the class of weights matrices such that their spectral radius is an eigenvalue with algebraic
multiplicity one; by Theorem A.2 below, such a class is larger than the class of matrices
satisfying conditions (ii) and (iii). Observe that condition (iii) implies that (noncircular)
AR(1) models are not in our class of SAR(1) processes: since time dependence is specified
unilaterally, the matrix W necessary to write an AR(1) process as in equation (3) would be
triangular and hence reducible.

Assumptions (ii) and (iii) have the advantage of making the following result available
(e.g., Horn and Johnson, 1985, Thm. 8.4.4).

THEOREM A.2 (Perron-Frobenius Theorem). An entrywise nonnegative and irreduc-
ible square matrix always has a positive eigenvalue that has algebraic multiplicity one, is
associated to an entrywise positive eigenvector, and is nonsmaller than the moduli of all
other eigenvalues.

In Section 2.1, λmax has been defined as the largest positive eigenvalue of W. By
Theorem A.2, it would have been equivalent to define it as the spectral radius of W. In
addition, Theorem A.2 implies that (a) λmax has algebraic (and hence geometric) multi-
plicity 1; (b) there exists a unique entrywise positive and normalized (according to the
Euclidean norm) eigenvector associated to λmax. Such an eigenvector is denoted by fmax.
It is worth pointing out that the value ρ = λ−1

max can be interpreted as the analog of a unit
root in an AR(1) model (e.g., Fingleton, 1999; Paulauskas, 2006).
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APPENDIX B: Definition of Invariant Tests

Let FX be the group of transformations y → γ y+Xδδδ, for γ ∈R\{0} and δδδ ∈Rk , and let F+
X

be the smaller group obtained when γ > 0. In the present paper, invariant tests are defined
with respect to FX, as, for instance, in Berenblut and Webb (1973), because this simplifies
the statement of our results. Some authors (e.g., King, 1988) define invariance of tests for
autocorrelation in linear regression with respect to F+

X . The distinction between invariance
under FX and invariance under F+

X is not substantive, because tests that are invariant un-
der F+

X but not under FX are never used in practice. Under F+
X , a maximal invariant is

Cy/‖Cy‖, and invariant critical regions are defined on the unit (n − k)-sphere (rather than
on a hemisphere, as in Section 2.2). The class of critical regions that are invariant under FX
is equivalent to the class of critical regions that are invariant under F+

X and are centrally
symmetric (i.e., they contain a vector t ∈ Rn if and only if they contain −t).

APPENDIX C: The Condition in Proposition 1

In this appendix we discuss the necessary and sufficient condition in Proposition 1. The
condition is that fmax is an eigenvector of W ′, or, equivalently, that λmax is perfectly
well-conditioned (see, e.g., Golub and Van Loan, 1996, p. 323). The requirement that
an eigenvalue is perfectly well-conditioned is trivially satisfied in the case of a symmet-
ric matrix, but is well-known to be very restrictive otherwise. Observe that, for any given
choice of the neighborhood structure of a set of observational units (i.e., any choice of the
ordered pairs (i, j) such that (W )i j = 0), it is always possible to set the nonzero elements
of W in such a way that λmax is perfectly well-conditioned. (Start from a nonsymmetric
matrix W and apply the similarity transformation P−1WP, where P is a diagonal matrix
with (P)i i = [( fmax)i /(lmax)i ]1/2 and lmax denotes the left eigenvector of W associated
to λmax. Clearly, the left and the right eigenvectors of P−1WP associated to λmax are
identical, and hence λmax is perfectly well-conditioned.) In general, however, the choice
of weights yielding a perfectly well-conditioned λmax does not correspond to any rele-
vant notion of distance among the observational units. The restrictiveness of the condition
that fmax is an eigenvector of W ′ is very transparent in the case of a row-stochastic W, as
emphasized by the following two lemmas. A matrix is said to be row-stochastic if all its
row-sums are 1, doubly stochastic if both itself and its transpose are row-stochastic.

LEMMA C.1. Assume that W is row-stochastic. Then, fmax is an eigenvector of W ′ if
and only if W is doubly stochastic.

