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Abstract 

 

To investigate the perception of emotional facial expressions, researchers rely on shared sets 

of photos or videos, most often generated by actor portrayals. The drawback of such 

standardized material is a lack of flexibility and controllability, as it does not allow the 

systematic parametric manipulation of specific features of facial expressions on the one hand, 

and of more general properties of the facial identity (age, ethnicity, gender) on the other. To 

remedy this problem, we developed FACSGen: a novel tool that allows the creation of 

realistic synthetic 3D facial stimuli, both static and dynamic, based on the Facial Action 

Coding System. FACSGen provides researchers with total control over facial action units, 

and corresponding informational cues in 3D synthetic faces. We present four studies 

validating both the software and the general methodology of systematically generating 

controlled facial expression patterns for stimulus presentation. 

 

Keywords: emotion; facial expression; software; research material; facial action 

coding system; FACS
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FACSGen: A Tool to Synthesize Emotional Facial Expressions through Systematic 

Manipulation of Facial Action Units 

 

Much of the research addressing the communication of emotion concerns the 

perception and interpretation of facial expressions. Typically, participants are shown still 

pictures or videos of facial expressions, and researchers analyze recognition rates and 

confusion matrices (e.g., Hess, Blairy, & Kleck, 1997). Alternatively, some researchers, in 

the field of neuroscience for instance, may be interested in the measurement of the influence 

of the perception of a given facial expression on a secondary task, like in experiments 

involving priming (e.g., Ruys & Stapel, 2008) or backward masking (e.g., Szczepanowski & 

Pessoa, 2007) of facial expressions. 

A growing number of databases are available, containing a large number of facial 

expressions (e.g., Lundqvist, Esteves, & Öhman, 1998; Kanade, Cohn & Tian, 2000; Pantic, 

Valstar, Rademake, & Maat, 2005; Goeleven, De Raedt, Leyman, & Verschuere, 2008; or 

Hirsh, Alqudah, Stutts, & Robinson, 2009 for the facial expression of pain). This material can 

of course be used as is, but researchers often manipulate it to suit their needs. Specific types 

of facial expressions can be investigated by applying various methods to create specific 

experimental stimuli. Image morphing techniques, for instance, allow the creation of dynamic 

facial expressions by extrapolating a configuration of facial features from a source picture 

and transfer it to a target picture. Using this technique, a typical stimulus would show a 

neutral face evolving into one of the basic emotions (e.g., Joormann, & Gotlib, 2006). 

However, manipulation of this kind has some limitations related, for example, to the 

assumption that the actual dynamics of unfolding of emotional expressions can be faithfully 

represented by a linear function from neutral to emotional expression reflects – an assumption 

for which there is little evidence (see Scherer & Ellgring, 2007).  Researchers can manipulate 
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this tailor-made material in certain ways, for example, by specifying the speed of the 

unfolding, or creating ambiguous stimuli midway between two emotions. 

Whereas shared and standardized stimulus sets facilitate the comparison of results 

across studies, often researchers are rather limited in their ability to manipulate stimulus 

features, and to ascertain appropriate experimental control. For instance, only very few 

databases of actor-posed facial expressions contain facial configurations that have been 

controlled in terms of precise muscle movements, specifying the informational cues available 

in the face. Generally, actors are only provided with verbal labels of emotions – often only 

basic emotions – and instructed to pose the respective expressions corresponding to their 

personal interpretation of those emotions. A researcher seeking to manipulate particular facial 

features (e.g., the amount of eye opening for example), or interested in studying less orthodox 

facial expressions (e.g., the expression of pain), is thus left with the difficult task of creating a 

dedicated database. 

An alternative approach is to use computer-generated facial expressions. In recent 

years, facial animation attracted a lot of attention in the computer graphics community (Parke 

& Waters, 1996). A number of successful solutions have been proposed (e.g., Blanz & Vetter, 

1999; Zhang, Snavely, Curless & Seitz, 2004; Bickel, Botsch, Angst, Matusik, Otaduy, 

Pfister, & Gross, 2007; Ma, Jones, Chiang, Hawkins, Frederiksen, Peers, Vukovic, 

Ouhyoung, & Debevec, 2008; Cosker, Borkett, Mashall, & Rosin, 2008), making use of 

motion capture techniques to record facial expressions portrayed by actors, and developing 

algorithms to render high quality animations reproducing the facial expressions recorded. 

Once synthesized, these facial expressions could, theoretically, be manipulated to create ad 

hoc facial expressions, in much the same vein as modern animated Hollywood movies. 

However, despite the high quality graphics that can be produced, the technical investment is 

such that it is very unlikely to appeal to researchers in psychology or neuroscience who seek 
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to produce material to investigate facial expressions.In this article, we describe FACSGen, a 

novel tool to create experimentally controlled facial expression patterns. FACSGen takes 

advantage of the flexibility of the Facial Action Coding System (FACS; Ekman & Friesen, 

1976; Ekman, Friesen, & Hager, 2002) to represent facial expressions while fulfilling the 

requirements for reproducibility and comparison of material across studies. FACSGen allows 

the creation of realistic facial expressions by parametrically manipulating action units (AUs) 

portrayed on an infinite number of synthesized 3D faces, created with FaceGen Modeller 3.3 

(Singular Inversions Inc., 2009) – see for instance Cristinzio, N’Diaye, Seeck, Vuilleumier, & 

Sander (in press), N’Diaye, Sander, & Vuilleumier (in press), Roesch, Sander & Scherer 

(2009), Roesch, Sander, Mumenthaler, Kerzel & Scherer (in revision) and Roesch, Sander, & 

Scherer (in preparation) for examples of AUs manipulation using FACSGen in various 

experimental settings. The FACS defines the common AUs that facial muscles can produce, 

thus allowing the formal description of the constituents of any facial expression. It contains 

58 AUs, out of which 20 are commonly used to describe most facial expressions of emotions. 

FACSGen dynamically combines individual AUs to generate a virtually infinite variety of 

dynamic facial expressions and allow the creation of an unlimited number of facial 

expressions, static or dynamic, that can be modeled on a potentially infinite number of facial 

identities. Thus, FACSGen promises to become a key tool in the investigation of the 

perception of facial expressions in general, and the inferences from emotional facial 

expressions in particular. 

