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Abstract

We study the heat, linear Schrödinger and linear KdV equations in the domain
l(t) < x < ∞, 0 < t < T , with prescribed initial and boundary conditions and with
l(t) a given differentiable function. For the first two equations, we show that the
unknown Neumann or Dirichlet boundary value can be computed as the solution of a
linear Volterra integral equation with an explicit weakly singular kernel. This integral
equation can be derived from the formal Fourier integral representation of the solution.
For the linear KdV equation we show that the two unknown boundary values can be
computed as the solution of a system of linear Volterra integral equations with explicit
weakly singular kernels. The derivation in this case makes crucial use of analyticity
and certain invariance properties in the complex spectral plane.

The above Volterra equations are shown to admit a unique solution.

1 Introduction

We study linear evolution problems posed on a time-dependent domain, assuming that the
dependence of the boundary on time is known and described by a function l(t). Namely,
the domain we consider is of the form

D(t) = {(x, s) : l(s) < x <∞, 0 < s < t}, (1.1)

where l(t) is a given, real, differentiable function.
The three illustrative examples we consider are the linear Schrödinger (LS), the heat and
and linear KdV (LKdV) equations:

(LS) iqt + qxx = 0, (1.2)
(heat) qt − qxx = 0, (1.3)

(LKdV ) qt + qxxx = 0. (1.4)
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We consider these PDEs in the domain D(T ) for some fixed positive constant T > 0, and
assume that initial and appropriate boundary conditions are prescribed.
Such boundary value problems generally can only be well posed when a subset of all possible
boundary values is prescribed. It is therefore necessary, as part of the solution of the
problem, to characterise the unknown boundary values. The contribution of this paper is
a proof that the unknown boundary values can be obtained as the unique solution of a
linear Volterra integral equation for either a scalar or a vector-valued function. The kernels
defining these integral equations are computed explicitly; these kernels are weakly singular
and their properties guarantee, under suitable boundedness and regularity assumption on
the given initial and boundary data, that a solution indeed exists and is unique.
We also discuss the applicability of our general methodology in higher dimensions, as well
as to more general PDEs.
The problem considered in this paper has been considered in earlier papers [5, 10, 14] for the
heat, linear Schrödinger and linear KdV equations, but only for the case that the function
l(t) describing the boundary is a convex function. In these earlier papers, the unknown
boundary values were characterised through Volterra linear integral equations, with rather
complicated kernels defined as contour integrals. No rigorous analysis of these kernels was
presented.
In the present work the derivation of the Volterra integral equation is substantially simpli-
fied and generalised. Furthermore, we do not impose the convexity restriction required in
our earlier work, and we require only that l(t) be a differentiable function, with bounded
derivative.
There exists an important difference between the second order cases and the third order one.
This difference originates in the fact that in the second order cases one unknown boundary
function must be determined, while in the third order case two such functions have to be
determined as part of the solution process. Consequently the Volterra integral equation
for the single unknown boundary function can be derived directly from the formal Fourier
integral representation. On the otehr hand, in order to obtain the solution in the case of
two unknown boundary functions, we need to exploit certain invariance properties of the
so-called global relation in the complex spectral plane.
We present the details of the derivation for the three examples considered in our previous
work: we either derive the Volterra integral equation either directly from the Fourier rep-
resentation of the solution, or we take the more generally applicable route of the analysis
of the global relation in the complex plane. For the second order cases, this is done for
pedagogical reasons in order to prepare the reader for the third order example.
In all three cases, we give an explicit representation of the integral equation characterising
the Dirichlet to Neumann (or Neumann to Dirichlet) map, and we prove that the the ker-
nels involved are weakly singular, for both Dirichlet and Neumann type of boundary value
problems. In addition, we include the rigorous analysis of the existence and uniqueness of
the solution of the associated linear integral equations.
We also comment briefly on how our method can be extended to treat higher dimensional
situations, and boundary value problems in the presence of forcing terms. In particular, the
solution of forced problems can be used to derive quantitative estimates for perturbations
of our basic equations (1.2-1.4), for example when the coefficients are variable but close, in
an appropriate sense, to a constant.
In order to illustrate the wide applicability of the method presented here, we also present
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explicit formulas for the case that the boundary is a small perturbation of a linearly moving
boundary, l(t) = t + εL(t), where L(t) is a bounded function and ε a small parameter. As
a further example, we discuss the case that the given boundary conditions on the moving
boundary are periodic functions of time.
The main result for each of the three examples we consider is stated below:

Theorem 1.1 Let q(x, t) denote the solution of the partial differential equation (1.2) satis-
fying the initial and boundary conditions

q(x, 0) = q0(x), 0 < x <∞, q(l(t), t) = g0(t), 0 < t < T. (1.5)

Assume that the given functions q0(x) and g0(t) satisfy the following conditions:

(a) q0(x) ∈ C1([0,∞)) and q′0(x) ∈ L1([0,∞));

(b) g0(t) ∈ C1([0, T ]).

Let f(t) denote the unknown boundary value of q(x, l(t) at x = l(t):

f(t) = qx(l(t), t), 0 < t < T. (1.6)

The function f(t) defined by (1.6) is the unique solution of the Volterra integral equation

πf(t) = N(t)−
∫ t

0

K(s, t)f(s)ds, 0 < t < T, (1.7)

where K(s, t) is defined by

K(s, t) =
(1− i)

√
π

2
√

2
l(t)− l(s)

(t− s)
ei

(l(t)−l(s))2
4(t−s)

(t− s)1/2
, 0 < s < t < T, (1.8)

with the known function N(t) given by

N(t) =
(1− i)

√
π√

2

 1√
t

∫ ∞
0

ei
(l(t)−x)2

4t q′0(x)dx−
∫ t

0

ei
(l(t)−l(s))2

4(t−s)

√
t− s

g′0(s)ds

 . (1.9)

The Volterra integral equation (1.7) admits a unique solution in C([0, T ]).