Proof. If W is row-stochastic, fmax has identical entries. Hence, when W is row-
stochastic, fmax is an eigenvector of W ′ if and only if the columns of W, as its rows,
sum to 1, that is, if and only if W is doubly stochastic. n

Clearly, the requirement that a (nonsymmetric) weights matrix is doubly stochastic is
very restrictive (this can formally be deduced from Birkhoff’s theorem on doubly stochas-
tic matrices, which states that any such matrix must be a convex combination of per-
mutation matrices; e.g., Horn and Johnson, 1985). We remark that the doubly stochastic
weights matrices used in Pace and LeSage (2002) are not relevant here because they are
symmetric.
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LEMMA C.2. If W is obtained by row-standardization of a symmetric matrix and is
nonsymmetric, then fmax is not an eigenvector of W ′.

Proof. Assume that W is nonsymmetric and can be written as D−1A, where A is
some symmetric and nonnegative matrix and D �= I is the diagonal matrix with (D)i i =
∑n

j=1(A)i j , i = 1, . . . ,n (D is invertible because W, and hence A, is irreducible). By Lemma

C.1, to prove that fmax is not an eigenvector of W ′, it is sufficient to show that D−1A can-
not be doubly stochastic. Suppose that D−1A is doubly stochastic. Then, (D−1A)′ιιι = ιιι.
Premultiplying by D−1, we obtain D−1AD−1ιιι = D−1ιιι, which implies that D−1ιιι is an
eigenvector of D−1A associated to the eigenvalue 1. But ιιι is another eigenvector of D−1A
associated to the eigenvalue 1. Observe that the eigenvalue 1 has algebraic multiplicity one
by Theorem A.2 because it is the largest positive eigenvalue of D−1A (e.g., Gantmacher
1974, p. 83). Since D−1ιιι and ιιι are linearly independent, it is impossible that they are both
eigenvectors of D−1A associated to 1, completing the proof. n

In view of Proposition 1, Lemma C.2 establishes that whenever the weights matrix of a
SAR(1) model is obtained by row-standardization of a symmetric matrix and is nonsym-
metric, there are always values of α such that the limiting power of the Cliff-Ord test or of
a test (8) vanishes, even if the model is not contaminated by regressors.

APPENDIX D: Proofs for Section 3

First, we state four auxiliary lemmas. The first one is a standard result from matrix algebra
(see, e.g., Horn and Johnson, 1985).

LEMMA D.1 (Rayleigh-Ritz Theorem). For a q × q symmetric matrix Q, λ1(Q)x′x ≤
x′Qx ≤ λq (Q)x′x, for all x ∈ Rq . The equalities on the left and on the right are at-
tained if and only if x is an eigenvector of Q associated to, respectively, λ1(Q) and
λq (Q).

LEMMA D.2. Consider a model G(Xβββ,σ 2[(I − ρW ′)(I − ρW)]−1), where G(μμμ,���)
denotes some multivariate distribution with mean μμμ and variance matrix ���. When an
invariant critical region for testing ρ = 0 against ρ > 0 is in form (9), and is such that
fmax is not contained in its boundary,

α∗ = Pr(T (z) > T (fmax); z ∼ G(0,I)). (D.1)
Proof. Consider an invariant critical region � in form (9), and assume that fmax /∈

bd(�). According to Corollary 1, the limiting power of � is 1 if T (fmax) > c. Thus, by
Definition 1, α∗ = Pr(T (y) > T ( fmax); y ∼ G(Xβββ,σ 2I)). Such an expression simplifies to
(D.1), due to the invariance of � with respect to the transformations y → γ y + Xδδδ, with
γ ∈ R\{0} and δδδ ∈ Rk . n

LEMMA D.3. Consider a test that, in the context of a spatial error model with
symmetric W, rejects ρ = 0 for small values of a statistic v′Bv, where B is an (n − k)×
(n − k) known symmetric matrix that does not depend on α, and v is as defined in Section
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2.2. Provided that fmax /∈ bd(�), α∗ = 0 if and only if Cfmax ∈ E1(B), and α∗ = 1 if and
only if Cfmax ∈ En−k(B).