We begin by introducing FaceGen Modeller 3.3, a commercial tool we use to create 

and handle realistic 3D facial stimuli.  We then describe FACSGen, the tool we developed, 

which allows the parametric manipulation of facial AUs, as an add-on to FaceGen Modeller 

3.3.  Next, we present four studies that we conducted to validate the software as well as the 
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methodology of using the synthetic stimuli created with this tool.  We conclude by discussing 

the potential of FACSGen as compared to other software currently available. 

 

FACSGen: the parameterization of facial expressions 

 

FACSGen is a software we developed to manipulate the expression of synthesized 3D 

faces on the basis of the FACS.  It is used in conjunction with FaceGen Modeller 3.3 

(Singular Inversions Inc., 2009), a commercial software that allows the creation and 

manipulation of an infinite number of realistic synthesized faces (Shimojo, Simion, Shimojo, 

& Scheier, 2003; Moradi, Koch, Shimojo, Sarma, & Gutierrez, 2005; Corneille, Hugenberg, 

& Timothy, 2007; Schulte-Rüther, Markowitsch, Fink, & Piefke, 2007; Oosterhof, & 

Todorov, 2008; Todorov, Baron, & Oosterhof, 2008; Freeman & Ambady, in press).  A 

representation of the information flow in FACSGen is shown in Figure 1.  As can be seen, 

FACSGen integrates components of FaceGen Modeller 3.3, allowing the precise and coherent 

control of the same 3D objects, and providing FACSGen with many of the features available 

in FaceGen Modeller 3.3.  Basically, the user provides FACSGen with a representation of the 

dynamics of activation over time for each AU (the curves in the figure), and FACSGen 

produces the corresponding facial expression unfolding over time, either in the form of a 

series of still pictures (png files) or a movie (avi files).  This facial expression can be mapped 

onto any face created using FaceGen Modeller 3.3.   

 

———————————— 

Insert figure 1 about here. 

————————————  
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FaceGen Modeller 3.3  

 

FaceGen Modeller 3.3 is a commercial tool that was originally designed for the 

creation of realistic 3D faces in video games (Singular Inversions Inc., 2009).  It is based on a 

database of thousands of human faces whose shape and texture have been digitized into 3D 

objects.  Representing these faces into factorial space allows the extrapolation of new, unique, 

faces on the basis of a number of continua.  Faces created with FaceGen Modeller 3.3 vary in 

gender, age, and ethnicity, and can be manipulated in ways very similar to a sculptor to create 

very realistic faces.  All faces from all constitutions (e.g., chubby, skinny) and all shapes 

(e.g., sharp-edged, oval) could, in theory, be reproduced.  The user interacts with the software 

through an intuitive graphical user interface, without requiring special training.  FaceGen 

Modeller 3.3 also provides the user with the ability to create her own 3D mesh (i.e., 3D 

topology and detailed texture) from close-up photographs of a person.  Digitized faces can be 

altered and imported into FACSGen just like any other 3D faces created using FaceGen 

Modeller 3.3 (Figure 2).  By default, heads created with FaceGen Modeller 3.3 are bald, but 

additional 3D objects (e.g., hair, facial hair or miscellaneous accessories) can be added if 

needed.  FaceGen Modeller 3.3 is primarily dedicated to the creation of 3D facial 

morphology.  Given a specific morphology, FaceGen Modeller 3.3 allows limited control 

over the manipulation of some basic features of facial expression (e.g., gaze, head direction, 

or phonological codebook) and offers a small number of full-blown, non FACS-based 

emotional expressions.  In our first study, because researchers already using FaceGen 

Modeller 3.3 may want to use these built-in expressions, we asked FACS coders to code these 

expressions (denoted ”FG expressions” in the article) as well as expressions produced using 

FACSGen. 
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———————————— 

Insert figure 2 about here. 

————————————  

 

FACSGen 

 

FACSGen is a software that can import any face exported from FaceGen Modeller 3.3 

(i.e., created from scratch or from close-up photographs; see Figure 2).  It interfaces with 

FaceGen Modeller 3.3 through a C++ SDK library released by Singular Inversion Inc. that 

allows the manipulation of the modeled 3D objects.  The SDK provides access to 150 high-

level, morphological parameters manipulating different aspects of the topology of the face 

(see Figure 1).  In some cases, FACS coders are required to base their judgment on both the 

movements performed by the muscles of the face and the co-occurrence of particular features, 

like the wrinkling of the skin and changes in its pigmentation.  In the presence of AU 12 

“smile”, for instance, FACS coders will code the activation of AU 6 “cheek raise” if so-called 

crow’s feet wrinkles appear in the outer corner of the eyes.  Situations of this type not only 

involve changes in the morphology of the face but also in the visual aspect of the skin.  As 

FaceGen Modeller 3.3 itself does not support the manipulation of such features, we 

complemented FaceGen parameters with our own set of dedicated parameters and augmented 

graphical representations. 

In FACSGen, a graphical user interface allows both the linear manipulation of AUs 

(Figure 3) to edit a static face, and the non-linear manipulation of activation curves (Figure 

4), which allow the representation of complex dynamic changes over time.  The visual output 

consists of a sequence of frames depicting the unfolding facial expression by mapping the 

intensity for each AU and for each point in time.  These frames can then be used individually 
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as static displays of an evolving facial expression, or sequentially composed into a movie 

clip.  The scalar values of the activation curves can be exported in text files for offline 

analyses, and imported back again in FACSGen to generate the exact same facial expressions 

on different faces.  This feature responds to the need for the reproducibility of experimental 

setups across studies. 

 

———————————— 

Insert figure 3 about here. 

————————————  

 

———————————— 

Insert figure 4 about here. 

————————————  

 

 

Validation studies 

 

The general methodology consists in creating a number of faces using FaceGen 

Modeller 3.3 to define the base morphology, importing and manipulating them in FACSGen 

to create controlled facial expressions to be used as experimental material for the systematic 

study of inferences made from AU static and/or dynamic configurations.  The creation of 

ecologically valid stimuli requires that a) the AUs manipulated in FACSGen correspond to 

what is described in the FACS, b) synthesized 3D identities produced in FaceGen Modeller 

3.3 are reliably perceived by lay participants (e.g., in terms of gender, believability, and 

intrinsic emotionality, related for example to attractiveness or trust), and c) that the 
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manipulation of AUs on these identities produce facial expressions that are reliably 

recognized by lay participants.  Here, we consider these as the central criteria for a validation 

of the tool. 

