
GDASH: a grid-enabled program for
structure solution from powder diffraction
data
Article

Published Version

Griffin, T. A. N., Shankland, K. ORCID: https://orcid.org/0000-
0001-6566-0155, van de Streek, J. V. and Cole, J. (2009)
GDASH: a grid-enabled program for structure solution from
powder diffraction data. Journal of Applied Crystallography, 42
(2). pp. 356-359. ISSN 0021-8898 doi:
10.1107/S0021889809006840 Available at
https://centaur.reading.ac.uk/1822/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http:// journals.iucr.org/j/ issues/2009/02/00/db5053.db5053.pdf
To link to this article DOI: http://dx.doi.org/DOI:10.1107/S0021889809006840

Publisher: Wiley-Blackwell Publishing, Inc

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

computer programs

356 doi:10.1107/S0021889809006840 J. Appl. Cryst. (2009). 42, 356–359

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 2 October 2008

Accepted 24 February 2009

2009 International Union of Crystallography

Printed in Singapore – all rights reserved

GDASH: a grid-enabled program for structure
solution from powder diffraction data

Thomas A. N. Griffin,a Kenneth Shankland,a* Jacco van de Streekb‡2and Jason

Coleb

aSTFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK, and
bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. Correspondence e-mail:

kenneth.shankland@stfc.ac.uk

The simulated annealing approach to structure solution from powder diffraction

data, as implemented in the DASH program, is easily amenable to

parallelization at the individual run level. Very large scale increases in speed

of execution can therefore be achieved by distributing individual DASH runs

over a network of computers. The GDASH program achieves this by packaging

DASH in a form that enables it to run under the Univa UD Grid MP system,

which harnesses networks of existing computing resources to perform

calculations.

1. Introduction

DASH (David et al., 2006) is a computer program for structure

solution from powder diffraction data (SDPD) that, since its first

release in 1999, has placed computational efficiency as well as

effectiveness at the heart of its design. It employs the now widely

adopted global optimization approach to SDPD and, in particular,

uses simulated annealing (SA) as its primary optimization method.

By its nature, no individual SA run is guaranteed to find a global

minimum equating to the solved crystal structure in a finite time

frame and so multiple SA runs are required when tackling an SDPD

problem in order to maximize the chances of locating this global

minimum. For relatively small problems of the order of 15–20 degrees

of freedom, only a small number of runs (�50) is typically required in

order to locate the global minimum several times. For more complex

problems, of the order of 30 or more degrees of freedom, the success

rate (defined as the number of SA runs reaching the global minimum

divided by the total number of SA runs and expressed as a percen-

tage) can fall to only a few percent, and successful structure solution

may necessitate several hundred SA runs to be performed. Faced

with such a processing load, one can consider invoking fine-grained

parallelization of the time-consuming calculations in order to speed

up the evaluation of a single SA run, or coarse-grained paralleliza-

tion, taking advantage of the fact that each SA run is independent of

every other and that there is no requirement for these runs to be

performed sequentially, i.e. this is an ‘embarrassingly parallel’

problem. The former approach, utilized mostly on symmetric multi-

processing/shared memory based computers, has been exploited in

crystallography for a variety of demanding calculations (Diederichs,

2000). The latter approach has also been used to good effect in other

crystallographic multisolution-type procedures, such as that

employed by Shake and Bake (Miller et al., 2007). Both approaches

have their advantages, but as a general rule, if a problem falls into the

category of embarrassingly parallel then the latter approach is

favoured, as it generally does not require modification of the core

code and can be scaled to a vast number of processors that can be

resident in computers that are geographically quite distinct.

With DASH, we have pursued the latter approach, using the Univa

UD Grid MP system (Univa UD, 2008) which can harness the spare

CPU cycles of existing networked computing resources (such as a

departmental PC network) in a well defined manner. It thus has the

potential to achieve very large scale parallelization without the need

to invest in new hardware. Furthermore, Grid MP is widely used and

has been well tested on other embarrassingly parallel tasks (such as

protein–ligand docking), and it has all the features required to enable

DASH to be easily distributed across a network. DASH (Version 3.1

onwards) has thus been modified to allow its SA engine to be driven

by command file, in order to allow it to be run under Grid MP.

2. GDASH overview

GDASH is a command-line driven program that takes, as input, files

generated using DASH and submits them to a Grid MP server (a

computer that runs the core Grid MP software) for subsequent

execution by DASH on client PCs (computers that run the Grid MP

MPAgent software) that are in contact with the Grid MP server

(Fig. 1). It also has the ability to retrieve the results of these DASH

calculations from the Grid MP server at any time and amalgamate

them into a single results file that is readable by DASH (Fig. 2).