Proof. By Lemma D.2, we have that, when Cfmax �= 0, α∗ = 0 if and only if Cfmax/∥∥Cfmax
∥∥ = argmax

v′v=1
{v′Bv}, and α∗ = 1 if and only if Cfmax/

∥∥Cfmax
∥∥ = argmin

v′v=1
{v′Bv}.

The result follows by Lemma D.1 n

LEMMA D.4. For any weights matrix W, rank((I−λ−1
maxW ′)(I−λ−1

maxW)) = n −1.

Proof. The lemma follows from observing that, by Theorem A.2, rank(I−λ−1
maxW ′) =

n−1, and that rank(Q ′Q) = rank(Q) for any matrix Q (e.g., Horn and Johnson, 1985, p. 13).

n
Next, we prove all results in Section 3.

Proof of Theorem 1. For any 0 < ρ ≤ a, let εεε := ΣΣΣ−1/2(ρ)u, where ΣΣΣ1/2(ρ) is the
(unique) square root of ΣΣΣ(ρ), and let g(εεε) denote the density of εεε. Rewrite model (1) as
y = Xβββ +ΣΣΣ1/2(ρ)εεε. By the change of variables theorem, the density of y is

f (y) =
∣∣∣det(ΣΣΣ−1/2(ρ))

∣∣∣g(ΣΣΣ−1/2(ρ)(y−Xβββ)). (D.2)

Expression (D.2) is useful to establish the limiting behavior of f (y) as ρ → a. Observe

that the term
∣∣∣det(ΣΣΣ−1/2(ρ))

∣∣∣ vanishes as ρ → a, because rank(ΣΣΣ−1(a)) = n − 1. Next,

recall that in Section 2.1 we have assumed that the density of u is larger at 0 than any-
where else. Hence, as ρ → a, the term g(ΣΣΣ−1/2(ρ)(y − Xβββ)) is maximized at the points
y such that ΣΣΣ−1/2(a)(y−Xβββ) = 0, or, equivalently, y−Xβββ ∈N (ΣΣΣ−1/2(a)), whereN (Q)
denotes the nullspace of a matrix Q. Note that N (ΣΣΣ−1/2(ρ)) = N (ΣΣΣ−1(a)) =
E1(ΣΣΣ−1(a)). Combining the above observations, we obtain that, as ρ → a, f (y) tends
to a degenerate density supported on the set � := {y ∈ Rn : y − Xβββ ∈ E1(ΣΣΣ−1(a))}, i.e.,
on the translation by Xβββ of the subspace E1(ΣΣΣ−1(a)). Now, the limiting power of a critical
region for testing ρ = 0 is the probability content of that region under f (y), as ρ → a. Thus,
the limit of the power function depends on the position of the critical region in Rn relative
to �. In particular, if int(�) \ E1(ΣΣΣ−1(a)) has measure zero, then the limiting power
must be 1; if E1(ΣΣΣ−1(a)) ∩ cl(�) has measure zero, then the limiting power must van-
ish. Such conditions can be simplified, because, by the invariance of � with respect to
the transformations y → γ y + Xδδδ, γ ∈ R\{0}, δδδ ∈ Rk , we can focus on an arbitrary
point in E1(ΣΣΣ−1(a)). The first and the third case in the statement of the theorem are
obtained by taking any of the two points identified by f1(ΣΣΣ−1(a)). To complete the proof,
we only need to establish what happens when f1(ΣΣΣ−1(a)) ∈ bd(�). In that case, the
limiting power depends on how the distribution of y tends to the degenerate distribu-
tion on �, which in turn depends on n, X, and W. For a given triplet n, X, and W,
the power approaches, as ρ → a, some value in (0,1); the extremes 0 and 1 are ex-
cluded because, by assumption, 0 < α < 1, and the density of u, and hence that of y, is
continuous in ρ. n