The validation procedure we conducted consisted of three parts.  In study 1, we 

verified that our operational definitions of the AUs, and their implementation on a 3D model, 

correspond to convergent coding by trained FACS coders.  For this study, we created a 

number of video clips depicting combinations of AUs that were submitted to certified FACS 

coders for coding.  In study 2, and studies 3a and 3b, we verified the applicability of the 

FACSGen modeling procedure to frequently encountered experimental settings using static 

pictures.  Specifically, in study 2, we investigated how lay participants perceived expressive 

faces, with neutral faces, using 3D synthesis with FaceGen Modeller 3.3, to examine the 

quality of the facial identities In studies 3a and 3b, we manipulated a certain number of these 

faces using FACSGen, applying a selection of the controlled emotional facial expressions 

validated in the first study, and asked participants to rate the underlying emotion.  In this part 

of the research, we used two different versions of these emotional faces: color stimuli (study 

3a) and processed grayscale stimuli (study 3b).  This comparison was made because a 

growing number of researchers, especially in psychophysics and neuroscience, seek to control 

for the low-level features of visual material, including facial expression, by manipulating it in 

a number of ways.  For instance, often color pictures of facial expressions are converted into 

grayscale, and the gray level intensity of all pixels is normalized to ensure that the recognition 

of emotions is not biased by the general luminance and contrast of a particular experimental 

condition (e.g., Pourtois, Grandjean, Sander, & Vuilleumier, 2004, see also Delplanque, 

N'diaye, Scherer, & Grandjean, 2007 for related issues involving spatial frequencies).  

Because such widely used techniques may alter the general perception of facial expressions – 
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which might pose particularly serious problems for synthesized 3D faces – we had both color 

and processed grayscale pictures separately evaluated by lay judges. 

 

Study 1.  Validation of the Action Units manipulated by FACSGen 

 

The facial action coding system (FACS, Ekman & Friesen, 1976 ; Ekman et al., 2002) 

is the most popular facial coding scheme to date.  It defines common action units that facial 

muscles can operate, and thus allows the formal and exhaustive description of the constituents 

of any facial expression, static or dynamic.  Comparing the results produced with FACSGen 

to is the AUs defined in the FACS manual is therefore a critical step in the evaluation of our 

software.   

 

Procedure 

 

Four certified FACS coders were provided with two second clips (50 frames) 

depicting the unfolding of either a single AU or a combination of several AUs, evolving from 

no activation to 100% of activation to produce realistic full-blown expressions.  Clips were 

numbered, and each FACS coder was assigned to a randomized presentation order.  For each 

clip, FACS coders were instructed to mark if the AUs were present (noted 1) or absent (noted 

0), yielding an activation profile of AUs.  FACS coders were not asked to rate the intensity of 

activation for each AU, as judgments of this parameter show poor inter-rater agreement 

(Sayette, Cohn, Wertz, Perrott, & Parrott, 2004). 

Each AU was portrayed on 6 different Caucasian identities (3 females).  Portrayals 

unfolded from a neutral expression to one out of 16 single AUs, or one out of 17 

combinations of AUs as described by the Emotional FACS (EMFACS; Ekman, Irwin, & 
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Rosenberg, 1994).  In addition, because emotional facial expressions created with FaceGen 

Modeller 3.3 have already been used in research, and are likely to be integrated in setups 

involving FACSGen, we created and evaluated clips portraying facial expressions built-in to 

FaceGen (denoted ”FG”).  All clips portrayed one face in full color against a black 

background, frontal view, and facing the observer. 

 

Results and discussion 

 

———————————— 

Insert table 1 about here. 

————————————  

 

Table 1 shows that both the clips portraying a single AU, and the clips portraying a 

combination of AUs were reliably recognized and coded by FACS coders.  Cronbach alphas 

were computed for each FACSGen manipulation, using coded AUs as items, and the 24 

profiles (4 coders x 6 identities) of AUs as variables.  We did not manipulate and evaluate 

AUs that describe head movements.  Consequently, all faces were facing the observer, which 

may have had an effect on the coding of certain AUs.  For instance, FACS coders rarely 

coded AU 19 ”tongue show”, but mostly coded AU 25+26 describing the opening of the 

mouth, even though the tongue was visible.  On the whole, we conclude that certified FACS 

coders reliably recognize the synthetically produced AUs and AU configurations. 

 

Study 2.  Establishing the ecological validity of facial identities produced using FaceGen 

Modeller 3.3 
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FaceGen Modeller 3.3 can create an infinite number of synthesized 3D identities, 

either from scratch or from digitized close-up photographs (see Figure 2).  To use this 

computer-generated material to systematically study the interaction between facial expression 

and facial identity, we need to ensure that lay participants reliably perceive the synthesized 

identities.  In an optimal situation, faces produced with FaceGen Modeller 3.3 should be 

unambiguously recognized as male or female (note that some researchers may need 

androgynous faces, in which case the procedure would have to be adapted accordingly).  

They should also be most believable (i.e., looking as natural as possible given the limitations 

of 3D synthesis) and as emotionally neutral as possible.  Study 2 addressed this issue, and 

allowed selecting a pool of rated identities from which we selected the faces used in studies 

3a and 3b. 