Theorem 1.2 Let q(x, t) denote the solution of the partial differential equation (1.3) satis-
fying the initial and boundary conditions (1.5), subject to assumptions (a) and (b) of theorem
1.1.
The function f(t) given by (1.6) is characterised as the solution of the following Volterra
integral equation:

πf(t) = N(t) +
∫ t

0

K(s, t)f(s)ds, 0 < t < T, (1.10)
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where the integral kernel K(s, t) is defined by

K(s, t) =
√
π

2
l(t)− l(s)
t− s

e−
(l(s)−l(t))2

4(t−s)

(t− s)1/2
, 0 < s < t < T (1.11)

with the known function N(t) given by

N(t) =
√
π

 1√
t

∫ ∞
0

e−
(l(t)−x)2

4t q′0(x)dx−
∫ t

0

e−
(l(t)−l(s))2

4(t−s)

√
t− s

g′0(s)ds

 , 0 < t < T. (1.12)

The Volterra linear integral equation (1.10) admits a unique solution in C([0, T ]).

Similar results hold for the case of Neumann rather than Dirichlet boundary conditions, see
Proposition 5.3.

Theorem 1.3 Let q(x, t) denote the solution of the partial differential equation (1.4) satis-
fying the initial and boundary conditions (1.5).
Assume that the given functions q0(x) and g0(t) satisfy the following conditions:

(a) q0(x) ∈ C2([0,∞)) and q′0(x), q′′0 (x) ∈ L1([0,∞));

(b) g0(t) ∈ C1([0, T ]).

Let f1(t), f2(t) denote the unknown boundary values of q(x, t):

f1(t) = qx(l(t), t), f2(t) = qxx(l(t), t), 0 < t < T. (1.13)

These functions are characterised as the solution of the following system of Volterra linear
integral equations: πf1(t) = N1(t)−

∫ t
0
K2(s, t)f1(s)ds−

∫ t
0
K1(s, t)f2(s)ds,

0 < t < T,

πf2(t) = N2(t)−
∫ t

0
K2(s, t)f2(s)ds−

∫ t
0
Klr(s, t)f1(s)ds,

(1.14)

where N1(t), N2(t) are the two known functions

N1(t) = 2π

[
1

(3t)1/3

∫ ∞
l(t)

Ai

(
l(t)− x
(3t)1/3

)
q′0(x)dx−

∫ t

0

Ai

(
l(t)− l(s)

(3(t− s))1/3

)
g′0(s)

(3(t− s))1/3
ds

]
,

(1.15)

N2(t) = −2π

[
1

(3t)2/3

∫ ∞
l(t)

Ai

(
l(t)− x
(3t)1/3

)
q′′0 (x)dx−

∫ t

0

Ai′
(

l(t)− l(s)
(3(t− s))1/3

)
g′0(s)

(3(t− s))2/3
ds

]
,

0 < t < T, (1.16)
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with the integral kernels K1(s, t), K2(s, t) and Klr(s, t), 0 < s < t < T defined by

K1(s, t) =
2πi

(3(t− s))2/3
Ai′
(

l(t)− l(s)
(3(t− s))1/3

)
, (1.17)

K2(s, t) = − 2π
(3(t− s))1/3

l(t)− l(s)
3(t− s)

Ai

(
l(t)− l(s)

(3(t− s))1/3

)
, (1.18)

Klr(s, t) =
2α2

1− α
Re

∫
R

eiλ
3
[
e
iαλ

(l(t)−l(s))
(t−s)1/3 − e

iα2λ
(l(t)−l(s))
(t−s)1/3

]
iλ3

t− s
dλ,

(1.19)

where α = e2πi/3 and Ai(·) denotes the Airy function.
The kernel Klr admits also the following explicit representation:

Klr(s, t) =
2√

3(t− s)1/3

l(t)− l(s)
(t− s)

 ∞∑
m=0

(
l(t)−l(s)
t−s

)3m

(t− s)2m

(3m+ 1)!
Γ
(

3m+ 5
3

) ,
where Γ(·) denotes the Gamma function.

The paper is organised as follows.
In section 2, we derive formally a representation of the solution of a boundary value problem
for a general linear evolution PDE posed in a domain of the form D(t), as well as a relation
that the boundary values must satisfy. This relation, known as the global relation (see
equation (2.10)), is the starting point for the analysis that follows.
In section 3, after introducing some notation, we summarise known results for the solution
of Volterra linear integral equations with singular kernels.
In section 4 we solve the Dirichlet problem for the linear Schrödinger equation by obtaining
a linear Volterra integral equation for the unknown Neumann boundary value qx(l(t), t)
directly from the Fourier integral representation of the solution. This is possible because
only one boundary function needs to be characterised, but this method does not generalise
to the case of the third-order problem qt + qxxx = 0, where two boundary functions must be
determined.
In section 5 we consider the Dirichlet and Neumann problems for the heat equation. The
analysis we present of this problem is based on the global relation, and encompasses the
choice of a suitable integral contour, the inversion of the global relation on this contour in
order to obtain a well-defined Volterra integral equation for the unknown boundary value,
and finally the explicit computation and analysis of the integral kernel. This analysis is
presented as an illustration of the general theory, in preparation of the solution of the third
order problem.
In section 6, we consider the linear KdV equation. For this equation the analysis depends
crucially on manipulating various integrals in the complex plane; however, even in this case
we can express the final answer in terms of real integrals, see theorem 1.3.
Finally in section 7 we present concrete examples and explicit formulas for the case that the
time-dependence of the boundary is approximately linear.
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2 Formal solution representation via Green’s formula

We consider the PDE
qt + ω(−i∂x)q = 0, (x, t) ∈ D(T ), (2.1)

where:

• T denotes a fixed positive constant;

• the given function l : [0, T ]→ R is such that l(0) = 0, l(t) ∈ C1([0, T ]);

• D(T ) ⊂ R2 is the domain defined in (1.1);

• ω(λ) is a polynomial in λ of degree n,

ω(λ) = αnλ
n + αn−1λ

n−1 + ...+ α1λ+ α0, αn 6= 0, (2.2)

such that Re ω(λ) ≥ 0 for λ ∈ R (this ensures that the pure initial value problem for
this equation, posed on R, is well posed).