Proof of Corollary 1. For a SAR(1) process, f1(ΣΣΣ−1(λ−1
max)) = fmax because

ΣΣΣ−1(λ−1
max) fmax = (I−λ−1

maxW ′)(I−λ−1
maxW) fmax = (1−λ−1

maxλmax)(I−λ−1
maxW ′) fmax =

0. In addition, ΣΣΣ(ρ) is positive definite as ρ → λ−1
max, and rank(ΣΣΣ−1(λ−1

max)) = n − 1 by
Lemma D.4. The corollary then follows from Theorem 1. n
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Proof of Proposition 1. Observe that if fmax is an eigenvector of W ′, then it must
be associated to λmax. To see this, call ϕ the eigenvalue of W ′ associated to fmax. Then
W ′fmax = ϕfmax, and hence f ′

maxW ′fmax = ϕ. But since Wfmax = λmaxfmax, it also holds
that f ′

maxWfmax = f ′
maxW ′fmax = λmax. Thus ϕ = λmax. Now let ΓΓΓ (ρ) := [(I−ρW ′)(I−

ρW)]−1. When X = O, the Cliff-Ord test and test (8) reject for small values of, respectively,
v ′(−W)v and v ′ΓΓΓ −1(ρ̄)v. By Lemma D.3 with B = ΓΓΓ −1(ρ̄), in order to prove that the
limiting power of test (8) is 1 for any α, we need to show that W ′fmax = λmax fmax is
necessary and sufficient for fmax ∈ En(ΓΓΓ (ρ̄)). Clearly, if this holds for any ρ̄ > 0, it holds
for ρ̄ → 0 too, establishing also the part of the proposition regarding the Cliff-Ord test.
Starting from the necessity, we show that if fmax ∈ En(ΓΓΓ (ρ̄)), then fmax is an eigenvector
of W ′ (the corresponding eigenvalue being λmax by the above argument). If ΓΓΓ (ρ̄) fmax =
λn(ΓΓΓ (ρ̄)) fmax, then ΓΓΓ −1(ρ̄) fmax = λ−1

n (ΓΓΓ (ρ̄)) fmax. From the latter equation we have
(1 − ρ̄λmax)(I −ρW ′) fmax = λ−1

n (ΓΓΓ (ρ̄))fmax, which requires fmax to be an eigenvector
of I−ρW ′ and hence of W ′. Turning to the sufficiency, note that if W ′fmax = λmax fmax,
then fmax is an eigenvector of ΓΓΓ (ρ̄) for any ρ̄ > 0. Also, observe that ΓΓΓ (ρ̄) is entrywise
positive for any ρ̄ > 0 (see, e.g., Gantmacher, 1974, p. 69). Since an entrywise positive
matrix is nonnegative irreducible, it follows, by Theorem A.2, that any vector in En(ΓΓΓ (ρ̄))
is entrywise positive (or entrywise negative), for any ρ̄ > 0. But fmax is also entrywise
positive by Theorem A.2 applied to W. Hence, fmax must be in En(ΓΓΓ (ρ̄)) for any ρ̄ > 0,
because otherwise, by the symmetry of ΓΓΓ (ρ̄), it should be orthogonal to an entrywise
positive vector, which is impossible. This completes the proof of the proposition. n

Proof of Proposition 2. By straightforward modification of the argument in the proof of
Theorem 1, model (10) tends, as ρ → λ−1

max, to be supported on the subspace
E1(ΣΣΣ−1(λ−1

max)), the only difference with respect to the case of model (1) being that no
translation by Xβββ is necessary. Thus, for model (10), Theorem 1 does not require invari-
ance of � with respect to y → y + Xδδδ, δδδ ∈ Rk . The proof is completed as in Corollary 1,
because the variance matrix of model (10) is the same as that of a spatial error model. n

APPENDIX E: Proofs for Section 4
We need the following four auxiliary lemmas. For the first one, see, e.g., Horn and
Johnson (1985).

LEMMA E.1 (Poincaré Separation Theorem). Let Q be an n ×n symmetric matrix, and
C an (n − k)× n matrix such that CC ′ = In−k . Then, λl (Q) ≤ λl (CQC ′) ≤ λk+l (Q) for
l = 1, . . . ,n − k.

LEMMA E.2. Let R(ρ̄) := I − X(X ′ΣΣΣ−1(ρ̄)X)−1X ′ΣΣΣ−1(ρ̄), for any 0 < ρ̄ < λ−1
max.