 

Procedure 

 

We created 180 faces using FaceGen Modeller 3.3: Faces were Caucasian male or 

female, of an estimated age between 20 and 45 years old.  The faces were created with the 

aim of being as believable as possible, and as emotionally neutral as possible.  Color pictures 

of the faces were then presented in random orders to 44 students (35 females, mean age 23.7 

years) from the University of Geneva.  Participants were gathered in classrooms, and used a 

web-based interface to report their judgments.  Participants were instructed to rate the 180 

faces on three continuous dimensions: 

• Gender – ”Is this the face of a male, an androgynous person, a female?” (anchored 

”Male”, and ”Female”)  

• Believability – ”Is this face natural? Could you encounter it in the street?” (anchored 

”Synthetic”, and ”Believable/Realistic/Natural”)  
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• Intrinsic emotionality – ”Does this face seem to show a positive, neutral, or negative 

emotion?” (anchored ”Positive”, ”Neutral”, ”Negative”)  

 

Results and discussion 

 

Cronbach alphas were computed for each of the three dimensions, using participants’ 

ratings as columns (items) and the 180 pictures as rows (cases). Single measures intra-class 

correlation coefficients are indicated in parentheses. Results showed that the faces were 

reliably rated on the three dimensions: alpha for gender = 1.00 (ICC = .851) ; for believability 

= 0.94 (ICC = .265) ; and for intrinsic emotionality = 0.96 (ICC = .376).  To determine 

whether participants managed to discriminate the faces on the three dimensions, a t-test was 

performed on the ratings obtained for each of the three dimensions, comparing the first and 

last quartiles of the respective ordered sample.  Results showed that the faces could be 

discriminated on each of the dimensions.  Male faces yielded ratings significantly closer to 

the ”Male” anchor (M = 2.79, SD = 4.11) than did female faces (M = 81.99, SD = 17.76), 

t(2141) = -191 ; p < .001.  Results also showed that the first quartile of the sample was 

significantly less believable (M = 29.67, SD = 27.94) than the last quartile of the sample (M = 

68.63, SD = 28.87), t(3820) = -42.3 ; p <.001.  Finally, results showed that the first quartile of 

the sample was perceived more negatively (M = 35.72, SD = 16.11) than the last quartile of 

the sample (M = 62.51, SD = 15.08), t(3790) = -53.0 ; p <.001. 

Overall these results show that lay participants reliably perceive the gender of 

FaceGen faces, and can reliably attribute ratings of believability, and intrinsic emotionality to 

such faces.  Because FaceGen allows the creation of very different kinds of faces (from very 

realistic to more caricatural), it is very important to be able to assess and control these 

dimensions. 
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Study 3a.  Validation of emotion inferences drawn from FACSGen facial expressions 

(color version) 

 

Procedure 

 

Out of the 180 faces created for Study 2, we selected 77 faces (40 females), for being 

the most unambiguously gender-typed, the most believable, and the most emotionally neutral 

faces.  We then manipulated the faces using FACSGen, to depict the combinations ”Anger: 

AU 9+16+25”, ”Fear: AU 1+2+5+25+26”, ”Happiness: AU 1+2+6+12+25”, and ”Neutral: 

AU 22+25+26” (as described in Study 1, and validated by FACS coders).  These AU 

combinations do not fully concur with some of the complete prototypical facial expressions 

described in the literature (although there is much discrepancy in these descriptions and 

complete prototypical configurations are very rarely found, see Scherer & Ellgring, 2007).  

However, these combinations are very likely to occur in real life situations and frequently 

occur in actor portrayals of emotions (see Scherer & Ellgring, 2007).  In consequence, we 

assumed that they can be recognized by lay participants with reasonable agreement. 

The procedure used was similar to Study 2.  Twenty students (14 females, mean age 

22.1 years) rated color pictures of the 77 faces, each of which portrayed the four facial 

expressions.  Participants were instructed to rate the extent to which the following emotions 

could be perceived in the facial expressions: anger, disgust, fear, happiness, sadness, and 

surprise.  Blank fields allowed them to propose other emotions.  A scale from 0 (”not at all”) 

to 100 (”enormously”) was provided.  They also had to rate the overall intensity of the facial 

expression.  A scale from 0 (”not intense”) to 100 (”very intense”) was provided. 
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Results and discussion 

 

Cronbach alphas were computed, using participants’ ratings as columns (items), and 

pictures as rows (cases). Single measures intra-class correlation coefficients are indicated in 

parentheses.  Results showed that the faces were reliably rated on the 7 scales (6 emotions, 

and intensity): alpha for anger = 0.98 (ICC = .63) ; for disgust = 0.92 (ICC = .30) ; for 

happiness = 0.97 (ICC = .55) ; for fear = 0.98 (ICC = .62) ; for surprise = 0.82 (ICC = .19) ; 

for sadness = 0.87 (ICC = .24) ; and  for intensity = 0.94 (ICC = .39).  To determine whether 

participants can discriminate the emotions portrayed by FACSGen faces portrayed on color 

pictures, repeated measures analysis of variance (ANOVAs) was performed for each of the 

three portrayed emotions Anger, Fear, Happiness and Neutral.  The dependent variables were 

participants’ ratings on the 7 scales.  In all four cases, there was a significant main effect of 

Emotion (Anger: F(5,380) = 1337.0 ; p < .001 ; Fear: F(5,380) = 784.7 ; p <.001 ; Happiness: 

F(5,380) = 1010.0 ; p <.001 ; Neutral: F(5,380) = 276.9 ; p < .001).  Contrast analyses were 

performed by assigning the target emotion as the reference category.  There was a significant 

effect for targets’ emotions (ps<.001), indicating that participants reliably recognized the 

target emotion portrayed by the faces (see Figure 5). The mean intensity ratings for Anger, 

Fear, Happiness and Neutral were 60 (SD = 5.52), 55.6 (SD = 5.82), 37.9 (SD = 4.78) and 

20.8 (SD = 5.52) respectively. 

 

———————————— 

Insert figure 5 about here. 

————————————  
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We conclude that lay participants can recognize, with satisfactory accuracy and a very 

high degree of agreement, the emotions represented by specific AU configurations in 

FACSGen produced facial expressions, built after consensual descriptions found in the 

literature, as well as some empirical findings (Scherer & Ellgring, 2007). 

 

Study 3b. Validation of emotion inferences drawn from FACSGen facial expressions 

(grayscale version)  

 

Procedure 

 

Whereas most psychologists investigating the perception and interpretation of facial 

expressions do not need to alter the stimulus sets available to the research community, a 

growing number of researchers in adjacent disciplines – especially in the neuroscience and in 

psychophysics – seek to disentangle the higher-level effects of the facial expressions from the 

lower-level effects of several dimensions intrinsic to the visual material depicting the facial 

expressions; e.g, the saliency and contrast (e.g, Pourtois et al., 2004) or the spatial frequencies 

(e.g., Delplanque et al., 2007).  To do so, they process this material in ways that may affect its 

recognition (Fiser, Bex & Makous, 2003).  Because this situation may be even worse for 

synthesized material, like faces produced with FaceGen Modeller 3.3, we replicated the 

evaluation of Study 3a to a sub-selection of the 77 emotional facial expressions that were 

being used in a separate experiment, and which we processed in the same way as Pourtois et 

al.  (2004). 

