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ABSTRACT

This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence
through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale
for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface
Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation
rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared
to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be
considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence.

Comparisons are made between the LES results and observations, but the lack of information concerning
the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles
are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be
similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test
the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be
significantly enhanced over that due to normal shear turbulence.
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1. Introduction

Foam and other buoyant materials on the surface of
the ocean often form lines that are almost parallel to the
direction of the wind. Langmuir (1938) showed that
these lines form along the convergence zones between
counter-rotating vortices in the underlying water. The
circulations are now generally believed to form through
an instability arising from the interaction of the Stokes
drift, induced by the surface waves, and the shear in the
current (Craik and Leibovich 1976) through the second
Craik-Leibovich (CL2) mechanism.

Skyllingstad and Denbo (1995) used the Craik—
Leibovich vortex force to parameterize wave—current
interactions in a large-eddy simulation (LES) in a study
of the effects of Langmuir circulations on mixing in the
oceanic mixed layer. In these simulations the Langmuir
circulations were found to dominate the vertical mixing,
leading to enhanced dissipation rates that were consis-
tent with observations (Lombardo and Gregg 1989;
Anis and Moum 1992). McWilliams et al. (1997) intro-
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duced the turbulent Langmuir number, La; 5 (ux/ug)*?,
where ux is the surface friction velocity in the water and
Uso is the surface Stokes drift, as an important parameter
describing Langmuir turbulence. Li et al. (2005) inves-
tigated the variation in turbulent statistics, particularly
the nondimensional vertical velocity variance s2/u
with La;. They concluded, that for values of La; appro-
priate to fully developed seas in the open ocean,
Langmuir turbulence should be important. Polton and
Belcher (2007) considered the transition between shear-
dominated turbulence and Langmuir turbulence as a
function of La; and the depth scale of the Stokes shear.
In all of these studies the vertical velocity variance,
normalized by u%, was found to be much larger for
Langmuir turbulence than for normal shear-driven
turbulence, which is qualitatively consistent with the
observations of D’Asaro (2001) and Tseng and D’Asaro
(2004).

The LES studies have provided a simple conceptual
picture of Langmuir turbulence. Elongated vortex struc-
tures, with alternating sign of the longitudinal vorticity
are confined to the layer of Stokes shear. In the longi-
tudinal direction the vortices have a length that is about
five times that of the transverse dimension (McWilliams
et al. 1997). The horizontal scale increases with depth.
Polton and Belcher (2007) show that downwelling jets
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originating within the vortex layer penetrate deeply into
the underlying mixed layer. Because of these jets the
influence of the surface waves on the mixed layer ex-
tends below the layer of Stokes drift and Langmuir
turbulence affects mixing throughout the depth of the
mixed layer.

Similarity theories provide a compact way of orga-
nizing and understanding turbulence data. Holtslag and
Nieuwstadt (1986) present a diagram showing the scal-
ing regimes for the atmospheric boundary layer (ABL).
Their diagram was constructed in terms of nondimen-
sional height, z/h, within the boundary layer, where h is
the mixed layer depth, and a stability parameter, 2h/L,
where L is the Obukhov length. Different scales are
relevant in different regions of the diagram, so for the
convective ABL the relevant scales are the surface
buoyancy flux, wdb§, and mixed layer depth, with the
velocity scale wx 5 (wdbg h)"®, while if 2h/L is small,
u« is the relevant velocity scale.

Li et al. (2005) have constructed a regime diagram for
the ocean mixed layer based on the behavior of s2/u%
as a function of La;, using the Hoenikker number to
characterize stability (Li and Garret 1995). This dia-
gram shows a region dominated by shear, with velocity
scale ux, one in which convection dominates, with ve-
locity scale wx, and a region dominated by Langmuir
turbulence. For this latter region of the diagram, Li et al.
(2005) do not suggest a velocity scale.

The scaling regimes in the atmospheric boundary
layer described by Holtslag and Nieuwstadt (1986) re-
flect the different mechanisms for generating turbulence
kinetic energy (TKE), through shear or buoyancy (ad-
ditionally the diagram contains information on length
scales). In the Li et al. (2005) regime diagram it might be
expected that the scales for Langmuir turbulence should
reflect the production of turbulence through the action of
the Craik-Leibovich vortex force. There have been a
number of suggestions for the velocity scale of Langmuir
turbulence (Plueddemann et al. 1996; Smith 1996, 1998),
but at present there is no consensus as to what the ap-
propriate velocity scale is (Thorpe et al. 2003).

The determination of the correct scaling for a turbu-
lent flow is important in developing parameterizations
to represent the effects of the turbulence in large-scale
models. In first-order closure schemes of turbulent
mixing, such as the K profile parameterization (KPP)
scheme described by Large et al. (1994), the eddy dif-
fusivity, K, is given by K ; sZt, where t is the turbu-
lence time scale (Holtslag and Moeng 1991). In the KPP
scheme the diffusivity profile is specified through a
similarity profile, using the velocity and length scales
appropriate to the turbulent flow. Modifications to the
KPP scheme to take account of Langmuir turbulence
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have been proposed (McWilliams and Sullivan 2000;
Smyth et al. 2002) assuming that the velocity scale is
3 Uso (Smith 1998). However, without an understanding
of the scaling of Langmuir turbulence, the accuracy of
the proposed parameterizations remains unclear.

In this study, large-eddy simulation is used to investi-
gate the TKE budget of Langmuir turbulence and based
on this the appropriate velocity and length scales for
Langmuir turbulence are proposed. The simulations are
idealized and are not intended to be comprehensive
simulations of turbulence in the oceanic mixed layer.
This study focuses on mixing within the mixed layer and
so the impact of wave breaking has not been considered.
Observations show that the dissipation rate near the
surface is significantly increased over the law of the wall
in the presence of breaking waves (Agrawal et al. 1992;
Terray et al. 1996). Recently Noh and Min (2004) and
Sullivan et al. (2007) have included parameterizations
of wave breaking in large-eddy simulations of Langmuir
turbulence. Turbulence in the bulk of the mixed layer
was not strongly affected by the presence of breaking
waves, although both studies showed that the Langmuir
circulations tend to become less coherent in the pres-
ence of wave breaking. An assumption of the present
study is that a scaling for idealized Langmuir turbulence
is relevant to the real ocean.

2. Description of large-eddy simulations

The Met Office large-eddy model (LEM) was used in
this study, modified to represent the oceanic mixed
layer. The model uses the Boussinesq approximation.
Advection was done using the scheme described by
Piacsek and Williams (1970) with a leapfrog time step,
which conserves energy and scalar variances. The at-
mospheric version of the LEM is described in detail by
Shutts and Gray (1994).