3. Program description

3.1. Creation of input files for GDASH

In setting up a normal SDPD attempt using DASH, the user

follows a well defined set of steps, generating a series of required files

(e.g. .sdi, .hcv) along the way, culminating in the execution of a

number of sequential SA runs. For a full description of these steps

and of the function of the various files generated, the reader is

referred to David et al. (2006). As of Version 3.1 of DASH, the user

can specify the generation of an additional batch file for subsequent

execution on a grid-type system (or a multiple-core CPU), as opposed

to pressing the ‘Solve’ button to start a standard sequence of runs

(Fig. 3, top). The batch (.grd) file generated is simply a text listing of
‡ Present address: Avant-garde Materials Simulation, D-79100 Freiburg,
Germany.

the names of the DASH control (.dbf) files that are generated. The

number of .dbf files generated depends upon the total number of SA

runs requested and the number of SA runs per package (where each

package represents a discrete number of SA runs upon which a single

instance of DASH will operate), with the number of files equal to the

total number of SA runs divided by the number of runs per package

(Fig. 3, bottom). Typically, each package will contain only a single SA

run, and thus a request for 500 SA runs will generate 500 .dbf files.

DASH gives the user the option of saving the .grd and .dbf files into a

new directory, in order to provide a tidy directory structure and allow

multiple sets of grid files to be created if desired. Once the .grd and

.dbf files have been generated, the user may exit DASH.

3.1.1. The .dbf file. The .dbf (DASH batch file) file is an ASCII file

containing the necessary information that can be read in by DASH in

order to set up an SA run. Thus, it contains the locations of the .sdi

(DASH project file, which lists files needed for the correct setup of

the SA) and .zmatrix (molecular structure description) files, and a

location for the output .dash file into which results are written. The

file is fully commented with easy-to-interpret control parameter

names, e.g. MAXMOVES is the maximum number of SA moves

allowed in a single SA run. The .dbf file can be edited by hand if

needed, but in practice this should rarely be necessary.

3.1.2. DASH command line execution. If the DASH executable is

invoked from the command line with an argument consisting of a .dbf

file (e.g. c:\dash.exe mytestfile.dbf), DASH does not display

the usual graphical user interface (GUI) but instead begins asyn-

chronous execution of the SA run(s) specified in the .dbf file. Upon

completion, the program output is stored in the .dash file specified in

the .dbf file. Note that this ‘suppressed-GUI’ mode of operation is

essential to enable DASH to operate in a distributed environment

where it will be executing in the background at low priority on PCs

that are already in use by other people. Note too that running DASH

in this mode also brings a small performance gain (�10% reduction

in execution time) relative to the standard mode of operation, as the

program no longer has the overhead of updating the GUI after every

SA move.

3.1.3. Submitting jobs using GDASH. GDASH is invoked from the

command line, so the first task is to open a command prompt window

in the directory that contains the .grd and .dbf files created using

DASH. Typing gdash at the command prompt returns a brief

summary of how to run the program. To submit a job created

previously, the user types gdash filename, where filename is the

name of the .grd file. The program displays the progress of the job

submission in terms of the percentage of data packages transferred to

the grid servers. Once all the necessary files have been uploaded to

the server, the job is started and a job summary (including a job_id

number) is returned (Fig. 4). Note that at this point, execution of the

job is now entirely under the control of the grid servers and the user

can close the command window on the machine used for job

submission.

3.1.4. Monitoring and retrieving jobs using GDASH. In order to

monitor the progress of a job, the user invokes GDASH from the

command line, with the job_id number as an argument. If the job is

not yet complete, it returns the ‘% completeness’ and offers the

computer programs

J. Appl. Cryst. (2009). 42, 356–359 Thomas A. N. Griffin et al. � Grid-enabled powder structure solution 357

Figure 3
The DASH interface allows for the creation of batch files ready for execution on
the grid (top), and also allows the user to specify the total number of SA runs to be
performed and how they are to be packaged for execution.

Figure 2
The relationship of DASH and GDASH. DASH produces the batch files that are
submitted to the grid system using GDASH. GDASH is also used to retrieve results
from the grid system in a format that can be displayed in DASH.

Figure 1
An overview of GDASH operation

option to download those results already completed (Fig. 5). If it is

complete, results files are downloaded from the server to the user’s

PC and then merged into a single .dash file automatically. Note that

the .dash file is assigned a name that incorporates the date and time of

submission of the job. The .dash file can then be opened using DASH

in order to examine the results of the job.

3.1.5. The DASH.mpconfig application configuration file.

GDASH has the ability to control many of the grid parameters that

are relevant to DASH jobs and these can all be set in the

DASH.mpconfig file. A sample configuration file is shown in Table 1.

The only parameters that may need to be adjusted with any frequency

are those pertaining to the timeouts that apply to DASH program

execution. By way of example, the default timeout of 36 000 s sets

limits of 10 h on both the CPU time and the elapsed wall clock time,

after which a job is deemed to have failed.

4. DASH program performance when invoked using GDASH

The performance of DASH running on the Grid MP installation at

the ISIS Facility of the STFC Rutherford Appleton Laboratory has

been evaluated using the moderately challenging optimization

problem of solving the crystal structure of famotidine form B

(Shankland et al., 2002; P21/c, V = 1421 Å3, Z0 = 1, 13 degrees of

freedom, 1.64 Å resolution) from synchrotron X-ray powder

diffraction data. In order to generate easily measurable execution

times, the total number of SA moves per run was set to 1� 107, about

a factor of ten higher than is necessary actually to solve famotidine.