• We are interested in constructing solutions of (2.1) such that {∂jxq(x, t)}n−1
j=0 decay as

x→∞, for all t. This is a tacit assumption throughout all that follows.

Let

A(x, t, λ) = e−iλx+ω(λ)tq(x, t), B(x, t, λ) = e−iλx+ω(λ)t
n−1∑
k=0

ck(λ)∂kxq(x, t), (2.3)

where ck(λ) are defined by the identity

n−1∑
k=0

ck(λ)∂kx = i
ω(λ)− ω(l)

λ− l
|l=−i∂x .

The PDE (2.1) can be written in the following divergence form:

At −Bx = 0. (2.4)

Using the two-dimensional Green’s theorem in the domain D(t), for any fixed t > 0, we
obtain ∫

∂D(t)

[Adx+Bds] = 0, t > 0, Im(λ) ≤ 0,

where ∂D(t) denotes the oriented boundary of the domain D(t). This equation yields

−
∫ ∞

0

A(x, 0, λ)dx+
∫ t

0

[A(l(s), s, λ)l′(s) +B(l(s), s, λ)]ds+
∫ ∞
l(t)

A(x, t, λ)dx = 0. (2.5)

Using (2.3), we find∫ ∞
0

e−iλxq(x, 0)dx− eω(λ)t

∫ ∞
l(t)

e−iλxq(x, t)dx = (2.6)

∫ t

0

e−iλl(s)+ω(λ)s[q(l(s), s)l′(s) +
n−1∑
k=0

ck(λ)∂kxq(l(s), s)]ds, t > 0, Im(λ) ≤ 0.
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This equation can be viewed either as the formal representation of the solution, or as the
starting point for determining the unknown boundary values. Indeed, we let

q̂0(λ) =
∫ ∞

0

e−iλxq(x, 0)dx, q̂(t, λ) =
∫ ∞
l(t)

e−iλxq(x, t)dx, 0 < t < T, Im(λ) ≤ 0.

(2.7)
We assume that q(x, 0) and the boundary values fk(t) = ∂kxq(l(t), t) are sufficiently regular
functions (to avoid technical issues, we also assume the initial and boundary conditions to
be compatible at x=0=l(0)).
Inverting the Fourier transform in (2.6) for q(x, t), we obtain the following formal represen-
tation of the solution:

q(x, t) =
1

2π

∫ ∞
−∞

eiλx−ω(λ)t

[
q̂0(λ)−

∫ t

0

e−iλl(s)+ω(λ)s[q(l(s), s)l′(s) +
n−1∑
k=0

ck(λ)∂kxq(l(s), s)]ds

]
dλ,

(x, t) ∈ D(T ). (2.8)

Assuming q(x, t) = 0 for x < l(t), equation (2.8) is also formally valid at x = l(t), where it
yields

q(l(t), t) =
1
π

∫ ∞
−∞

eiλl(t)−ω(λ)t

[
q̂0(λ)−

∫ t

0

e−iλl(s)+ω(λ)s[q(l(s), s)l′(s) +
n−1∑
k=0

ck(λ)∂kxq(l(s), s)]ds

]
dλ.

(2.9)

Remark 2.1 To avoid technicalities arising from the lack of continuity at x = 0, we assume
that q0(x) and the corresponding boundary conditions vanish at x = 0 with all derivatives
up to order n− 1.

The global relation

Equation (2.6) can also be written in the form of the following global relation:

q̂0(λ)− eω(λ)tq̂(t, λ) =
∫ t

0

e−iλl(s)+ω(λ)s[q(l(s), s)l′(s) +
n−1∑
k=0

ck(λ)∂kxq(l(s), s)]ds, (2.10)

0 < t < T, Im(λ) ≤ 0,

with q̂0(λ), q̂(t, λ) given by (2.7).

Remark 2.2 A formula similar to (2.8) and a relation analogous to (2.10) are also valid for
the solution of higher-dimensional PDEs of the form

qt+ω1(−i∂x1)q+ω2(−i∂x2)q = 0, 0 < t < T, l1(t) < x1 <∞, l2(t) < x2 <∞. (2.11)

Using these relaitons, the solution of a given Dirichlet problem for equation (2.11) can be
written in the form of a weakly singular Volterra integral equation with explicit kernels as
in the one-dimensional case.
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Indeed, the PDE (2.11) can be written in the form (2.4) with

A(x1, x2, t) = e−iλ1x1−iλ2x2+ω(λ)tq(x, t), B(x1, x2, t) = e−iλ1x1−iλ2x2+ω(λ)t(B1 +B2),
(2.12)

where

Bi(x1, x2, t) =
n−1∑
k=0

c
(i)
k (λ)∂kxq(x1, x2, t), i = 1, 2, (2.13)

where c(i)k (λi) are defined by the identity

n−1∑
k=0

c
(i)
k (λi)∂kx = i

ωi(λi)− ωi(δ)
λi − δ

|δ=−i∂xi , i = 1, 2.

See [8] for details.

Remark 2.3 In the case of forced problems, of the form

qt + ω(−i∂x)q = F (x, t), (x, t) ∈ D(T ), (2.14)

equation (2.8) is still valid, with q̂0(λ) replaced by

q̂0(λ) +
∫ t

0

∫ ∞
l(t)

e−iλξ+ω(λ)sF (ξ, s)dξds. (2.15)

All formulas derived for the homogeneous case are still valid, provided q̂0(λ) is replaced by
the expression in (2.15). In particular, denoting by f(t) the solution of D-to-N map for the
forced problem and by fhom the solution for the corresponding homogeneous problem, we
find

f(t)− fhom(t) =
∫

R
λeiλl(t)−ω(λ)t

[∫ t

0

∫ ∞
l(t)

eω(λ)s−iλξF (ξ, s)dξds

]
dλ. (2.16)

Nonlinear problems, or problems involving variable coefficients, can be considered as forced
linear constant coefficient PDEs of the form (2.14). By using the general formula (2.16),
it is then possible to obtain estimates for the more general problems, for sufficiently small
times or when an appropriate norm of the forcing term is small.