Then,

v′ (CΣΣΣ(ρ̄)C ′)−1 v = y′ΣΣΣ−1(ρ̄)R(ρ̄)y
y′MXy

.

Proof. Immediate from Lemma 2 of King (1980). n

LEMMA E.3. Let 0 ≤ a1 ≤ a2 ≤ . . . ≤ ar , b1 ≥ b2 ≥ . . . ≥ br ≥ 0, and pi > 0, i =
1, . . . ,r . Then ∑r

i=1 pi ai ∑r
i=1 pi bi ≥ ∑r

i=1 pi ∑r
i=1 pi ai bi , with equality if and only if all

ai or all bi are equal.
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Proof. The lemma is a particular case of Tchebychef’s inequality (e.g., Hardy,
Littlewood, and Pólya, 1952, Thm. 43). n

LEMMA E.4. Consider, in the context of a spatial error model, testing ρ = 0 against
ρ > 0 by means of the Cliff-Ord test or of a test (8). Provided that fmax /∈ col(X), α∗ = 0 if
En−k(CΣΣΣ(ρ)C ′) does not depend on ρ for ρ > 0.

Proof. In this proof, all limits are taken as ρ → λ−1
max, and ΣΣΣ(ρ) denotes the variance

matrix of a SAR(1) model. Consider the spectral decomposition ΣΣΣ(ρ) = ∑n
i=1 λi (ΣΣΣ(ρ))

fi (ΣΣΣ(ρ))f ′
i (ΣΣΣ(ρ)). By Lemma D.4, limλn(ΣΣΣ(ρ)) = +∞ and −∞ < limλi (ΣΣΣ(ρ)) <

+∞, for i = 1, . . .,n −1. Thus, limλ−1
n (ΣΣΣ(ρ))CΣΣΣ(ρ)C ′ = C

[
lim fn(ΣΣΣ(ρ))f ′

n(ΣΣΣ(ρ))
]

C ′.
Observe that lim fn(ΣΣΣ(ρ)) = fmax because, as we have established in the proof of Corol-
lary 1, f1(ΣΣΣ−1(λ−1

max)) = fmax. So,

limλ−1
n (ΣΣΣ(ρ))CΣΣΣ(ρ)C ′ = Cfmax f ′

maxC ′.

Let us assume that fmax /∈ col(X). Then rank(Cfmax f ′
maxC ′) = 1. The nonzero eigenvalue

of Cfmax f ′
maxC ′ is λ̄ := f ′

maxMX fmax and is associated to the eigenvector Cfmax because

(Cfmax f ′
maxC ′)Cfmax = Cfmax f ′

maxMX fmax = λ̄Cfmax.

Since the eigenvalues of a matrix are continuous in the matrix entries, we also have that
Cfmax spans the one-dimensional eigenspace of limCΣΣΣ(ρ)C ′ associated to the eigenvalue
lim[λn(ΣΣΣ(ρ))λ̄] = +∞, where the positive sign follows from the fact that λ̄>0, by Lemma
E.1 So far, we have thus established that if fmax /∈ col(X), then lim En−k(CΣΣΣ(ρ)C ′) is
one-dimensional and contains Cfmax. Now, if En−k(CΣΣΣ(ρ)C ′) does not depend on ρ for
ρ > 0, it must be spanned by Cfmax for any ρ > 0. Lemma D.3 with B = (CΣΣΣ(ρ̄)C ′)−1

then implies that, for a test (8), α∗ = 0. Since this property holds for any ρ̄ > 0, it also
holds for the Cliff-Ord test, completing the proof. n

Two particular cases that are easily seen to satisfy the condition in Lemma E.4 are: (i)
W symmetric and X = O; and (ii) W symmetric and fmax ⊥ col(X). We can now prove all
results in Section 4.