A number of changes were made to the LEM to
simulate the oceanic mixed layer. An approximate
equation of state (Bryden et al. 1999) was used to cal-
culate the density, the thermal expansion, and saline
contraction coefficients of seawater. These were used to
calculate density fluctuations for the buoyancy term in
the vertical velocity equation. The upper boundary
condition was changed to a slip condition, using Monin—
Obukhov similarity to diagnose the surface current
from the imposed stress (Polton and Belcher 2007).

There is considerable uncertainty as to the appropri-
ate value of the waterside roughness length. Craig and
Banner (1994) suggested values ranging from 1 to 8 m
based on comparisons between a closure model, with a
representation of wave breaking and observed dissipation
rates. Craig and Banner (1994) suggest that the larger
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roughness lengths obtained by fitting the model results
to data probably reflected a failure of the model, citing the
presence of Langmuir circulations as one possible cause.
The general consensus is that the roughness length is
much larger than the airside roughness length (Csanady
1997). For the present simulations the roughness length
was taken to be zo 5 0.1 m. Because the surface stress
was imposed in these simulations the choice of rough-
ness length only determines the surface current diag-
nostically, and the precise value should not be critical to
the turbulence dynamics. To check this one of the
simulations described was rerun using zo 5 0.5 m. Dif-
ferences in the turbulence from the original simulation
were not significant.

The interaction of surface waves and currents are
parameterized using the vortex force of Craik and
Leibovich (1976), following Skyllingstad and Denbo
(1995). The Stokes drift, us, was assumed to decrease
exponentially with depth as us 5 ug, exp(z/d), where d is
the Stokes depth scale, which is determined by the
wavelength of the surface waves. The effects of subgrid
turbulence were represented using a simple Smagorinsky-
type eddy viscosity (Smagorinsky 1963) modified as
described by Brown et al. (1994).

The use of the Craik-Leibovich vortex force to pa-
rameterize the effects of Stokes drift involves phase
averaging over the wave period, in addition to the
spatial filtering of the LES model. It is not clear how, or
whether, the subgrid model used in the LES should be
modified to account for wave effects. McWilliams et al.
(1997) considered that given the ad hoc basis for subgrid
models it was difficult to see how they should be mod-
ified to account for wave effects. Since LES results are
usually insensitive to the details of the subgrid model,
and given the uncertainties, McWilliams et al. (1997)
chose not to modify their subgrid model. In the present
simulations, apart from the region close to the surface,
subgrid contributions to turbulent fluxes are small sug-
gesting that the details of the subgrid model are unlikely
to be critical. It also worth noting that previous LES
studies have used a variety of subgrid models and the
characteristics of Langmuir turbulence from the present
study are similar to those obtained in previous studies.

All simulations used 128 3 128 points in the hori-
zontal, with a uniform grid spacing of 2 m, and 111 points
in the vertical with a uniform grid spacing of 0.8 m. To
prevent reflection of waves from the bottom boundary
there was a damping layer below 65 m in which model
fields were relaxed back to the horizontal mean. The
time step was chosen to ensure stability of the model,
and was varied as the run progressed. All simulations
were run for 100 000 s, with statistics calculated over the
last 40 000. Although there were inertial oscillations in
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the mean current, the turbulence fields were in a steady
state over the averaging period.

The initial conditions from McWilliams et al. (1997)
were used for all simulations. The initial mixed layer
depth was 33 m with a uniform stratification of 0.01 K m=*
between 33 m and the bottom of the domain. The Cori-
olis parameter was taken to be 1 3 10%* 2%, Although
the initial mixed layer depth was 33 m, the final mixed
layer depth, defined as the depth of the minimum in the
buoyancy flux profile, varied between 34 and 42 m. Un-
like the simulation described by McWilliams et al. (1997)
no surface buoyancy flux was imposed in the present
simulations as there were no problems in spinning up
turbulence from rest when wave effects were included.

The surface stress and the Stokes drift were varied so
as to obtain a range of values for the turbulent Langmuir
number, La;. The values of La; were 0.15, 0.2, 0.3, 0.4, 0.8,
and 1.5. For each value of La; three simulations were
carried out with ux 5 0.0043, 0.0060, and 0.0085 m s2%.
For most simulations the Stokes depth was set to 4.8 m.
To test the sensitivity of the results to the value of d
three simulations with La; 5 0.3 and ux 5 0.006 m s2!
andd 5 3.1, 6.4, and 9.5 m were also run. Smaller values
of d were not considered because of resolution.

One simulation without the Stokes forcing was also car-
ried for comparison. This had ux 5 0.0085 m s2* and f 5
1 3 102* 52, For this simulation a small surface buoyancy
flux, equivalent to a sensible heat flux of 5 W m??, was
imposed to ensure that turbulence developed. The
Obukhov length for this simulation is, L 5 2148 m, and
the mixed layer depth, h, was 34 m, so h/L 5 20.24,
indicating that buoyancy effects are not significant
(Holtslag and Nieuwstadt 1986).

3. The turbulent kinetic energy budget

For stationary, horizontally homogeneous conditions,
the TKE budget including wave effects can be written as
(Kitaigorodskii and Lumley 1983; Polton and Belcher
2007)

—du _
u9W9d—S 1 wib9

—>U —>V
u9w9)— y9w9)—
>Z >Z z

> Wl%wgm €50, )

>Z

where U and V are the horizontal components of the
current parallel and perpendicular, respectively, to the
surface stress; the overbar denotes an average; w is
the vertical component of the current, taken to be
positive upward; rudwd and rydw9 are the components of
Reynolds stress vector, where the primes denote fluc-
tuations from the mean; wdb9 is the turbulent buoyancy
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FiG. 1. Example of the TKE budget for La; 5 0.3. The terms have been scaled by w3, /h (see
text). (left) Dissipation rate (full curve), Stokes production (dashed curve), shear production
(dash-dot curve). (right) Transport (full curve) and buoyancy flux (dashed curve). The buoy-
ancy flux has been multiplied by a factor of 5 for clarity.

flux; WIE is the turbulent energy flux; wip9 is the pres-
sure work flux; e is the dissipation rate due to molecular
viscosity; and r is density. The Stokes drift is assumed to
be parallel to the surface stress.

In Eq. (1) the first two terms on the left-hand side
represent production of TKE due to shear in the mean
current, the third term is production due to the Stokes
shear, the fourth is the production or destruction of
TKE through buoyancy forces, the fifth term represents
transport of TKE due to turbulent fluctuations of the
vertical velocity and pressure, and the final term is the
destruction of TKE due to viscosity. The three shear
terms in Eq. (1) feed energy into different velocity
components. The terms involving the current shear feed
energy into the horizontal turbulent velocities, while the
term involving the Stokes shear feeds energy into the
vertical component. Note that the Stokes term does not
feed energy directly into the lateral component of the
current; rather there is an exchange of energy between
the lateral and vertical components, which does not ap-
pear in the TKE budget (Skyllingstad and Denbo 1995).