3 Notation and background results

Notation

In what follows, we use the following convention:

• the letter λ denotes a complex variable,

λ = λR + iλI , λR, λI ∈ R.

• Γ(λ) denotes the Gamma function, and Ai(λ) denotes the Airy function, see chapters
5 and 9 respectively of [1].
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3.1 The D-to-N map - general remarks

A boundary value problem for equation (2.1) in the domain D is well posed if n/2 (n even) or
(n±1)/2 (n odd, sign depending on the sign on cn) boundary conditions are prescribed [11].
Hence for n ≥ 2, at least one boundary value must be determined as part of the solution
of the problem. The determination of the unknown boundary values, or more precisely
their expression in terms of the known data of the problem, is known as the (generalised)
Dirichlet-to-Neumann map.
To determine this map, we solve the global relation for the unknown boundary value. In
order to do this effectively, it is necessary to eliminate the term involving q(x, t). This
can be achieved by multiplying the global relation by eiλl(t)−ω(λ)t and integrating along an
appropriate contour.

The choice of integration contour

We multiply the left hand side of (2.10) by eiλl(t)−ω(λ)t:

eiλl(t)−ω(λ)t
[
eω(λ)tq̂(t, λ)

]
=
∫ ∞
l(t)

e−iλ(x−l(t))q(x, t)dx. (3.1)

Note that

• The identity (3.1) is valid as λ → ∞ only along curves with the property that
|e±ω(λ)t| 6= 0 (asymptotically in λ).

• The right hand side of (3.1) defines as analytic function of λ for Im λ < 0, which is of
order

q(l(t), t)
iλ

+O

(
1
λ2

)
as λ→∞.

The above properties constrain our choice to those contours L0 which are contained in the
closed lower half plane Im(λ) ≤ 0, and which are asymptotic to the contour

L = {λ ∈ C− : Re(ω(λ)) = 0}. (3.2)

Let L0 ⊂ C− \ {0} be such a contour. It is shown in [11] that L0 can be chosen to be the
oriented boundary of a union of triangular sectors of the form θ1 ≤ arg(λ) ≤ θ2 for some
θ1, θ2 satisfying π ≤ θ1 < θ2 ≤ 2π (indented to avoid zero). Integrating along the boundary
of any such sector, we find∫

L0

[∫ ∞
l(t)

e−iλ(x−l(t))q(x, t)dx

]
dλ =

∫
L0

q(l(t), t)
iλ

dλ = (θ1 − θ2)q(l(t), t). (3.3)

Similarly, by subtracting appropriate boundary terms and integrating by parts, we find
representations for qx(l(t), t), qxx(l(t), t):∫

L0

[∫ ∞
l(t)

λe−iλ(x−l(t))q(x, t)dx+ iq(l(t), t)

]
dλ = (θ1 − θ2)iqx(l(t), t), (3.4)
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∫
L0

[∫ ∞
l(t)

λ2e−iλ(x−l(t))q(x, t)dx+ iλq(l(t), t) + qx(l(t), t)

]
dλ = (θ1 − θ2)qxx(l(t), t). (3.5)

Similar expressions are valid for ∂mx q(l(t), t) for m ≥ 3.

Remark 3.1 The terms appearing in the global relation, considered as functions of the
complex variable λ, are exponential, and hence entire, functions. Hence it is possible to
deform the contours in the complex λ plane along which the global relation is integrated
within any bounded ball, or more generally, to any contour with the same asymptotic be-
haviour. In particular, the integration contours can always be deformed to avoid λ = 0. In
the sequel, we will not mention explicitly this technical point in our derivations.

Volterra integral equations with a weakly singular kernel

We summarise the main result for linear Volterra integral equations of the second kind, see
[2, 13].

Definition 3.1 The kernel K(s, t) is weakly singular of order γ, 0 < γ < 1 if there exists a
function K̃(s, t) : [0, T ]× [0, T ]→ R, such that K̃(s, t) is well defined at s = t, |K̃(t, t)| <∞
and

K(s, t) =
K̃(s, t)
(t− s)γ

. (3.6)

The following results are proved in [13], and slightly improved in [2]; see also [3, 4].

Proposition 3.1 Consider the linear Volterra integral equation

πf(t) = N(t) +
∫ t

0

K(s, t)f(s)ds, 0 ≤ t < T, (3.7)

and assume that the associated kernel K(s, t) is of the form (3.6), for some 0 < γ < 1.
If N(t) ∈ L1(0, T ) and K̃(s, t) ∈ L∞[0 ≤ s ≤ t < T ], the solution f(t) of (3.7) is unique
and continuous in [0, T ]. This solution in general is not smooth at t = 0.

For the three examples we consider in this paper, a boundary value problem is well posed
when one initial and one boundary condition are prescribed. Assuming that the given
conditions are q(x, 0) = q0(x) and g0(t) = q(l(t), t) and the unknown boundary datum in
the second order cases is f(t) = qx(l(t), t), the function N(t) of (3.7) is given by an expression
of the form

N(t) =
∫

R
eiλl(t)−ω(λ)t

[∫ ∞
0

e−iλxq′0(x)dx−
∫ t

0

e−iλl(s)+ω(λ)sg′0(s)ds
]
dλ, (3.8)

where ω(λ) depends on the particular PDE. A similar expression holds for the Neumann
problem, when the prescribed boundary condition is qx(l(t), t) instead of q(l(t), t). Hence
the regularity and decay of the function N(t) depends in an explicit way on the regularity
and decay properties of the given data.
Similar considerations are also valid for the third order case.
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4 The linear Schrödinger equation iqt + qxx = 0

We consider the linear Schrödinger equation (1.2), in the time-dependent domain D, with
the given initial and boundary conditions (1.5).

The formal solution representation at x = l(t)

Equation (2.6) in this case becomes∫ ∞
0

e−iλxq(x, 0)dx− eiλ
2t

∫ ∞
l(t)

e−iλxq(x, t)dx = (4.1)∫ t

0

e−iλl(s)+iλ
2s[q(l(s), s)(l′(s)− λ) + iqx(l(s), s)]ds, t > 0, Im(λ) ≤ 0.