Proof of Proposition 3. Under Gaussianity, a POI critical region is defined by (8). By
Lemma E.2, for any size α, its power can be written as

πρ̄(ρ) = Pr

(
y′ΣΣΣ−1(ρ̄)R(ρ̄)y

y′MXy
< c; y ∼ N

(
Xβ,σ 2ΣΣΣ(ρ)

))
. (E.1)

Since the the critical region is invariant, (E.1) simplifies to

πρ̄(ρ) = Pr

(
y′ΣΣΣ−1(ρ̄)R(ρ̄)y

y′MXy
< c; y ∼ N(0,ΣΣΣ(ρ))

)
.

Under Conditions A and B, R(ρ̄) = MX and ΣΣΣ(ρ̄)X = XQ for any ρ̄ > 0 and for some
invertible matrix Q. It follows that, under the two conditions, the matrices ΣΣΣ−1(ρ̄) and
MX commute for any ρ̄ > 0. Hence,

πρ̄(ρ) = Pr

(
z′ΣΣΣ(ρ)ΣΣΣ−1(ρ̄)MXz

z′ΣΣΣ(ρ)MXz
< c; z ∼ N(0,I)

)
.



POWER OF TESTS FOR SPATIAL AUTOCORRELATION 185

Under Conditions A and B, the matrix MX has a zero eigenvalue with eigenspace spanned
by the k eigenvectors of ΣΣΣ(ρ) that are in col(X), and an eigenvalue equal to 1 with
eigenspace spanned by the remaining eigenvectors of ΣΣΣ(ρ). Let H denote the set of in-
dexes i of the n −k eigenvalues λi (ΣΣΣ(ρ)) associated to a set of linearly independent eigen-
vectors of ΣΣΣ(ρ) that are not in col(X). Note that, when Condition A holds, H does not
depend on ρ. Under Conditions A and B, the power of a POI critical region can therefore
be expressed as

πρ̄(ρ) = Pr

(
∑i∈H λi (ΣΣΣ(ρ))λ−1

i (ΣΣΣ(ρ̄))z2
i

∑i∈H λi (ΣΣΣ(ρ))z2
i

< c

)
, (E.2)

and its size as

α = Pr

(
z ′ΣΣΣ−1(ρ̄)MXz

z ′MXz
< c

)
= Pr

(
∑i∈H λ−1

i (ΣΣΣ(ρ̄))z2
i

∑i∈H z2
i

< c

)
. (E.3)

Now, by Lemma E.3 with ai = λi (ΣΣΣ(ρ)), bi = λ−1
i (ΣΣΣ((ρ̄)), and pi = z2

i , for i ∈ H , we
have

∑
i∈H

λi (ΣΣΣ(ρ))z2
i ∑

i∈H
λ−1

i (ΣΣΣ(ρ̄))z2
i ≥ ∑

i∈H
z2

i ∑
i∈H

λi (ΣΣΣ(ρ))λ−1
i (ΣΣΣ(ρ̄))z2

i , (E.4)

for any z ∈ Rn . Rearranging the terms of the above inequality, we obtain that, for any
ρ̄ > 0, any ρ > 0, and any α, the statistic appearing in expression (E.2) is stochastically
larger (e.g., Lehmann and Romano, 2005, p. 70) than that appearing in expression (E.3).
We have thus established that πρ̄(ρ) ≥ α. The latter inequality is strict, except when (E.4)
holds with equality, which, by Lemma E.3, occurs if and only if all the λi (ΣΣΣ(ρ)), i ∈ H ,
are the same. But, by the definition of H plus the fact that the fi (ΣΣΣ(ρ)), i = 1, . . .,n, are
mutually orthogonal, the condition that all the λi (ΣΣΣ(ρ)), i ∈ H , are the same is equivalent
to the condition that col⊥(X) ⊆ Ei (ΣΣΣ(ρ)), for some i = 1, . . .,n. This completes the proof
of the part of the proposition relative to POI tests. Finally, observe that if the proposition
holds for any POI test, i.e., for any ρ̄ > 0, then it must also hold for the LBI test (i.e.,
test (7) with Q = dΣΣΣ(ρ)/dρ|ρ=0), since the latter test is the limiting case of a POI test as
ρ̄ → 0. n