Study 3b was part of larger-scale experiment investigating how the perception of the 

emotions of fear and happiness modulate attention (the results of this work are reported in 

Roesch, Sander, & Scherer, 2009; Roesch, Sander, & Scherer, in preparation – see also 
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Roesch et al., in revision). Ten faces (5 females) were selected from the panel of 77 faces 

created for Study 3a. The faces depicted combinations for Fear, Happiness, and Neutral. 

Because it was irrelevant for the above-mentioned experiments, anger was not included. Each 

face was converted to grayscale and analyzed in Matlab to extract the mean pixel luminance 

and contrast range. Statistical analyses confirmed that the three emotional conditions did not 

differ for luminance and contrast (Pourtois et al., 2004). Upon completion of the attention-

emotion experiment, participants rated the faces they had seen during the experiment in a 

procedure similar to Study 3a: 37 students (29 females, mean age 22.9 years) rated the 

grayscale pictures of the 10 faces (5 females), each of which portrayed the three facial 

expressions. 

 

Results and discussion 

 

Cronbach alphas were computed, using participants’ ratings as colums (items), and 

pictures as rows (cases). Single measures intra-class correlation coefficients are indicated in 

parentheses. Results showed that the faces were reliably rated on the 7 dimensions: alpha for 

anger = 0.82 (ICC = .12) ; for disgust = 0.91 (ICC = .23) ; for happiness = .99 (ICC = .79) ; 

for fear = 0.99 (ICC = .75) ; for surprise = 0.82 (ICC = .1) ; for sadness = 0.93 (ICC = .24) ; 

and for intensity = 0.97 (ICC = .43).  Means on the ratings showed that participants perceived 

the intended emotions in the facial expressions produced (Figure 6).  To determine whether 

participants can discriminate the emotions portrayed in the grayscale version of the FACSGen 

faces, repeated measures analysis of variance (ANOVAs) was performed for each of the three 

portrayed emotions Fear, Happiness and Neutral.  The dependent variables were participants’ 

ratings on the 7 scales.  In all four cases, there was a significant main effect of Emotion (Fear: 

F(5,1845) = 399.3 ; p <.001 ; Happiness: F(5,1845) = 1048 ; p <.001 ; Neutral: F(5,1845) = 
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157 ; p <.001).  Contrast analyses were performed by assigning the target emotion as the 

reference category.  There was a significant effect for targets’ emotions (p < .001), indicating 

that participants reliably recognized the target emotion portrayed by the faces. The mean 

intensity ratings for Fear, Happiness and Neutral were 76.99 (SD = 16.78), 60.01 (SD = 

20.40) and 36.66 (SD = 23.15) respectively. 

 

———————————— 

Insert figure 6 about here. 

———————————— 

 

We conclude that, from processed grayscale FACSGen stimuli, lay participants can 

recognize the emotions represented by specific AU configurations with satisfactory accuracy 

and with a very high degree of agreement. 

 

Summary and discussion 

 

Researchers interested in facial expressions of emotions often rely on shared sets of 

stimuli.  This material contains static pictures, or videos of facial expressions portrayed by 

actors or recorded from live occurrence.  Although using this shared material has proven 

useful to compare results across studies, its lack of flexibility often does not allow the 

necessary degree of experimental control.  To avoid creating their own dedicated stimulus 

sets, researchers have attempted to use techniques such as morphing existing photographs. , 

Only fairly recently researchers in psychology and neuroscience discovered the potential of 

synthetic stimuli (e.g., Ellison & Massaro, 1997 ; Wehrle, Kaiser, Schmidt, & Scherer, 2000 ; 

Pelphrey, Viola, & McCarthy, 2004 ; Sander, Grandjean, Kaiser, Wehrle, & Scherer, 2007 ; 
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Moser, Derntl, Robinson, Fink, Gur, & Grammer, 2007 ; Gaag, Minderaa, & Keysers, 2007 ; 

Parr, Waller, & Heintz, 2008; Hirsh et al., 2009; N’Diaye, Sander, & Vuilleumier, in press; 

Cristinzio, N’Diaye, Seeck, et al., in press; Roesch, Sander, & Scherer, 2009; Roesch et al., in 

revision; Freeman & Ambady, in press).  In response to the manifest need to develop means 

of systematically manipulating facial expressions to allow a optimal degree of experimental 

stimulus control, we developed the tool described in this article,  FACSGen. 

To validate FACSGen, we investigated the perception of single AUs, combinations of 

AUs, and complex full-blown facial expressions of emotion that used 16 AUs in total.  In four 

studies, we submitted this material to both certified FACS coders, and lay participants.  Our 

results showed that a) the AUs manipulated in FACSGen correspond to the FACS 

specifications and are reliably recognized by certified FACS coders, b) the synthesized 

identities produced by FaceGen Modeller 3.3 are perceived by lay participants as reasonably 

believable, and thus can be used in place of naturalistic portrayals, and c) the manipulation of 

FaceGen faces in FACSGen produces facial expressions of emotions that are reliably 

recognized by lay participants. 

FACSGen can be compared to other software like Poser 7 (e-frontier, 2007), Greta 

(Pasquariello & Pelachaud, 2001 ; Malatesta, Raouzaiou, Karpouzis, & Kollias, 2006), 

realEmotion (Grammer, Tessarek, & Hofer, in prep), or the Virtual Actor Project (Hezle, 

Biehn, Schlömer, & Linner, 2004).  These solutions differ widely with respect to user 

friendliness: Researchers often have at their disposal tools that are either too difficult to use in 

a research context (but produce hollywood-class material), or very easy to use but produce 

relatively low quality, often caricature-like material.  In contrast, FACSGen has been 

designed for researchers with the aim to strike a balance between usability and believable 

realism: on the one hand, FACSGen does not require users to acquire new technical 
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knowledge, compared to the other solutions; on the other, it produces high quality, 

ecologically valid research material. 

