MDASH: a multi-core-enabled program for structure solution from powder diffraction data

Article

Published Version

It is advisable to refer to the publisher’s version if you intend to cite from the work.
Published version at: http://journals.iucr.org/j/issues/2009/02/00/db5054/db5054.pdf
To link to this article DOI: http://dx.doi.org/DOI:10.1107/S0021889809006852

Publisher: Wiley-Blackwell Publishing, Inc

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR
Central Archive at the University of Reading
Reading's research outputs online
MDASH: a multi-core-enabled program for structure solution from powder diffraction data

Thomas A. N. Griffin, a Kenneth Shankland, a* Jacco van de Streek b‡ and Jason Cole b

*a STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK, and
b Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. Correspondence e-mail:
kenneth.shankland@stfc.ac.uk

The simulated annealing approach to structure solution from powder diffraction
data, as implemented in the DASH program, is easily amenable to
parallelization at the individual run level. Modest increases in speed of
extension can therefore be achieved by executing individual DASH runs on the
individual cores of CPUs.

1. Introduction

DASH (David et al., 2006), a computer program for structure solution
from powder diffraction data, which has recently been adapted to run
on distributed computing systems, can also be run efficiently on a
single computer having more than one CPU, or (as is increasingly
common) a single computer containing a CPU with multiple cores.

2. MDASH overview

MDASH is a graphical user interface (GUI) driven program that
takes, as input, files generated using DASH and controls their
execution on a single standalone PC. Full details of this file generation
and subsequent execution by DASH are given in a paper describing
GDASH (Griffin et al., 2009), and only program aspects
that are specific to MDASH are discussed here.

3. Program description

3.1. Running jobs using MDASH

On running MDASH, a user selects a .grd file generated previously
using DASH, whereupon MDASH displays a summary of the job
(Fig. 1). Pressing the ‘Start’ button will commence the job. DASH is
invoked by MDASH with an execution priority of ‘below normal’ and
all detected CPU cores are used, although these settings can be
configured by the user. MDASH constantly monitors and displays job
progress, and by default, when a job is complete, MDASH invokes
the normal GUI version of DASH to display the results.

4. DASH program performance when invoked using MDASH

The performance of MDASH running on a PC equipped with a
2.4 GHz Core2Quad CPU and a PC equipped with dual quadcore
Xeon 2.5 GHz CPUs has been evaluated using the moderately
challenging optimization problem of solving the crystal structure of
famotidine form B (Shankland et al., 2002; P2₁/c, V = 1421 Å³, Z = 1,
13 degrees-of-freedom, 1.64 Å resolution) from synchrotron X-ray

powder diffraction data. In order to generate easily measurable
execution times, the total number of simulated annealing (SA) moves
per run was set to 1 x 10⁷, about a factor of ten higher than is actually
necessary to solve the structure. The results are summarized in Table 1
and show essentially linear scaling with the number of available cores.

5. Software and hardware environment

MDASH itself runs under MS Windows XP (SP2) and MS Windows
Vista and requires the MS .Net 2.0 Framework (or higher) to be
installed; this is present by default in XP SP2 and Vista. No installer is
required; one simply places the MDASH.EXE file in a convenient
location and creates a shortcut to it if desired. Although MDASH
itself has very modest memory requirements, given that the program
invokes multiple copies of the DASH executable, it is desirable to
have as much memory as possible installed on the PC on which it is
running. The exact amount required depends upon the size of the
problem being studied with DASH, but as a general rule, we would
recommend at least 2 GB RAM for a quadcore PC and at least 4 GB
RAM for a dual quadcore setup.

‡ Present address: Avant-garde Materials Simulation, D-79100 Freiburg,
Germany.
5.1. Prerequisites

In order to deploy MDASH correctly, DASH Version 3.1 or higher must be installed on the PC on which MDASH is installed. Note that a site licence is not necessary in order to have more than one copy of the DASH executable running on a standalone PC.

6. Documentation and availability

The MDASH executable is supplied as an ‘unsupported extra’ in the DASH Version 3.1 software distribution available from the Cambridge Crystallographic Data Centre. Whilst MDASH itself does not require a licence, it does require a licenced copy of DASH in order to operate.

We are grateful to Elna Pidcock and Wei Dong of the CCDC, and to Alastair Florence and Norman Shankland of the University of Strathclyde, for their help in testing and validating GDASH.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Single PC</th>
<th>Single PC</th>
<th>Single PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASH 3.1 mode</td>
<td>GUI</td>
<td>MDASH</td>
<td>MDASH</td>
</tr>
<tr>
<td>Number of SA runs</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Number of CPUs</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CPU architecture</td>
<td>Cor2Quad</td>
<td>Cor2Quad</td>
<td>Xeon E5420</td>
</tr>
<tr>
<td>Number of cores utilized</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>CPU speed</td>
<td>2.4 GHz</td>
<td>2.4 GHz</td>
<td>2.5 GHz</td>
</tr>
<tr>
<td>Total elapsed time</td>
<td>126 min</td>
<td>28 min</td>
<td>12 min</td>
</tr>
<tr>
<td>Relative speed rating</td>
<td>1</td>
<td>4.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

References