In the results to be presented the terms in the TKE
budget were calculated directly from the discretized
LES equations so as to be consistent with the grid
staggering and these terms, calculated at each time step,
were averaged over space and time, rather than using
the average stress and mean current shears as suggested
in Eq. (1). Calculating the terms directly from the LES
equations gives a budget residual that is less than 0.5%
of the dissipation rate. Calculating the shear terms from
the fluxes and shears gives a residual of order 10%,
mainly due to the Stokes term, although qualitatively
the results are similar to the directly calculated terms.
Note that because the time stepping and advection
schemes conserve energy all of the dissipation is asso-
ciated with the subgrid model (Brown et al. 2000).

Figure 1 shows an example of a TKE budget of the
resolved motions from one simulation [this simulation
has the same parameters as described by McWilliams
et al. (1997)]. The shear production terms and dissipa-
tion are shown in Fig. 1a and the buoyancy and trans-
port terms are shown in Fig. 1b. The budget is similar to
those obtained by McWilliams et al. (1997) and Polton
and Belcher (2007). The production of TKE is domi-
nated by the Stokes term above z/h * 20.3, with the
production of TKE through the mean current shear
being small. However, unlike the production through
Stokes shear, the production of TKE through current
shear extends below z/h 5 20.3, where, for this simu-
lation, it is about 20% of the dissipation rate. The dis-
sipation rate decreases rapidly with depth close to the
surface and more gradually below z/h 5 20.3.

The difference between production through current
shear and dissipation below z/h 5 20.3 is balanced by
the transport term, which is shown in Fig. 1b. Turbulent
kinetic energy is transported from the region near the
surface in which production of TKE by the Stokes shear
exceeds dissipation, to the rest of the mixed layer, where
it acts as a source of TKE. The buoyancy term is com-
parable to the transport term in magnitude and, by
definition, is a minimum at the base of the mixed layer.
The buoyancy term is a sink of TKE, and is associated
with the entrainment of cold water into the mixed layer.

Figure 2a shows the components of the transport term
from the simulation shown in Fig. 1. The turbulent
transport term been split into two components: one as-
sociated with the flux of TKE in the horizontal velocity
components [i.e., ¥2(w9u9? 1 wiy9%)] and the other with
the flux of TKE in the vertical velocity component, w3/2.
The turbulent transport term is dominated by the
transport of w9?, the flux of TKE associated with the
horizontal velocity components being much smaller.
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Figure 2b shows the components of the transport term
for the shear-only simulation. In contrast to the simu-
lation with wave effects, in this simulation the transport
of horizontal TKE is larger than that associated with the
vertical component of TKE. This is consistent with the
simulations of the neutral atmospheric boundary layer
described by Moeng and Sullivan (1991). Overall the
transport of TKE, nondimensionalised by u/h is smaller
in the simulation without the wave effects. In both sim-
ulations the pressure term is opposite in sign and smaller
than the turbulent transport. This is qualitatively similar
to results from simulations of both the shear-driven and
convective atmospheric boundary layer (Moeng and
Sullivan 1991).

The difference in the components of the turbulent
transport term reflects the difference between Stokes
production and production of TKE through current
shear. The Stokes term acts as a source of TKE in the
vertical component of the current, while the current
shear is a source of horizontal TKE. Polton and Belcher
(2007) identified downwelling jets that originated in the
region of Stokes shear and penetrated deep into the
mixed layer. The results in Fig. 2 indicate that these
downwelling jets are responsible for the turbulent
transport of TKE from the region of Stokes shear into
the bulk of the mixed layer.

4. Scaling Langmuir turbulence

Outside of the surface layer the scaling parameters for
shear-driven turbulence are the surface friction velocity,
ux, and the mixed layer depth, h, so that quantities
made nondimensional by ux and h should be functions
of z/h alone. Including wave effects, as parameterized
by the Craik-Leibovich vortex force, there are addi-
tional dimensional parameters: the surface Stokes drift,
Uso, and the Stokes depth, d. Two nondimensional pa-

rameters can be formed: the turbulent Langmuir num-
ber, L& 5 (ux/ug) and d/h. Li et al. (2005) considered
the variation of the nondimensional variance of the
vertical component of the current, s2/u% with La,, while
more recently Harcourt and D’Asaro (2008) have con-
sidered the dependence on d/h. The choice of ux for the
velocity scale for the shear-driven mixed layer reflects
the production of TKE from the current shear terms in
the TKE budget. Figure 1 shows that with wave effects
present the current shear term may be very small, and so
the friction velocity alone no longer reflects the process
generating TKE. We can ask whether a scale can be
developed for turbulence in which the main production
term is associated with the Stokes shear?

For high Reynolds number turbulence the dissipation
rate is determined by the characteristics of the large
eddies (Tennekes and Lumley 1972). If the character-
istic velocity of the large eddies in the turbulent flow is
n« and their length scale is I, the magnitude of the
dissipation rate is ni/l. For Langmuir turbulence a
velocity scale, wx_, can be defined through the relation
e ; w2, /1 by assuming that the dissipation rate balances
the dominant production term in the TKE budget (i.e.,
the Stokes production; Fig. 1).

The region of significant production of TKE through
the Stokes shear is quite shallow [O(d)], but because of
the transport of TKE from this layer dissipation of TKE
occurs over the full depth of the mixed layer. This
suggests that the relevant length scale for the large
eddies is the mixed layer depth, h, rather than the
Stokes depth scale, d. Simulations described by Polton
and Belcher (2007) did not include stratification and in
that case turbulence extended to a depth of ~ux/f. In
the present simulations, fh/ux is always less than 1 (with
values between 0.5 and 0.8) and so stratification limits
the depth of mixing, but for deeper pycnoclines ux/f
would be the relevant length scale.
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The production rate of TKE in the layer of significant
Stokes shear can be estimated as uZue/d and the average
production over the mixed is uug/d(d/h) 3 uZug/h.
Equating this estimate for the production term to dissi-
pation gives

w5 (uiug)’. )

Smith (1996) suggested Eg. (2) as the velocity scale for
the transverse velocity of the circulations close to the
surface, sy, although it is not clear from his derivation if
it is relevant to other quantities.