Contrasting with other current methods for producing synthetic tailored facial 

expressions to FACSGen, we identify a number of additional benefits associated with our 

approach.  Firstly, FaceGen Modeller 3.3 allows the creation of a virtually infinite number of 

realistic identities, of any gender, age, or ethnicity.  For example, the software makes it 

possible to create androgynous faces, and/or mixtures of ethnic backgrounds.  Secondly, 

FaceGen Modeller 3.3 also provides the ability to create 3D meshes from close-up 

photographs of any person.  Digitized faces can then be altered, and used in FACSGen just 

like any other 3D faces created using FaceGen.  Thirdly, the output of FACSGen consists of a 

series of frames, depicting the unfolding facial expression mapping the activation of AUs on 

the geometry of the face.  The frames can then be used either as still portrayals, or converted 

into movie clips, overcoming the limitations of morphing techniques.  Finally, the activation 

curves describing the unfolding intensity of each AU in FACSGen can be exported in 

separate files.  These files can be imported back into FACSGen, and applied to a different set 

of faces or facial expressions, thus allowing comparable material to be used in experimental 

studies.  These options are not available in any of the other software currently available. 

Whereas FACSGen provides researchers with new avenues for creating ad hoc 

material, any synthesized material admittedly poses limitations.  First, the information 

conveyed by facial expressions cannot be reduced to a combination of topological changes in 

the face.  Other channels of information include, for instance, changes in the color, the 

texture, and the elasticity of the skin; all of which is also subject to great inter-individual 

differences.  These are problematic issues for any synthesis system.  FACSGen does, 

however, take some of these aspects into account in the form of dedicated parameters to 

create realistic wrinkles, and we are developing more parameters to achieve the best results.  
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Second, through FaceGen Modeller 3.3, users of FACSGen can animate 3D models digitized 

from close-up photographs of a person (see Figure 2). 

To conclude, we presented FACSGen, a novel tool that allows researchers on facial 

expressions in general, and on facial expressions of emotions, in particular to manipulate 

informational cues portrayed in facial expressions.  It outputs synthetic, yet realistic, 3D faces 

used to produce either static or dynamic material.  It also offers a very handy way of 

representing the unfolding dynamics of the constituents of facial expressions, which allows 

(1) the portrayal of complex dynamic facial expressions, and (2) the comparison of the 

material produced between studies.  We believe that this new research technology allows 

researchers to produce appropriate stimulus material for targeted studies to examine specific 

hypotheses on the AU components of facial expression and their cue value for emotion 

recognition, constituting a precious tool for critical comparisons between competing theories 

as well as theory development. 



 23 

References 

 

Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., & Gross, M. (2007). 

Multi-scale capture of facial geometry and motion. ACM Transactions in Graphics, 

26(3), p. 33. 

Blanz, V., & Vetter, T. (1999). Morphable model for the synthesis of 3D faces. Proc. 

SIGGRAPH. Los Angeles, USA. 

Corneille, O., Hugenberg, K., & Timothy, P. (2007). Applying the attractor field model to 

social cognition: perceptual discrimination is facilitated, but memory is impaired for 

faces displaying evaluatively congruent expressions. Journal of Personality and Social 

Psychology, 93(3), 335-352. 

Cosker, D., Borkett, R., Mashall, D., & Rosin, P. L. (2008). Towards Automatic Performance 

Driven Animation Between Multiple Types of Facial Model. IET Computer Vision, 

2(3), p. 129-141. 

Cristinzio, C., N’Diaye, K., Seeck, M, Vuilleumier, P., & Sander, D. (in press). Integration of 

gaze direction and facial expression in patients with unilateral amygdala damage. Brain. 

Delplanque, S., N’Diaye, K., Scherer, K. R., and Grandjean, D. (2007). Spatial frequencies or 

emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a 

discrete wavelet analysis. Journal of Neuroscience Methods, 165, 144–150. 

e-frontier. (2007). Poser 7. (http://www. e-frontier. com/go/products/poser) 

Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting 

Psychologists Press.  

Ekman, P., Friesen, W. V., & Hager, J. (2002). The Facial Action Coding System. London, 

UK.  

Ekman, P., Irwin, W., & Rosenberg, E. L. (1994). The Emotional Facial Action Coding 



 24 

System (EMFACS). London, UK. 

Ellison, J. W., & Massaro, D. W. (1997). Featural evaluation, integration, and judgment of 

facial affect. Journal of Experimental Psychology: Human Perception and 

Performance, 23 (1), 213-226. 

Fiser, J., Bex, P. J., and Makous, W. (2003). Contrast conservation in human vision. Vision 

Research, 43, 2637–2648. 

Freeman, J. B. and Ambady, N. (in press). Motions of the hand expose the partial and parallel 

activation of stereotypes. Psychological Science. 

Gaag, C. van der, Minderaa, R. B., & Keysers, C. (2007). The bold signal in the amygdala 

does not differentiate between dynamic facial expressions. Social Cognitive Affective 

Neuroscience, 2, 93-103. 

Goeleven, E., De Raedt, R., Leyman, L., and Verschuere, B. (2008). The karolinska directed 

emotional faces: a validation studies. Cognition and Emotion, 22(6):1094–1118. 

Grammer, K., Tessarek, A., & Hofer, G. (in prep). From emoticons to avatars: the simulation 

of facial expression. In A. Kappas (Ed.), Emotional communication on the internet. 

Hess, U., Blairy, S., and Kleck, R. E. (1997). The intensity of emotional facial expressions 

and decoding accuracy. Journal of Nonverbal Behavior, 21(4), 241-257. 

Hezle, V., Biehn, C., Schlömer, T., & Linner, F. (2004). Adaptable setup for performance 

driven facial animation. In Proceedings of SIGGRAPH’04 - sketches. Los Angeles, U. 

S. A.: Springer. 

Hirsh, J., Alqudah, A. F., Stutts, L. A., and Robinson, M. E. (2009). Virtual human 

technology: capturing sex, race, and age influences in individual pain decision policies. 

Pain, 140, p. 231–238. 

Joorman, J. and Gotlib, I. H. (2006). Is this happiness I see? biases in the identification of 

emotional facial expressions in depression and social phobia. Journal of Abnormal 



 25 

Psychology, 115(4), 705–714. 

Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive database for facial expression 

analysis. Proceedings of the Fourth IEEE International Conference on Automatic Face 

and Gesture Recognition. Retrieved from 

http://vasc.ri.cmu.edu/idb/html/face/facial_expression/index.html 

Lundqvist, D., Esteves, F., and Öhman, A. (1998). The Karolinska Directed Emotional Faces 

- KDEF, CD ROM from Dept. Clinical Neuroscience, Psychology section, Karolinska 

Institutet, ISBN 91-630-7164-9. 

Ma, W., Jones, A., Chiang, J., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., 

Ouhyoung, M., & Debevec, P. (2008). Facial performance synthesis using deformation-

driven polynomial displacement maps. ACM Transactions in Graphics, 27(5), p. 1-10. 

Malatesta, L., Raouzaiou, A., Karpouzis, K., & Kollias, S. (2006). Mpeg-4 facial expression 

synthesis based on appraisal theory. In the 3rd IFIP Conference in Artificial 

Intelligence Applications and Innovations, AIAI 2006. Athens, Greece. 

Moradi, F., Koch, C., Shimojo, S., Sarma, G., & Gutierrez, J. (2005). Adaptation to face 

identity and emotional expression depends on attention. In Proceedings of Vision 

Sciences Society 5th. Sarasota, FL: Journal of Vision.  

Moser, E., Derntl, B., Robinson, S., Fink, B., Gur, R. C., & Grammer, K. (2007). Amygdala 

activation at 3t in response to human and avatar facial expressions of emotions. Journal 

of Neuroscience Methods, 161 (1), 126–133. 

N’Diaye, K., Sander, D., & Vuilleumier, P. (in press). Self-relevance processing in the 

amygdala: gaze direction, facial expression, and emotion intensity. Emotion. 

Oosterhof, N. N. and Todorov, A. (2008). The functional basis of face evaluation. 

Proceedings of the National Academy of Sciences of the United States of America, 

105(32), 11087-11092. 



 26 

Pantic, M., Valstar, M. F., Rademaker, R., & Maat, L. (2005). Web-based database for facial 

expression analysis. Proceedings of the IEEE International Conference on Multimedia 

and Expo (ICME'05). Retrieved from http://www.docstoc.com/docs/2933918/EULA-

End-User-License-Agreement-MMI-Face-Database-www-mmifacedb 

Parke, F. I., & Waters, K. (1996). Computer facial animation. Natick, MA:A.K. Peters Ltd. 

Parr, L. A., Waller, B. M., & Heintz, M. (2008). Facial expression categorization by 

chimpanzees using standardized stimuli. Emotion, 8 (2), 216-231. 

Pasquariello, S., & Pelachaud, C. (2001). Greta: A simple facial animation engine. In R. 

Rajkumar, M. Köppen, S. Ovaska, T. Furuhashi, & F. Hoffmann (Eds.), 6th online 

world conference on soft computing in industrial applications, session on soft 

computing for intelligent 3d agents. Germany: Springer.  

Pelphrey, K., Viola, R., & McCarthy, G. (2004). When strangers pass: processing of mutual 

and averted social gaze in the superior temporal sulcus. Psychol Sci, 15 (9), 598-603. 

Pourtois, G., Grandjean, D., Sander, D., and Vuilleumier, P. (2004). Electrophysiological 

correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14(6), 619-

633. 

Roesch, E. B, Sander, D., & Scherer, K. R. (2009). Emotion and motion in facial expressions 

modulate the attentional blink [abstract]. Perception, 38, p. 466. 

Roesch, E. B., Sander, D., Mumenthaler, C., Kerzel, D. & Scherer, K. R. (in revision). 

Psychophysics of emotion: the QUEST to emotion perception. 

Roesch, E. B., Sander, D., & Scherer, K. R. (in preparation). The 4th dimension(s) of emotion 

perception: Emotion and motion in facial expressions modulate the attentional blink. 

Ruys, K. I. and Stapel, D. A. (2008). Emotion elicitor or emotion messenger: Subliminal 

priming reveals two faces of facial expressions. Psychological Science, 19(6), 593-600. 

Sander, D., Grandjean, D., Kaiser, S., Wehrle, T., & Scherer, K. R. (2007). Interaction effect 



 27 

of perceived gaze direction and dynamic facial expression: evidence for appraisal 

theories of emotion. European Journal of Cognitive Psychology, 19 (3), 470-480.  

Sayette, M. A., Cohn, J. F., Wertz, J. M. , Perrott, M. A., & Parrott, D. J. (2004). A 

psychometric evaluation of the facial action coding system for assessing spontaneous 

expression. Journal of Nonverbal Behavior, 25(3), 167-186.  

Schulte-Rüther M, Markowitsch HJ, Fink GR, Piefke M. (2007) Mirror Neuron and Theory 

of Mind Mechanisms Involved in Face-to-Face Interactions: A Functional Magnetic 

Resonance Imaging Approach to Empathy. Journal of Cognitive Neuroscience, 19, p. 

1354-1372. 

Scherer, K. R. and Ellgring, H. (2007). Are facial expressions of emotion produced by 

categorical affect programs or dynamically driven by appraisal? Emotion, 7(1), p. 113–

130. 

Shimojo, S., Simion, C., Shimojo, E., & Scheier, C. (2003). Gaze bias both reflects and 

influences preference. Nature Neuroscience, 6 (12), 1317-22. 

Singular Inversions Inc. (2009). FaceGen Modeller 3.3. (http://www.facegen.com/)  

Szczepanowski, R. and Pessoa, L. (2007). Fear perception: can objective and subjective 

awareness measures be dissociated? Journal of Vision, 7(4), 10-17. 

Todorov, A., Baron, S.G., Oosterhof, N.N. (2008) Evaluating face trustworthiness: a model 

based approach. Social Cognitive Affective Neuroscience, 3, p. 119-127. 

Wehrle, T., Kaiser, S., Schmidt, S., & Scherer, K. R. (2000). Studying the dynamics of 

emotional expression using synthesized facial muscle movements. Journal of 

Personality and Social Psychology, 78 (1), 105-19. 

Zhang, L., Snavely, N., Curless, B. & Seitz, S. (2004). Spacetime faces: high resolution 

capture for modeling and animation. ACM Transactions in Graphics, 23(3), p. 548-558. 