Hence the formal solution representation at x = l(t) is

q(l(t), t) =
1
π

∫
R

eiλl(t)−iλ
2t

[∫ ∞
0

e−iλxq(x, 0)dx+ 0 < t < T, λI ≤ 0∫ t

0

eiλ
2s−iλl(s)[(l′(s)− λ)q(l(s), s) + iqx(l(s), s)]ds

]
dλ. (4.2)

This representation can be used directly to solve the Neumann problem, that is, to charac-
terise q(l(s), s) in terms of qx(l(s), s). However, to solve the Dirichlet problem, we need a
representation of qx(l(t), t). A direct differentiation of (4.2) yields an expression for qx(x, t)
only for x > l(t). In addition, the integrand in this representation is not guaranteed to be
integrable on R, and differentiation under the integral sign is not justified.
To obtain a well-defined representation of qx(l(t), t) we first multiply (4.1) by iλ. Then,
integrating by parts, setting qx(l(s), s) = g0(s) and assuming g0(0) = 0, we obtain that the
term involving the known function g0(s) is given by∫ t

0

e−iλl(s)+iλ
2s(iλl′(s)− iλ2)g0(s)ds = −e−iλl(t)+iλ

2tg0(t) +
∫ t

0

e−iλl(s))+iλ
2tg′0(s)ds.

Hence from (4.1) we obtain

iλq̂0(λ)−iλeiλ
2t

∫ ∞
l(t)

e−iλxq(x, t)dx =
∫ t

0

e−iλl(s)+iλ
2s[g′0(s)ds−λqx(l(s), s)]ds−e−iλl(t)+iλ

2tg0(t),

where q̂0(λ) is given by (2.7). Thus,∫ ∞
l(t)

e−iλxiλq(x, t)dx−e−iλl(t)g0(t) = iλe−iλ
2tq̂0(λ)−

∫ t

0

e−iλl(s)−iλ
2(t−s)[g′0(s)ds−λqx(l(s), s)]ds.

The term on the left hand side of this expression is equal to the Fourier transform of qx(x, t).
Inverting this transform and evaluating it at x = l(t), we obtain the desired representation:

qx(l(t), t) =
1
π

∫
R

eiλl(t)
[
iλe−iλ

2tq̂0(λ)−
∫ t

0

e−iλl(s)−iλ
2(t−s)[g′0(s)ds− λqx(l(s), s)]ds

]
dλ.

(4.3)
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The Volterra integral equation

Using the definition (1.6), we write (4.3) as

πf(t) = N(t)−
∫

R

∫ t

0

e−iλ
2(t−s)+iλ(l(t)−l(s))f(s)ds λdλ,

where

N(t) =
∫

R
eiλl(t)−iλ

2t

[
iλq̂0(λ)−

∫ t

0

eiλ
2s−iλl(s)g′0(s)ds

]
dλ, (4.4)

and q̂0(λ) is given by (2.7) .
• Claim 1 ∫

R

∫ t

0

e−iλ
2(t−s)+iλ(l(t)−l(s))f(s)ds λdλ =

∫ t

0

K(t, s)f(s)ds, (4.5)

where K(t, s) is given by (1.8).
Setting

E(t, s) = e−iλ
2(t−s)+iλ(l(t)−l(s)), (4.6)

and interchanging the order of integration in (4.5), we find∫
R

[∫ t

0

λE(t, s, λ)f(s)ds
]
dλ =

∫ t

0

K(t, s)f(s)ds, K(t, s) =
∫

R
λE(t, s, λ)dλ. (4.7)

After changing variable to µ = λ/
√
t− s and completing the square in the integral defining

K(t, s), a principal value calculation (along the dotted contour indicated in figure ??) yields
expression (1.8).
• Claim 2: The known term N(t) is given by (1.9).

Using the decay properties of q0(x) to show that iλq̂0(λ) = q̂′0(λ), and changing the order of
integration, we can rewrite expression (4.4) for N(t) as

N(t) =
∫ ∞

0

[∫
R

e−iλ
2t+iλ(l(t)−x)dλ

]
q′0(x)dx−

∫ t

0

[∫
R
E(s, t, λ)dλ

]
g′0(s)ds.

where E is given by (4.6). Evaluating explicitly the integrals along R, we find (1.9).

To finish the proof of Theorem 1.1, we need to show that the Volterra integral equation (1.7)
admits a unique solution. This is the content of the following proposition.

Proposition 4.1 Assume that the functions q0(x) and g0(t) of (1.5) satisfy the following
conditions:

(a) q0(x) ∈ C1([0,∞)) and q′0(x) ∈ L1([0,∞));

(b) g0(t) ∈ C1([0, T ]).

Then the Volterra linear integral equation (1.7), which expresses qx(l(t), t) in terms of q0(x)
and g0(t), admits a unique solution in C([0, T ]).
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Proof: The kernel K(s, t) is weakly singular, of order 1/2. Indeed, we can write

K(s, t) =
K̃(s, t)

(t− s)1/2
, K̃(s, t) =

(1− i)
√
π√

2
l(t)− l(s)
t− s

ei
(l(s)−l(t))2

4(t−s) . (4.8)

Noting that

| l(t)− l(s)
t− s

ei
(l(t)−l(s))2

t−s | ≤ |l′(τ)|, some τ : s ≤ τ ≤ t < T,

and using that l′(t) is bounded in [0, T ], it follows that the function K̃(s, t) is in L∞[0, T ]
as a function of both s and t . This function is also continuously differentiable in both
variables.
If the given data q0(x), g0(t) of the boundary value problem are such that the function N(t)
given by (1.12) is in L1[0, T ], then the general result given in theorem 3.1 guarantees that
the problem admits a unique solution, and that this solution is continuous in [0, T ]. This is
indeed the case provided that

∫ T

0

∣∣∣∣∣∣
∫ ∞

0

e−
(l(t)−x)2

4t

√
t

q′0(x)dx−
∫ t

0

e−
(l(t)−l(s))2

4(t−s)