The scale wx,_ can also be written in terms of ux and
La; as

Wak 5 F?/SU*. (3)

The turbulent Langmuir number (or strictly La?) can
be interpreted as the ratio of the production of TKE
by the current shear ( ; u</h) to the production due to
Stokes shear (;uZug/h). For large La, production of
TKE due to the current shear dominates and the rele-
vant turbulent velocity scale is ux, while for small La;
the Stokes production dominates and wx is the rele-
vant velocity scale. With this interpretation of La; it is
clear that if the proposed scaling is correct as La; be-
comes small, turbulent properties made nondimen-
sional using wx  should not be functions of La;.

Harcourt and D’Asaro (2008) have recently sug-
gested Eq. (3) based on an analysis of s2/u% obtained
from a series of large-eddy simulations. They found that
s2luz } L&*, which is consistent with Eq. (2) if
s&lw%_ 5 constant, which should be the case if wx, is
the relevant velocity scale. Harcourt and D’Asaro
(2008) pointed out that this result is consistent with a
balance between Stokes production and dissipation for
eddies with scales of the order of the mixed layer depth,
based on the behavior of s2/u? as d/h / 0.

5. The nondimensional TKE budget
a. Turbulent dissipation: Simulations

The simulations considered in this section all have the
same Stokes depth scale, d 5 4.8 m. The effects of
variations in d will be considered later.

Figure 3 shows the dissipation profiles from the LES
simulations scaled by w2, /h. As La, decreases, the mag-
nitude of eh/w2, decreases until La, = 0.5. For La; , 0.5
the dissipation profiles collapse to a single curve, with the
variation in the scaled profiles being much smaller than
the variation in the dimensional profiles. This is indi-
cated in the figure by the range in the scale w3, /h for the
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right (dashed curves). The horizontal line at z/h 5 20.2 shows the
variation of w3, /h among the simulations with La; , 0.5.

simulations with La; , 0.5. The relative variation in the
scaled profiles increases with depth. The variation in
dissipation rate around the base of the mixed layer will
be considered in more detail in section 7.

The dissipation rate at z/h 5 20.5, scaled by us/h, is
shown in Fig. 4 as a function of La;. For small values of
Lay, for which the Stokes production dominates, Eq. (3)
implies that eh/u2 } 1/La2. For La, , 0.5 the dissipation
rate varies as 1/Laf, consistent with the results in Fig. 3.
For La; - 0.5 the dissipation rate in the middle of the
mixed layer is less than for shear turbulence, even for
La; 5 2 (note, the shear-only simulation has been as-
signed La; 5 4 for display purposes). This variation in
dissipation rate with La; means that the nondimen-
sional dissipation for La; * 0.3 is similar in magnitude to
the dissipation rate for shear-driven turbulence, without
wave effects.

The variation in dissipation rate with Langmuir
number for La; - 0.5 is due to the way in which pro-
duction of TKE by Stokes shear and current shear varies
as La; increases. With increasing La; the Stokes pro-
duction, nondimensionalised by u#/h, decreases while
production of TKE by current shear increases. How-
ever, initially the decrease in the Stokes production with
increasing La; is greater than the increase in production
through current shear, which leads to an overall de-
crease in the production of TKE and hence a decrease in
the dissipation rate. As La; continues to increase the
current shear production increases and the wave effects
become negligible.

The results in Figs. 3 and 4 show that there is a distinct
Langmuir turbulence regime that occurs for La; , 0.5
and is characterized by the velocity scale, wx, .
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b. Turbulent dissipation: Observations

Estimates of the dissipation rate in the oceanic mixed
layer are reasonably common, but information on the
wave field needed to determine the Stokes drift, and
hence La;, are rarely given. This means that it is not
possible to make a direct comparison between the LES
scaling for Langmuir turbulence derived here with ob-
servations. The best that can be done is to compare the
shapes of observed dissipation profiles with those from
the LES. Figure 5a compares the model profiles ob-
tained from the present simulations with La; , 0.5 with
observed dissipation profiles published by Greenan
et al. (2001), Thorpe et al. (2003), and Lozovatsky et al.
(2006), all for conditions when surface buoyancy effects
in the mixed layer were small. Langmuir circulations
were observed to be present by Thorpe et al. (2003).
The observed profiles have been multiplied by a factor
(different for different sets of observations) to match
the magnitude of the model profiles so as to allow the
shapes of the profiles to be compared. Based on Eqg. (3)
the Langmuir numbers for these profiles are in the range
of 0.15-0.30. On average the effective La; for these data
is smaller than expected for fully developed seas.
Greenan et al. (2001) presented wave spectra that
showed two peaks due to swell in addition to peak for
the wind-driven waves, which may explain the low value
of La; (50.15) implied by their data.

The shapes of the LES dissipation profiles agree well
with the observations. The dissipation rate decreases
rapidly down to z/h 5 20.3, and less rapidly below this.
The observations from Thorpe et al. (2003) capture the
region just below the surface and the upper half of the
mixed layer, while the data from Greenan et al. (2001)
and Lozovatsky et al. (2006) show the more gradual
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FIG. 5. Comparison of the shapes of the nondimensional dissi-
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results from the LES for La; , 0.5 (dotted curves), observed profiles
(symbols), with magnitudes adjusted to coincide with the simula-
tions (see the text). From Lozovatsky et al. (2006) (diamonds), from
Greenan et al. (2001) (triangles), and from Thorpe et al. (2003)
(plus signs). The magnitudes of the observed dissipation rates have
been adjusted to match the LES profiles. The dissipation from the
simulation of shear-driven turbulence (solid curve).
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decrease over the rest of the mixed layer. Also shown in
Fig. 5 is the dissipation rate obtained from the simula-
tion without wave effects. The shape of this profile is
similar to those for Langmuir turbulence, although the
decrease in the dissipation rate over the depth of the
mixed layer appears to be slightly greater than for
Langmuir turbulence. While this difference may not be
significant, since the profile for shear-driven turbulence
falls just outside of the variation in the dissipation
profiles shown in Fig. 3 for La; , 0.5, it could reflect the
smaller magnitude of the transport of TKE in the shear
turbulence simulations compared to that in the simula-
tions of Langmuir turbulence. Figure 5 suggests that the
shape of the dissipation profile is not diagnostic of
Langmuir or shear-driven turbulence.
The dissipation length scale, I, is defined as

E3/2
1,5 — )

(Tennekes and Lumley 1972) and is characteristic of the
length scale of the energy containing eddies of a tur-
bulent flow. Figure 6a shows the dissipation length scale
for the present simulations with La; , 0.5, and for the
shear-only simulation. From the surface to about z/h 5
20.5 the dissipation length scale from the simulations
of Langmuir turbulence is proportional to depth. In
the lower half of the mixed layer 1. is approximately
equal to the mixed layer depth. The shear-only simu-
lation differs from the Langmuir turbulence results in
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that the increase with depth below the surface is more
rapid and 1. is approximately constant over a larger
fraction of the mixed layer depth. The general similarity
between the dissipation length scale for Langmuir and
shear turbulence is due to the size of the turbulent
eddies being limited either by distance from the surface
or the presence of the thermocline, irrespective of the
production mechanism.