 28 

Authors’ notes 

 

Correspondence should be addressed to Dr. Etienne B. Roesch 

(etienne.roesch@unige.ch), and Dr. David Sander (david.sander@unige.ch), CISA - 

University of Geneva, 7 rue des Battoirs, 1205 Geneva, Switzerland. This work was partially 

supported by the following sources:  

• HUMAINE - 6th Framework Programme IST Multimodal Interfaces, http://emotion-

research.net 

• The National Centre of Competence in Research (NCCR) in Affective Sciences 

financed by the Swiss National Science Foundation (n° 51NF40-104897) 

• A grant from the Swiss National Science Foundation (105311-108187/1 to David 

Sander and Patrik Vuilleumier) 

• The ”Programme d’actions intégrées Franco-Suisse Germaine de Staël” in 

collaboration with the Swiss Academy for Technical Sciences (to Lionel Reveret and 

David Sander). 

 

The authors would like to thank Prof. Susanne Kaiser, Dr. Marc Méhu, Katia Schenkel, 

Birgit Michel, and Stéphane With (University of Geneva) for their expertise and guidance 

about the FACS, and Dr Mina Vasalou (University of Bath) for comments on drafts of this 

paper. 

FACSGen is software developed at the Swiss Centre for Affective Sciences for research 

purposes. It is only available on a per collaboration basis. More information can be found at 

http://www.affective-sciences.ch/facsgen. 

FaceGen Modeller 3.3 can be purchased from Singular Inversion Inc. Prices and a 

demonstration version of the software can be found on http://www.facegen.com.



 29 

 

 

Legends 

Tables 

 

Table 1.  – Inter-rater agreement, and results of coding by FACS coders.  Parentheses show 

AUs that were proposed by some but not all FACS coders.  Combinations of AUs were taken 

from the Emotional FACS (Ekman, Irwin, & Rosenberg, 1994), or produced by FaceGen.  

“FG” expressions refer to the built-in emotional facial expressions in FaceGen Modeller 3.3. 

 

Figures 

 

Figure 1.  – Architecture and information flow in FACSGen.  A graphical user interface 

allows the user to describe the dynamics of activation over time for each AU (curves at the 

top of the figure).  Different layers process this information, mapping it to action units, before 

applying the corresponding facial expression on 3D faces created with FaceGen Modeller 3.3.  

FACSGen manipulate FaceGen faces through the FaceGen software development kit released 

by Singular Inversion Inc. 

 

Figure 2.  – Examples of faces manipulated with FACSGen.  Panel a.  Random African face: 

neutral expression and portraying AU 1+2+6+12+25.  Panel b.  Random Caucasian face: AU 

1+2+5+25+26.  Panel c and d.  Synthesized faces digitized from close-up pictures: neutral 

photograph and portraying the exact same facial expression (AU 1+2+6+12+25). 
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Figure 3.  – Screenshot of FACSGen.  This panel allows the user to create dynamic facial 

expressions following linear trends similar to morphing techniques.  The resulting expression 

can be exported as a movie clip, and each step of the unfolding can be exported as a still 

picture. 

 

Figure 4.  – Screenshot of FACSGen.  This panel allows the user to create dynamic facial 

expressions following non-linear trends.  The resulting expression can be exported as a movie 

clip, and each step of the unfolding can be exported as a still picture. 

 

Figure 5.  – Results of study 3a.  Emotion ratings on color pictures.  Faces were depicting the 

FACSGen combinations: ”Anger: AU 9+16+25”, ”Fear: AU 1+2+5+25+26”, ”Happiness: 

AU 1+2+6+12+25”, and ”AU 22+25+26” (as described in Study 1, and validated by FACS 

coders). 

 

Figure 6.  – Results of study 3b.  Emotion ratings on processed grayscale pictures.  Faces 

were depicting the FACSGen combinations: ”Fear: AU 1+2+5+25+26”, ”Happiness: AU 

1+2+6+12+25”, and ”AU 22+25+26” (as described in Study 1, and validated by FACS 

coders).
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Table 1.  Inter-rater agreement, and results of coding by FACS coders.  Parentheses show 

AUs that were proposed by some but not all FACS coders. 

 

FACSGen manipulation Name alpha AUs coded 

AU 1 Inner brow raiser .990  AU 1 

AU 2 Outer brow raiser .989  AU 2 

AU 4 Brow lowerer .998  AU 4 

AU 6 Cheek raiser .975 AU 6 

AU 7 Lids tight .982 AU 7  

AU 12 Lip corner puller .987 AU 12 (+6)  

AU 17 Chin raiser .977 AU 17 (+5+24)  

AU 19 (+25+26) Tongue show .988 AU 25+26 (+10)  

AU 20 Lip stretch .903 AU 20 (+12+24)  

AU 22 Lip funneler .992 AU 22+25  

AU 23 Lip tightener .933 AU 23 (+5+24)  

AU 25+26 Jaw drop .998 AU 25+26  

AU 61 Eyes left .989 AU 61  

AU 62 Eyes right .991 AU 62  

AU 63 Eyes up 1. AU 63  

 

Continued on next page 
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Table 1 – continued from previous page  

 

FACSGen manipulation Name alpha AUs coded  

AU 64 Eyes down .998 AU 64  

AU 1+2  .994 AU 1+2 (+5)  

AU 1+2+5 Surprise .982 AU 1+2+5  

AU 1+2+5+25+26 Fear .994 AU 1+2+5+25+26 

AU 4+7 Anger .993 AU 4+7  

AU 4+7+23 Anger .990 AU 4+7+23  

AU 4+17+23 Anger .978 AU 4+5+23  

AU 5+25+26 Surprise .997 AU 5+25+26  

AU 12+25 Happiness .987 AU 12+25 (+6)  

AU 22+25+26 Neutral (mouth open) .970 AU 22+25+26  

FG: Anger  .971 AU 9+16+25  

FG: Anger + AU 25 Anger .968 AU 9+25+26 (+16)  

FG: Disgust  .988 AU 9+25 (+4+10)  

FG: Fear  .978 AU 1+25+26 (+4+7+10) 

FG: Sadness  .986 AU 4+7 (+24)  

FG: Surprise  .985 AU 1+2+5+25  

FG: Fear + AU 1+2+5+25+26 Fear .994 AU 1+2+5+25+26  

FG: Hap + AU 1+2+6+12+25 Happiness .992 AU 1+2+6+12+25 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

  



 37 

Figure 5. 
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Figure 6. 

 