√
t− s

g′0(s)ds

∣∣∣∣∣∣ dt <∞.
Since q0 or g0 could independently be equal to zero, both double integrals must be finite.
Hence the required condition splits into two conditions:∫ T

0

1√
t

∣∣∣∣∫ ∞
0

e−
(l(t)−x)2

4t q′0(x)dx
∣∣∣∣ dt <∞, (4.9)

∫ T

0

∣∣∣∣∣∣
∫ t

0

e−
(l(t)−l(s))2

4(t−s)

√
t− s

g′0(s)ds

∣∣∣∣∣∣ dt <∞. (4.10)

For condition (4.9) we have∫ T

0

1√
t

∣∣∣∣∫ ∞
0

e−
(l(t)−x)2

4t q′0(x)dx
∣∣∣∣ dt ≤ 2M

∫ ∞
0

|q′0(x)|dx, M =
∫ T

0

1√
t
dt =

√
T .

Similarly , for condition (4.10) we write

∫ T

0

∣∣∣∣∣∣
∫ t

0

e−
(l(t)−l(s))2

4(t−s)

√
t− s

g′0(s)ds

∣∣∣∣∣∣ dt ≤
∫ T

0

[∫ T

s

1√
t− s

dt

]
|g′0(s)|ds ≤M

∫ T

0

|g′0(s)|ds.

Hence our assumptions guarantee that N(t) is in L1[0, T ].
QED

The Neumann problem is solved in an analogous manner, and a theorem analogous to
theorem (1.1) holds provided the assumptions (a), (b) are suitably replaced, see proposition
5.3.
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5 The heat equation

We now consider the heat equation (1.3) in the domain D(T ), with given the initial and
boundary conditions (1.5). In this section we will give a proof of Theorem 1.2 employing the
analysis of the global relation in the complex λ plane. Although in this case this analysis is
equivalent to the proof given in the previous section, this complex variable approach can be
generalised to the third order case, as we will show in the last section.

The global relation

In this case, the global relation (2.6) becomes∫ ∞
0

e−iλxq(x, 0)dx− eλ
2t

∫ ∞
l(t)

e−iλxq(x, t)dx =
∫ t

0

eλ
2s−iλl(s)[q(l(s), s)(iλ+ l′(s)) + qx(l(s), s)]ds,

0 < t < T, λI ≤ 0. (5.1)

The integration contour

We first identify an integration contour suitable to derive a Volterra integral equation, see
section 3.1.

Definition 5.1 For any a ∈ R, we define the simply connected domain Ωa ⊂ C− by

Ωa = {λ ∈ C− : λ2
R − λ2

I + λIa < 0}. (5.2)

We denote the boundary of Ωa, oriented clockwise around the domain, by La:

La = {λ ∈ C− : λ2
R = λ2

I − λIa}. (5.3)

For a = 0, we have the distinguished domain Ω0, a triangular sector of opening π/2:

Ω0 = {λ ∈ C− : λ2
R − λ2

I < 0} = {λ :
5π
4
< arg(λ) <

7π
4
}. (5.4)

The boundary of Ω0 is the curve L0 given by

L0 = {λ ∈ C− : λ2
R = λ2

I}. (5.5)

Proposition 5.1 For all a ∈ R, the domain Ωa is asymptotic to the sector Ω0.

Proof: It suffices to compare the behaviour, as |λ| → ∞, of the boundaries of Ωa and Ω0,
i.e. the contours La given in (5.3) and L0.
For λ ∈ L0, by definition we have λ2

I

λ2
R

= 1 while for λ ∈ La,

λ2
I

λ2
R

=
λ2
I

λI(λI − a)
→|λI |→∞ 1.

Hence in the large λ limit, both curves are described by the same two rays ρeiφ , φ = 5π/4
or φ = 7π/4.
QED
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The Dirichlet problem

Denote by f(t) the unknown Neumann boundary value, see equation (1.6). We let q̂0(λ) be
given by (2.7), and G0(t, λ) denote the following known function:

G0(t, λ) =
∫ t

0

e−iλl(s)+λ
2sg0(s)[iλ+ l′(s)]ds, λ ∈ C. (5.6)

We also set

E(t, s, λ) = eλ
2(s−t)−iλ(l(s)−l(t)), λ ∈ C, 0 < s < t < T. (5.7)

Using (5.6), equation (5.1) can be written as∫ t

0

eλ
2s−iλl(s)f(s)ds− q̂0(λ) +G0(t, λ) = −eλ

2t

∫ ∞
l(t)

e−iλxq(x, t)dx, 0 < t < T, (5.8)

where q̂0(λ) is defined by (2.7), G0(t, λ) by (5.6) and f(t) is defined by (1.6). Our aim is to
invert the global relation (5.8), and obtain an equation for f(t) in terms of the known data.
In order to make use of equation (3.4), we first perform the following steps:

(1) multiply both sides of the equation by λe−λ
2t+iλl(t);

(2) subtract the term ig0(t) from both sides of the resulting equation;
(3) integrate the resulting equation with respect to λ along the contour L0 given in (5.5).
These steps yield the following equation, where all terms are well defined:∫

L0

λe−λ
2t+iλl(t)

[∫ t

0

eλ
2s−iλl(s)f(s)ds− q̂0(λ) +G0(t, λ)− i

λ
g0(t)eλ

2t−iλl(t)
]
dλ =

= −
∫
L0

[∫ ∞
l(t)

λe−iλ(x−l(t))q(x, t)dx+ ig0(t)

]
dλ. (5.9)

We note that:
• The right hand side of (5.9) equals iπ

2 f(t).
This follows from equation (3.4), with θ1 = 5π/4 and θ2 = 7π/4.
• The first term of the left hand side of (5.9) satisfies the identity∫