Estimates of the dissipation length scale in the neutral
atmospheric boundary layer (Grant 1992) are also in-
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cluded in Fig. 6. The observed profile of the dissipation
length scale in the neutral atmospheric boundary layer
and that derived from the Stokes-forced LES are simi-
lar. Unfortunately the scatter in the data is too large to
distinguish between shear and Langmuir turbulence.
The dissipation length scale confirms that the mixed
layer depth is the relevant length scale for Langmuir
turbulence when d/h is small.

c. Shear production

Figures 7a—c show the scaled Stokes production (Fig.
7a), total shear production (Stokes 1 current; Fig. 7b),
and the transport term in the TKE budget (Fig. 7c) for
simulations with La; , 0.5. For comparison the scaled
dissipation rate, plotted on a linear scale is shown in Fig.
7d. As in the example shown in Fig. 1, TKE production
due to Stokes shear is the dominant source of TKE,
although in some of the simulations there are regions in
which the Stokes production is negative (i.e., it is a sink
of TKE). Although generally small, comparison be-
tween the Stokes production and total shear production
(Figs. 7a,b) shows that the TKE production associated
with mean current shear is not unimportant. Unlike the
Stokes production the total shear production is always
positive, and collapses more nearly on to a single simi-
larity curve than is the case for the Stokes production
alone. Although not perfect, the near collapse of the
shear production term shows that it scales with w3, /h
rather than us/h. When scaled with u/h, there is much
more variation due to variations in La; (not shown). The
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FIG. 7. Terms in the TKE budget normalized by w3, /h. Results are for simulations with
La; , 0.5. (a) Stokes production, (b) total shear production, (c) transport (note the different

scale), and (d) dissipation rate.
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scaling by w3, /h reflects the effect of mixing by Lang-
muir turbulence on the mean shear.

In common with previous LES studies the Coriolis—
Stokes forcing has been included in the present LES.
Polton et al. (2005) used an analytic model to investi-
gate Coriolis—Stokes forcing in the oceanic mixed layer
and concluded that observed current profiles agreed
better with modeled profiles that included Coriolis—
Stokes forcing than results for a simple Ekman layer.
The presence of this Coriolis—Stokes forcing means that
the Stokes drift affects the stress profiles through the
mean momentum budget, and hence the Stokes—shear
production in the TKE budget.

Figures 8a,b shows examples of profiles of udw9 for
three values of ux from simulations with La; 5 0.3 (Fig.
8a) and La; 5 0.2 (Fig. 8b). The profiles are generally
curved, with the curvature being larger for the smaller
values of Langmuir number. For a given value of La, the
curvature of the udwjd profiles increases with decreasing
ux. For La; 5 0.2 the udw9 changes sign in some of the
simulations, and it is this that is responsible for the
negative Stokes production.

These variations in the shape of the stress profiles can
be understood from mean momentum budget that for
horizontally homogeneous conditions, can be written as

1>t
1t

Utk 3 @1
r>z St ( us)

©®)

(e.g., Polton et al. 2005). Taking the stress gradient to be
zru¥h, and the Stokes drift as ;us, Eg. (5) can be
written in nondimensional form as

1
ﬂﬁlwkg ﬁliu
Ux >t Ux |_at2

1
1>¢
r>z

(6)

s !

where § 5 U/ux and t, 5 u/u,, are nondimensional
mean current and Stokes drift. As fh/ux 7 0 there is no
steady solution for Eq. (5). In this case the mixed layer
current should accelerate uniformly with depth, and the
stress profiles will be unidirectional, varying linearly
with depth. For finite values of fh/ux the presence of
Stokes drift in Eq. (6) means that the nondimensional
stress gradient close to the surface should depend
on (fh/ux)L&g?, This argument suggests that for a given
value of fh/ux the curvature of the stress profiles should
increase as La; decreases, which is consistent with Figs.
8a,b. For a fixed value of La;, the stress profile should
become more curved as fh/ux increases (e.g., because of
ux decreasing), again consistent with Figs. 8a,b.

Figure 9a shows (h/u2)>udwd/>Z at the surface as a
function of (fh/ux)Laf?. As expected the nondimensional
gradient of udw?9 increases in magnitude with increasing
fh/ux L&?, and tends to 1 as fh/uxLa&2/ 0. Figure 9b
shows the same for >y9wd/>z. In this case the gradient
tends to 0 as fh/uxL&?> o 0, and the stress profile be-
comes unidirectional. This variation in the stress gradient
near the surface affects the magnitude of the shear stress
in the region of Stokes shear, and hence the Stokes-shear
production in the TKE budget, as shown in Fig. 7a.

d. The effect of the Stokes depth scale on TKE budget

The simulations considered so far have had the same
value for the Stokes depth scale d. Figures 10a—d show
the terms in the TKE budget for simulations in which the
Stokes depth scale is varied, but ux and ugy are kept the
same. As the Stokes depth scale increases the Stokes
production extends to greater depths. The production of
TKE associated with the mean current shear is small for
these simulations, although below z/h 5 20.6, it is re-
sponsible for about 25% of the production TKE. The
dissipation profile shows less variation than the shear
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(a) Stress component parallel to the imposed surface stress. (b) Component perpendicular to

the imposed surface stress.

production profiles. The insensitivity of the dissipation
profile to changes in the Stokes depth scale reflects changes
in the transport term that are correlated with the changes
in the total shear production. The changes in the transport
term inthe TKE budget with variations in the Stokes depth
are consistent with the physical picture of Langmuir tur-
bulence suggested by Polton and Belcher (2007).

6. Turbulence statistics

a. Velocity variances

Figure 11a shows an example of the profiles of the
variances of the three velocity components. The profiles
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are similar to those obtained in previous LES studies
(Skyllingstad and Denbo 1995; McWilliams et al. 1997;
Polton and Belcher 2007). Over a large part of the
mixed layer the variance of vertical velocity, s\,zv, is
larger than the variances of other components, while the
variance of the velocity component parallel to the sur-
face stress is the smallest. This is the opposite of what is
seen in shear turbulence, and is a consequence of the
Stokes production term feeding energy into the vertical
velocity component, while the current shear production
term feeds energy into the horizontal components.
Linear vorticity dynamics in rapid distortion theory
captures these differences (Teixeira and Belcher 2002).
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FIG. 10. Sensitivity of the TKE budget to variations in the Stokes depth scale, d. All simu-
lations have La; 5 0.3. (a) Stokes production (dotted curve) d 5 3.2 m, d 5 4.8 m (solid curve),
d 5 6.4 m (dashed curve), and d 5 9.5 m (dash—dot curve). (b) Total shear production. (c) As in
(a), but for transport. (d) As in (a), but for dissipation.
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(d) As in (a), but for s2.