Performance tests were carried out on a single PC, a test grid of five

PCs and the full production Grid MP system, and test results are

summarized in Table 2. Fig. 6 shows the progress of the large job

submitted to the production grid. During the initial quiet phase, data

are transferred from the PC running GDASH to the grid servers,

where 999 workunits are assembled. About 4 min after job invocation

from GDASH, �300 workunits are sent out for execution from the

grid servers to grid client machines. Approximately 5 min later the

first results are returned, and from then on a steady stream of results

is received, with more workunits being sent out to occupy now idle

CPUs. The entire job, consisting of 999 SA runs, is complete in just

under 40 min.

5. Software and hardware environment

GDASH itself runs under MS Windows XP (SP2) and MS Windows

Vista. The GDASH installer requires the MS .Net 2.0 Framework (or

higher) to be installed; this is present by default in XP SP2 and Vista.

GDASH only needs to be installed on computers from which grid

DASH jobs are going to be submitted. The GDASH installer will

computer programs

358 Thomas A. N. Griffin et al. � Grid-enabled powder structure solution J. Appl. Cryst. (2009). 42, 356–359

Figure 4
GDASH provides feedback on the progress of a job submission and returns the
job_id that is necessary for subsequent job monitoring.

Figure 5
GDASH allows the results of partially completed jobs to be retrieved.

Table 1
The DASH.mpconfig file.

Parameter Value

Grid_Username grid_power_user
Grid_Password power_user_password
Results_per_WU 1
Max_Concurrent 1
Max_Error 3
Priority 10
WU_Clock_Timeout 36000
WU_CPU_Timeout 36000
AppName DASH
ProgName DASH 3.1
MGSI_FILESVR_URL https://gridserver.mydomain.com:28443/mgsi/filesvr.fcgi
MGSI_SOAP_URL https://gridserver.mydomain.com:18443/mgsi/rpc_soap.fcgi

Table 2
DASH performance on a test SA job under different conditions.

Single PC Test grid Production grid

DASH 3.1 mode GUI Batch Batch
Number of SA runs 64 64 999
Number of PCs used 1 (using 1

core only)
5 163

Core2Quad CPU speed 2.4 GHz Four 2.4 GHz
and one 2.8 GHz

Mixed†

Total elapsed time 9 h 24 min 40 min
Net minutes per single

SA run
8.43 0.38 0.04

Relative speed rating 1 22 211

† The production grid consisted of a mixture of Athlon, Duron, P4, Xeon, Core2Duo and
Core2Quad CPUs with speeds ranging from 1.2 to 3.6 GHz.

Figure 6
The progress of the 999 workunit test job on the production grid, plotted as a
function of time.

perform this installation but will also perform the installation of

DASH Version 3.1 onto the Grid MP servers. Furthermore, the

installer sets up all the necessary environment variables that permit

GDASH to be accessed from the command prompt. Note that DASH

does not need to be installed onto individual client PCs; the Grid MP

system sends out a copy of DASH (together with a valid licence) to

client PCs as part of each workunit.

5.1. Prerequisites

In order to deploy GDASH correctly, the user must have a running

Grid MP system with administrative access rights and access to the

Grid MP SDK. DASH Version 3.1 or higher must be installed on the

PC from which the GDASH installer is run and the user must have a

site licence (or equivalent demonstration licence) for DASH in order

to permit execution on client machines.

6. Documentation and availability

A GDASH executable can be downloaded free of charge from

http://www.gdash.info. The download package includes the GDASH

installer and full user documentation in PDF format. Whilst GDASH

itself does not require a licence, it does require a licenced copy of

DASH in order to operate.

We are grateful to Sravish Sridar of Univa UD for his assistance in

setting up the original Grid MP system at the ISIS Facility. We are

also extremely grateful to STFC Facilities Business Unit IT Services

for their help and cooperation in deploying the Grid MP agent on

client PCs throughout the FBU. Thanks are also due to Elna Pidcock

and Wei Dong of the CCDC, and to Alastair Florence and Norman

Shankland of the University of Strathclyde, for their help in testing

and validating GDASH.

References

David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell,
W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.

Diederichs, K. (2000). J. Appl. Cryst. 33, 1154–1161.
Miller, R., Shah, N., Green, M. L., Furey, W. & Weeks, C. M. (2007). J. Appl.

Cryst. 40, 938–944.
Shankland, K., McBride, L., David, W. I. F., Shankland, N. & Steele, G. (2002).

J. Appl. Cryst. 35, 443–454.
Univa UD (2008). http://www.univaud.com/hpc/products/grid-mp/.

computer programs

J. Appl. Cryst. (2009). 42, 356–359 Thomas A. N. Griffin et al. � Grid-enabled powder structure solution 359

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=db5053&bbid=BB5