L0

[∫ t

0

E(t, s, λ)f(s)ds
]
λdλ =

∫ t

0

K(s, t)f(s)ds− iπ

2
f(t), t > 0, (5.10)

where E(t, s, λ) is defined by (5.7) and K(s, t) is given by (1.11).
This is a consequence of the fact that, for λ ∈ C− \ Ω0, E(t, s, λ) is a bounded, analytic
function of λ. To show this property, we only need to verify that as |λ| → ∞ in C− \Ω0, the
real part of the exponent of E is nonpositive, hence the exponential is bounded. Invoking
the mean value theorem for the differentiable function l(t), we can write

l(s)− l(t) = (s− t)l′(τ), for some τ ∈ [s, t] (5.11)
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and the real part of the exponent of E is given by

Re[λ2(s− t)− iλ(l(s)− l(t))] = (s− t)[λ2
R − λ2

I + λI l
′(τ)], s ≤ τ ≤ t. (5.12)

Since l′(t) is assumed to be bounded, we can consider the domain Ωa for a = l′(τ). Outside
this domain,

λ2
R − λ2

I + λI l
′(τ) > 0 =⇒ (s− t)[λ2

R − λ2
I + λI l

′(τ)] < 0, λ /∈ Ωl′(τ). (5.13)

By proposition 5.1, as |λ| → ∞ each domain Ωl′(τ) is asymptotic to Ω0. Hence the bound-
edness claim follows.
The boundedness of E(t, s, λ) implies that in C− \ Ω0 the integrand in the left hand side of
(5.10) is of order O

(
1
λ

)
. Indeed, integrating by parts, we find∫ t

0

E(t, s, λ)f(s)ds =
f(t)
λ

+O

(
1
λ2

)
, λ ∈ C− \ Ωa.

Hence the contour L0 can be deformed to R to yield∫
L0

[∫ t

0

E(t, s, λ)f(s)ds
]
λdλ =

∫
R

[∫ t

0

E(t, s, λ)f(s)ds
]
λdλ+ f(t)

[∫ π

5π
4

+
∫ 7π

4

2π

]
idθ

=
∫

R

[∫ t

0

E(t, s, λ)f(s)ds
]
λdλ− iπ

2
f(t). (5.14)

We now interchange the order of integration of the integral on the right hand side of (5.14)
and define K(t, s) by

K(s, t) =
∫

R
λE(t, s, λ)dλ. (5.15)

The integral (5.15) can be computed explicitly by changing variable to µ = λ/
√
t− s and

completing the square of the relevant exponent. This computation yields

∫
R
λE(t, s, λ)dλ =

i
√
π

2
l(t)− l(s)
t− s

e−
(l(t)−l(s))2

4(t−s)

√
t− s

. (5.16)

Hence we obtain (1.11).
• The remaining terms are given by a function N(t) defined by

N(t) =
∫
L0

[
e−λ

2t+iλl(t) (G0(t, λ)− q̂0(λ))− i

λ
g0(t)

]
λdλ. (5.17)

Using the analyticity properties of the exponential E(t, s, λ), we can deform the integration
contour in (5.17) to the real axis. Then, integrating by parts, we find that we can write
N(t) as

N(t) =
∫

R
eiλl(t)e−λ

2t

[
−i
∫ t

0

e−iλl(s)+λ
2sg′0(s)ds− λq̂0(λ)

]
dλ.
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Observing that iλq̂0(λ) = q̂′0(λ), and inverting the order of integration we find

N(t) = i

∫ ∞
0

[∫
R

eiλ(l(t)−x)−λ2tdλ

]
q′0(x)dx−

∫ t

0

[∫
R
E(t, s, λ)dλ

]
g′0(s)ds.

Computing the integrals along R explicitly we obtain (1.12).

In summary, the integral relation (5.9) yields (1.10).
QED

We now analyse the properties of the solution of the Volterra integral equation (1.10).

Proposition 5.2 Consider the heat equation (1.3), with the given initial and boundary
conditions (1.5).
Assume that the given functions q0(x) and g0(t) satisfy the following conditions:

(a) q0(x) ∈ C1([0,∞)) and q′0(x) ∈ L1([0,∞));

(b) g0(t) ∈ C1([0, T ]) and
∫ T

0

[√
T − s |g′0(s)|

]
ds <∞.

Then the Volterra linear integral equation (1.10), which expresses qx(l(t, t) in terms of q0(x)
and g0(t), admits a unique solution in C([0, T ]).

The proof is analogous to the proof of Proposition 4.1.

The Neumann problem

For completeness, we sketch the analogous analysis for the case of the Neumann problem.
In this case, we seek the solution of the heat equation (1.3) which satisfies the following,
sufficiently smooth, initial and boundary conditions:

q(x, 0) = q0(x), l(t) < x <∞, qx(l(t), t) = g1(t), 0 < t < T. (5.18)

We denote by f0(t) the unknown Dirichlet boundary value, i.e.

f0(t) = q(l(t), t), 0 < t < T. (5.19)

Proposition 5.3 Let q(x, t) denote the solution of the initial boundary value problem for
the heat equation (1.3) defined by (5.18). Assume the the prescribed initial and boundary
conditions satisfy:

(a’) q0(x) ∈ C1([0,∞)) ∩ L1([0,∞));

(b’) g1(t) ∈ C([0, T ]) and
∫ T

0

√
T − s |g1(s)|ds <∞.

The function f0(t) defined by (5.19) satisfies the Volterra integral equation

πf0(t) =
∫ t

0

KN (s, t)f0(s)ds+N(t), 0 < t < T, (5.20)
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where the known function N(t) is given by

N(t) =
√
π

 1√
t

∫ ∞
0

e−
(l(t)−x)2

4t q0(x)dx−
∫ t

0

e−
(l(t)−l(s))2

4(t−s)

√
t− s

g1(s)ds

 , 0 < t < T, (5.21)

and the integral kernel is given by

KN (t, s) =
√
π

(
1
2
l(t)− l(s)
t− s

− l′(s)
)

e−
(l(s)−l(t))2

4(t−s)

√
t− s

, 0 < s < t < T. (5.22)

This Volterra integral equation admits a unique solution f0(t) ∈ C[0, T ].