Toward the base of the mixed layer, and close to the
surface, s2 is smaller then either of the other variances
as a consequence of vertical motions being inhibited
near interfaces and energy being distributed into the
horizontal components (Hunt and Graham 1978).

Figures 11b-d show si/w , sj/w3, and si/w3, for
simulations with La; , 0.5. An idea of how well the
scaling works can be gained by noting that there is a
factor of 10 variation in Wi._ for the simulations shown
in Fig. 11. D’Asaro (2001) and Tseng and D’Asaro (2004)
present profiles of sZ/u% obtained from Lagrangian
floats. Since no information on the Stokes drift was
given for these data, the observations shown in Fig. 11b
have been rescaled according to Eq. (3), with La; 5 0.3,
suggesting that the magnitude of the observed s2/u%
is consistent with Langmuir turbulence for a fully de-
veloped sea. The shapes of the observed and modeled
profiles are similar, with the maximum variance occur-
ring around z/h 5 20.15 and 20.2.

Profiles of sj/ws,_are shown in Fig. 11c. The variance
decreases rapidly with depth between the surface and
z/h 5 20.1, decreasing more gradually over the rest of
the mixed layer. Plueddemann et al. (1996) and Smith
(1998) estimated s, just below the surface using side-
scan Doppler sonar. Estimates of the surface stress and
the Stokes drift for these data are provided in Smith
(1998). The actual depth of the observations is not well

determined and has been set to 2.5 m in Fig. 11c (Smith
1998). The results from Smith (1998), which are aver-
ages over two periods during the same storm, are in
reasonable agreement with the LES. In contrast the
results from Plueddemann et al. (1996) are about an
order of magnitude larger than obtained from the LES.
Based on these observations Smith (1999) has suggested
that s, ; us which is not consistent with the present
LES. An analysis similar to that of Smith (1999) has been
done by Skyllingstad (2000) and Min and Noh (2004)
using LES data, both studies finding that s, ; wx.
The depth associated with the sonar observations is in
the region where the effects of wave breaking are likely
to be important, which is not represented in the present
simulations. Min and Noh (2004) and Sullivan et al.
(2007) have reported results from two LES studies, which
include a parameterization for the effects of breaking
waves, in addition to the effects of wave—current inter-
actions. Both studies suggest that the effects of wave
breaking on the velocity variance profiles are generally
small, except very close to the surface, where TKE was
increased. This increase is mainly in the small-scale,
subgrid, motions that are probably filtered out of the
sonar data. Both Min and Noh (2004) and Sullivan et al.
(2007) found that the resolved s§ decreased slightly
when wave breaking was included in the simulations,
the Langmuir circulations becoming less coherent.
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These results suggest that the effects of wave breaking
are unlikely to cause the difference between the data in
Smith (1999) and the large-eddy simulations.

Figure 11b shows that the depth of the sonar obser-
vations lies close to the region where s, decreases
rapidly with z/h. This suggests that variations in the
mixed layer depth could lead to changes in the near
surface s, measured by sonar. During the storm studied
by Smith (1998) the mixed layer depth appears to have
increased, and there were significant variations in mixed
layer depth in the Plueddemann et al. (1996) data. It is
not clear that these variations in mixed layer depth
would lead to the conclusion s, 3 us, but the LES re-
sults suggest that the interpretation of the near-surface
data in terms of simple scalings is not straightforward.

Profiles of sj/wil_ are shown in Fig. 11d. In the region
close to the surface SS/W,{L decreases rapidly, reaching a
minimum at about z/h 5 20.2. There is a local maximum
in s2, which is not very pronounced, at about z/h 5 20.8.

Equation (3) implies that the velocity-component
variances when nondimensionalised by uZ should vary
as 1/L&{" in the regime dominated by Langmuir turbu-
lence. Figures 12a—c show maximum value of s2/u% and
the values of sj/u and sj/u% at z/h 5 20.2 (corre-
sponding to the position of the minimum in the 33
profile) as a function of La;. All three variances follow
the Langmuir scaling for La; , 0.5. This is consistent
with Li et al. (2005) who found that s2/u% for Stokes-
forced simulations increased rapidly with decreasing La;
for La, , 0.7. For La, - 0.5 both sj/u% and sJ/ux depart
from the Langmuir scaling and tend toward values ap-
propriate for shear turbulence.
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FIG. 12. Variations in variances scaled
by s2 with La,. (a) The maximum s2/u?
as a function of La;. The dotted line shows
s2/uf 5 053/L4"°. The horizontal line is
the value for a neutral shear flow. (b)
Shown is s2/uf at z/h 5 0.2 as a function
of La. The dotted line shows si/uf 5
0.48/L&". (c) Shown is s¥/u% at z/h 5 0.2
as a function of La,. The dotted line
shows s2/u? 5 0.18/L&".

The effect of the vortex force is to increase s3/u% and
s7/u% above their values in a normal shear flow so that
the change from the Langmuir regime to the shear re-
gime appears to be continuous and gradual. The be-
havior of s2/uz is rather different. In the region of the
Stokes shear s2/u? is reduced below the value for nor-
mal shear turbulence. Figure 12 shows that the magni-
tude of s2/uf at z’h 5 20.2 reaches a minimum around
La; 5 0.4. For smaller values of La,, s2/u? increases ac-
cording to the Langmuir scaling given by Eq. (3). For
values of La, greater than 0.4, s2/uZ increases toward the
value appropriate to shear turbulence, but this is not
reached until La, > 2-3. The variation of s2/u% is sim-
ilar to that shown by the dissipation rate (Fig. 4) and is
also due to the variations in TKE production due to
Stokes shear and current shear.

b. The effects of Coriolis—Stokes forcing

The results presented so far have established that
Langmuir turbulence can be defined as a distinct scaling
regime, as suggested by the Li et al. (2005) regime di-
agram. As explained above this implies that velocity
statistics scaled by wx, should not be functions of La,
or if scaled by ux should vary with La; in a way consis-
tent with Eq. (3). Figure 13 shows the minimum value of
w93/ud. as a function of La,. In this case the LES results
do not follow the dependence on Lay, varying somewhat
more slowly with La; than Eqg. (3) suggests, implying
that W/wil_ is not constant.