Proof of Lemma 1. Clearly, two invertible matrices commute if and only if their
inverses commute. Thus, Condition A requires that ΣΣΣ−1(ρ1) and ΣΣΣ−1(ρ2) commute for
any ρ1,ρ2 > 0. For a SAR(1) model, ΣΣΣ−1(ρ) = I − ρ(W ′ + W) + ρ2W ′W, and hence
Condition A is verified if and only if WW ′ = W ′W, i.e., W is normal. To complete the
proof, it remains to show that a nonsymmetric W that is obtained by row-standardization
of a symmetric matrix cannot be normal. This follows from Lemma C.2, because if W were
normal, then fmax should be an eigenvector of W ′ associated to λmax. n

Proof of Proposition 4. Assume that W is symmetric, and let, for notational con-
venience, τi (ρ) := 1 −ρλi (W ), i = 1, . . .,n. When 0 ≤ ρ < λmax, we have λi (ΣΣΣ(ρ)) =
τ−2

i (ρ), i = 1, . . .,n. Inserting such expressions in equation (E.2), we obtain that the power
function of the POI test is nondecreasing in ρ if and only if the statistic

tρ̄ (ρ) :=
{

∑
i∈H

1

τ2
i (ρ)

z2
i

}−1

∑
i∈H

τ2
i (ρ̄)

τ2
i (ρ)

z2
i (E.5)
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is nonincreasing in ρ for any vector z ∈ Rn . The condition dtρ̄ (ρ)/dρ ≤ 0 gives

∑
i∈H

1

τ2
i (ρ)

z2
i ∑

i∈H

2λi (W )τ2
i (ρ̄)

τ3
i (ρ)

z2
i − ∑

i∈H

τ2
i (ρ̄)

τ2
i (ρ)

z2
i ∑

i∈H

2λi (W )

τ3
i (ρ)

z2
i ≤ 0,

which can be rewritten as

2 ∑
i, j∈H

ai j z2
i z2

j ≤ 0, (E.6)

with

ai j := λj (W )
τ2

j (ρ̄)− τ2
i (ρ̄)

τ2
i (ρ)τ3

j (ρ)
.

Note that for each i, j ∈ H such that i �= j ,

ai j +aji =
[
λj (W )

τj (ρ)
− λi (W )

τi (ρ)

]
τ2

j (ρ̄)− τ2
i (ρ̄)

τ2
i (ρ)τ2

j (ρ)
= [λj (W )−λi (W )

] τ2
j (ρ̄)− τ2

i (ρ̄)

τ3
i (ρ)τ3

j (ρ)
≤ 0,

with equality if and only if λi (W ) = λj (W), because τi (ρ) and τj (ρ) are positive, and

τ2
j (ρ̄)−τ2

i (ρ̄) = [1− ρ̄λj (W )]2 −[1− ρ̄λi (W)]2 is positive, negative, or zero, if λj (W )−
λi (W ) is, respectively, negative, positive, or zero. Since, in addition, aii = 0, for each
i ∈ H , it follows that (E.6) holds with equality if and only if all the λi (ΣΣΣ(ρ)), i ∈ H , are
the same. This is the same condition that leads to equality in (E.4), so the proof can be
completed in exactly the same way as the proof of Proposition 3. n

Proof of Proposition 5. Assume that W is symmetric, so that the variance matrix of
a SAR(1) model is ���(ρ) := (I − ρW)−2 (having taken σ 2 = 1, without loss of gener-
ality). Since the fi (W ), i = 1, . . .,n, are orthogonal, it follows that, under Condition B,
if fi (W) /∈ col(X), then fi (W ) ∈ col⊥(X ), for any i = 1, . . .,n. Thus, when fi (W ) /∈
col(X), i = 1, . . .,n, we have C���(ρ)C ′Cfi (W) = C���(ρ)MX fi (W ) = C���(ρ)fi (W) =
λi (���(ρ))Cfi (W ). That is, Cfi (W ), i ∈ H , with H as defined in the proof of Proposi-
tion 3, are n − k orthogonal eigenvectors of C���(ρ)C ′. This implies, in particular, that
En−k(C���(ρ)C ′) does not depend on ρ. Then, the proposition follows by Corollary 1,
Lemma E.4, and Proposition 4. n