Figure 2 shows that the transport of TKE from the
region of Stokes production is mainly associated with w3,
and the minimum value of w93 represents net energy flux
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at La, 5 4 is for the shear only simulation. (b) Shown is w83/u2 as a function of fd/uxLaZ?.

from this region into the bulk of the mixed layer. This
suggests that the failure of w92 to follow Langmuir scaling
may be a consequence of the variation in the Stokes
production, noted in section 5c.

The Stokes-shear production at a depth d can be es-
timated by the Taylor expansion as

>udw9 Ug,

— >U -
udw9 —> 7 uwmyl

2 25 4 > 50
The stress gradient at the surface varies with fuy (see
Fig. 9), so the Stokes production should vary like fu%. As-
suming that the energy exported from the region of Stokes
shear is just a fraction of the Stokes production, then
w/d ; fud), and consequently wgE/wd ; fdusla, ?,
where wg? is the value of w9® at the base of the region of
Stokes shear. Figure 13b ShOV\ﬂ\I@S/WiL as a function of
fd/u«La> The magnitude of wg3/w}, decreases with in-
creasing fd/u*ﬁ%z, consistent with the suggestion that
the failure of w9 to follow Langmuir scaling is due to
the Coriolis-Stokes forcing of the mean momentum
budget. Because the curvature of the stress profiles in-
creases with decreasing La,, wg3/us. would be expected to
increase less rapidly with La; than Eq. (3) would suggest,
which is the case (Fig. 13). The maximum in the vertical
velocity variance, s2/w#,, also shows a weak depen-
dence on fd/u*L&?, (not shown), which accounts for
some of the variability in the profiles of s2/w#, , apparent
in Fig. 11b.

The production of TKE through Stokes shear shows a
coupling to the mean momentum budget through the
Coriolis-Stokes term, but the total shear production
shows much less variation (Fig. 7b). Although produc-
tion associated with the current shear compensates for
the variations in the Stokes production it does not ap-
pear to compensate for the variations in w93, This is be-
cause the transport associated with production of TKE

by current shear is due to the fluxes w9u9?* and wiy9?, and
is also smaller than that associated with Stokes produc-
tion (Fig. 2b).

These results highlight a significant difference be-
tween Langmuir turbulence, as represented by the CL2
mechanism, and normal shear turbulence. In the simu-
lation of Langmuir turbulence the Stokes drift is im-
posed upon the turbulence field but is not itself affected
by the resulting turbulence. This is different to a normal
shear flow in which the mean shear and turbulence are
closely linked. This means that the shear production
term in the TKE budget can adjust independently of the
mean momentum balance. In this case a dependence of
the turbulence properties on the Coriolis parameter is
not expected. In the present simulations the Stokes
shear production cannot adjust in the same way so that
the TKE budget and other properties of the turbulence
may depend on the Coriolis parameter, as discussed. In
reality it is possible that there could be interactions
between the wave-induced shear and turbulence leading
to the possibility of an adjustment of the Stokes shear,
but this is not included in the CL2 mechanism.

c. The effects of varying the Stokes depth scale

Figures 14a—c show the scaled velocity variance pro-
files from simulations in which d was varied. There seem
to be only relatively minor variations in the variance
profiles, particularly when compared to the variations in
Figs. 11. The most systematic variation is in the depth of
the minimum in s? profile (Fig. 14c), which appears to
increase as d increases. Figure 14d shows the profile of
sZ/wz, as a function of z/d. The depth scaling collapses
the individual profiles onto a single profile for depths
less than d more effectively than using z/h (cf. Fig. 14c).

These results suggest that the parameter d/h is not
very significant in determining the properties of Lang-
muir turbulence. However, for the present simulations
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FIG. 14. (a) Profiles of s2 scaled by w#, for different values of the Stokes depth d, plotted as
a function of z/h. The line typesare d 5 3.2 m (dotted), d 5 4.8 m (full), d 5 6.4 m (dashed), and
d 5 9.5 m (dot-dash). (b) Asin (a), but for 55. (c) Asin (a), but for s2. (d) Asin (a), but profiles
of s scaled by wZ, against nondimensional height z/d.

d/h varies from 0.09 to 0.27. This lack of variation with
changes in d/h is consistent with the findings of Harcourt
and D’Asaro (2008), who found a strong dependence of
s2/uZ on h/d for h/d , 0.1.

7. Entrainment

The importance of Langmuir turbulence in deepening
the mixed layer is still not clear (Thorpe 2004). Langmuir
(1938) suggested that the circulations played a role in
the formation of the thermocline. Li et al. (1995) iden-
tified periods of mixed layer deepening during the
Long-Term Upper Ocean Study (LOTUS) that satisfied
the criterion derived in Li and Garret (1995) for deep-
ening by Langmuir circulations.

Figures 15a—d show the buoyancy, shear, and shear 1
transport terms in the TKE budget around the base of
the mixed layer, with the different panels showing re-
sults for different Langmuir numbers. For the highest
Langmuir numbers (La; 5 0.4-0.3) current shear is
smaller than the transport term as a source of TKE in
the thermocline, but as La; decreases the current shear
becomes larger than the transport. This is due in part to
an increase in the shear production, and in part a de-
crease in the transport term. The decrease in the
transport term is related to the effects of the Coriolis—
Stokes forcing discussed previously. The buoyancy work
in these simulations is about 50% of the combined shear
production and transport of TKE into the thermocline

and is comparable to the dissipation rate. Close in-
spection of Figs. 15a-d also reveals some variation in
nondimensional dissipation rate at the base of the mixed
layer that appears to be associated with the variations in
other terms in the budget. This is responsible for at least
part of the variability noted in section 5a.

Figure 16a shows the variation of the entrainment
flux with the TKE budget scale w=,_/h, for simulations
with La; , 0.5. This linear variation of the entrainment
flux with W~;§|_/h, indicates that the entrainment is being
driven by the Langmuir turbulence by a combination of
the transport of TKE and current shear. This contrasts
with convectively driven turbulence in which current shear
does not play a fundamental role in entrainment. Figure
16b shows the entrainment flux, nondimensionalized by
us/h as a function of La, For La; , 0.5 the nondimen-
sional entrainment flux varies as 1/L&, consistent with
Langmuir turbulence. For larger values of La; the en-
trainment rate tends toward the value obtained for a
shear-driven mixed layer without wave effects. In these
simulations the wave effects lead to a significant en-
hancement in entrainment relative to the shear-only
simulation.

The subgrid contribution to the buoyancy flux is small,
even at the base of the mixed layer and in the stable region
immediately below, which suggests that the energetics of
the entrainment process are being adequately resolved in
these simulations. This is also suggested by the magnitude
of the dissipation length scale immediately below the base



AUGUST 2009

GRANT AND BELCHER

-0.8

—-0.9

<
~ —1.0
N

\
\\ N
.\ ‘\‘
\\ \V

-0.8

—-0.9

<
~ —1.0
N

2

-0.2 -0.1 0.0 0.1 0.2 0.3
TKE Budget (scaled)

1885

7 ‘
-0.8F A\ o I b4
: WA CEo
~0.9 3 W \ I E
- \\\ // I
< o N R
: S\ 5
1 ;, \\ // 7z 3
\\\
—1.2F \ E
—-0.2 -0.1 0.0 0.1 0.2 0.3
TKE Budget (scaled)
F Ty ‘
—0.8F W ay d 5
: b Lot
—0.9F \\ /// 3
E | oo
c £ Y Sl
} 71'05 W Sl
N\ 7
—1.1F Wy E
: N 77
: W7
—-1.2F 7 E
E W

TKE Budget (scaled)

FiG. 15. Plots showing terms in the TKE budget in the lower part of the mixed layer and the
thermocline. All profiles are scaled by wil_/h. Buoyancy (full curves), shear production 1 transport
(dashed curves), shear production (dotted curves), dissipation (dash-dot curves). Simulations with
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of the mixed layer, which is similar to the mixed layer
value, and is much larger than the grid scale. At greater
depths the dissipation length scale increases, possibly in-
dicating the presence of wave motions.

The Ozmidov scale is smaller than the grid size, so the
LES does not resolve the inertial subrange in the stable
region. This suggests that while the energetics of the
entrainment process is being resolved the details of the
process are probably not. The mean structure in the en-
trainment region may depend on details of the entrain-
ment process and hence on the resolution of the LES
(Sullivan et al. 1998).
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8. Discussion

The purpose of this study has been to give an answer to
the following question: What is the scaling for Langmuir
turbulence? To answer this question idealized large-eddy
simulations have been used. The idealization is twofold,
first key parameters such as ux and usy and d have been
varied, or in the case of d fixed, independently of each
other in the simulations. Recent studies by Sullivan et al.
(2007) and Harcourt and D’Asaro (2008) have empha-
sized the interdependence of the parameters listed above
by calculating Stokes drift profiles for empirical wave
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FiG. 16. Plot of the entrainment buoyancy flux, wib9, ., as a function of w3 /h for simulations

with La; , 0.5w9b9,

a function of La;. Here wibg,

(dotted curve). (b) The entrainment buoyancy flux, normalized by ui/h, as
h/u 5 0.045/La? (dotted line).
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spectra, restricting the range of parameter space covered
by realistic variations in winds and wave fields.

The second idealization uses the ability of the LES
technique to isolate processes that in reality would be
difficult to separate, such as Langmuir turbulence and
wave breaking. The LES is being used as a laboratory
version of the oceanic mixed layer in which controlled
experiments can be carried out.

In addition to the idealized nature of the simulations,
large-eddy simulations make a number of assumptions. In
common with previous studies of Langmuir turbulence
this study assumes that the effects of waves on mixed
layer turbulence can be represented through the Craik-
Leibovich (CL2) model. There are also uncertainties as-
sociated with the subgrid model as well as resolution and
numerical approximations.

Variations in the magnitude of the dissipation rate
relative to that expected for shear-driven turbulence
and the results for s2/u% of D’Asaro (2001) and Tseng
and D’Asaro (2004) suggest that turbulence in the ocean
mixed layer is not purely shear driven. Although com-
parison with LES is suggestive of Langmuir turbulence it
is not conclusive, and also given the uncertainties in LES
a more rigorous testing of the scaling results presented
here, against observations, is clearly desirable.

To test the proposed scaling it would be necessary to
obtain data over a range of sea states to obtain a rea-
sonable variation in La;. Harcourt and D’Asaro (2008)
calculated La, for a range of wind speeds and wave ages
for pure wind-driven seas using empirical wave spectra
and drag coefficients. Considering wind speeds up to
15 m s2%, their Table 1 suggests a variation in La; from
0.27 to 0.36, for wave ages, c,/U1q (Where ¢, is the phase
speed at the spectral at the peak of the wave spectrum
and Uqq is the 10-m wind speed) varying from 1.2 to 0.6
and U, varying from 8 to 15 m s,

I1f the proposed scaling isvalid Eg. (3) suggests that over
this range of Lay, eh/uz should vary by a factor of 1.8, and
s2/u% by a factor of 1.5. Smaller ranges of La, would
produce correspondingly smaller variations in dissipation
and vertical velocity variance making it harder to test the
scaling. To obtain the required variations in wind and
wave condition observations would probably need to be
obtained during midlatitude storms to cover the range of
La;. The results of Harcourt and D’Asaro (2008) suggest
that d/h should also be greater than 0.1, putting con-
straints on the mixed layer depth. Of course, in addition
to the turbulence measurements, measurements of the
wave field to estimate the Stokes drift are also required.

The above gives an idea of the data needed to test the
LES predictions quantitatively. However, to translate
this into an observational strategy and to assess the fea-
sibility of obtaining sufficient data would need a careful
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consideration of the errors in measuring dissipation (both
instrumental and sampling) in the oceanic mixed layer.

9. Conclusions

Large-eddy simulations have been used to charac-
terize Langmuir turbulence in the oceanic mixed layer.
The main results of this study are as follows:

a The velocity and length scales of Langmuir turbulence
are W« 5 (ufug)Y and the mixed layer depth.

a When the turbulent Langmuir number is less than 0.5
profiles of dissipation rate and velocity variances scale
with wx and are independent of La;. Here La; , 0.5
corresponds to the Langmuir turbulence regime,
which is distinct from normal shear-driven turbulence.

a The buoyancy flux at the base of the mixed layer scales
with ws_ /h entrainment by Langmuir turbulence is
larger than for normal shear-driven turbulence.

a The properties of Langmuir turbulence depend only
weakly on the Stokes depth d for the range of d/h
considered in this study.

a The transition between Langmuir turbulence and
shear turbulence occurs for 0.5 , La; , 2.

a The effect of the Coriolis force on the Stokes drift in
the mean momentum budget leads to a coupling be-
tween the TKE budget and the mean momentum
budget. One effect of this coupling is that turbulent
transport of TKE, and to a lesser extent the variance
of the vertical component of the turbulent velocity,
depend on the Coriolis parameter. This effect is most
significant for small values of La;.

a Currently available observations cannot be used to test
the LES scaling because the necessary wave parame-
ters are not usually available from published sources.
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