Proof: The inversion of the global relation can now be obtained using (3.3). Setting

G1(t, λ) =
∫ t

0

eλ
2s−iλl(s)g1(s)ds, (5.23)

we write the global relation as∫ t

0

eλ
2s−iλl(s)(iλ+ l′(s))f0(s)ds− q̂0(λ) +G1(t, λ) = −eλ

2t

∫ ∞
l(t)

e−iλxq(x, t)dx, 0 < t < T,

we multiply this relation by e−λ
2t+iλl(t), and integrate along L0. The right hand side of the

resulting equation equals −π2 f0(t).
For the first term on the left hand side of the same equation, which contains the unknown
function f0(t), we proceed as for the Dirichlet problem: this term is given by∫

L0

∫ t

0

E(t, s, λ)[iλ+ l′(s)]f0(s)dsdλ.

We compute the integral along L0 to obtain∫
L0

∫ t

0

E(t, s, λ)[iλ+ l′(s)]f0(s)dsdλ =
∫

R

∫ t

0

E(t, s, λ)[iλ+ l′(s)]f0(s)dsdλ+
π

2
f0(t).

Exchanging the order of integration on the right hand side, we find∫
R

[∫ t

0

E(t, s, λ)[iλ+ l′(s)]f0(s)ds
]
dλ = −

∫ t

0

KN (t, s)f0(s)ds, KN (t, s) =
∫

R
(iλ+l′(s))E(t, s, λ)dλ,

where KN (t, s) can be evaluated explicitly and is given by (5.22).

It remains to show that the Volterra integral equation (5.20) admits a unique continuous
solution. Indeed, as in the Dirichlet case, the kernel KN (s, t) is a well defined, in general
weakly singular, integral kernel of order 1

(t−s)1/2 . In addition, if l(t) is Hölder continuous of
order β > 1

2 , the kernel KN (s, t) is regular.
QED
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6 The linear KdV equation

In this section, we give the proof of Theorem 1.3. This proof relies crucially on the analyticity
properties of the functions involved in the global relation, as functions of the spectral complex
parameter λ.

The global relation

For this equation, the global relation (2.10), well defined for λ ∈ C−, is given by

q̂0(λ)− e−iλ
3tq̂(t, λ) =

∫ t

0

e−iλl(s)−iλ
3s[q(l(s), s)(l′(s) + λ2)− iλqx(l(s), s)− qxx(l(s), s)]ds,

(6.1)
where q̂0(λ) and q̂(t, λ) are given by (2.7).

The integration contour and domain decomposition

Since the global relation (2.6) is well defined as |λ| → ∞ for λI ≤ 0, we consider domains
contained in in the lower half space of the λ complex plane.

Definition 6.1 For a ∈ R we define

Ωa = {λ ∈ C− : λ2
I − 3λ2

R − a < 0}. (6.2)

The boundary of the domain Ωa is given by

∂Ωa =


La ∪ R, La =

{
λ ∈ C− : λI = −

√
3λ2

R + a
}

a ≥ 0

{
λI = 0, |λR| ≥

√
−a
3

}
∪
{
λI = −

√
3λ2

R + a, |λR| >
√
−a
3

}
a < 0.

(6.3)

For a = 0, we have the distinguished domain

Ω0 = {λ ∈ C− : λ2
I − 3λ2

R < 0}. (6.4)

The boundary of Ω0 is given by

∂Ω0 = L0 ∪ R, L0 =
{
λ ∈ C− : λI = −

√
3λ2

R

}
, (6.5)

see figure ??.

Lemma 6.1 As |λ| → ∞ the domain Ωa given by (6.2) is asymptotic to the domain Ω0

given by (6.4).

Proof: It suffices to compare the behaviour, as |λ| → ∞, of the boundaries of Ωa and Ω0,
i.e. the contours La and L0.
For λ ∈ L0, and Im(λ) 6= 0, by definition we have λ2

R

λ2
I

= 1
3 , while for λ ∈ La, and Im(λ) 6= 0,

λ2
R

λ2
I

=
1
3

+
a

3λ2
I

→|λI |→∞
1
3

;
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hence in the large λ limit, both curves are described by the same semilines ρeiφ , φ = 4π/3,
φ = 5π/3, or by R.
QED
Note that the domain Ω0 can be described as

Ω0 = {λ : π < arg(λ) <
4π
3
} ∪ {λ :

5π
3
< arg(λ) <

2
π
}. (6.6)

We also consider the decomposition of Ω0 in its simply connected components:

Ω0 = Ωl0 ∪ Ωr0,

 Ωl0 = {λ : π < arg(λ) < 4π
3 },

Ωr0 = {λ : 5π
3 < arg(λ) < 2π}.

(6.7)

The exponential involved in the computations below is

E(t, s, λ) = eiλ
3(t−s)+iλ(l(t)−l(s)), λ ∈ C, 0 < t < T. (6.8)

Using the decomposition (6.7), any integral along ∂Ωl0 that involves the exponential E mul-
tiplied by a function F , can be transformed to an integral along ∂Ωr0 in two ways:
(1) by using a rotation of 4π/3, namely∫

∂Ωl0

E(t, s, λ)F (λ)dλ = α2

∫
∂Ωr0

E(t, s, α2λ)F (α2λ)dλ, α = e2πi/3. (6.9)

(2) By using the change of variable λ→ −λ̄, and the observation that

E(s, t,−λ̄) = E(t, s, λ),

so that ∫
∂Ωl0

E(s, t,−λ̄)F (−λ̄)d(−λ̄) =
∫
∂Ωr0

E(t, s, λ)F (−λ̄)dλ. (6.10)

In particular, the above observations imply the following preliminary lemma.

Lemma 6.2 Let E(t, s, λ) be the exponential defined by (6.8), and Ω0, Ωr0, Ωl0 be the domains
defined by (6.2), (6.7) respectively. Then∫

∂Ω0

E(t, s, λ)iλ3dλ = 2Re
∫
∂Ωr0

E(t, s, λ)iλ3dλ = 2Re
∫
∂Ωl0

E(t, s, λ)iλ3dλ. (6.11)

Proof: Let F (λ) = iλ3. Then F (−λ̄) = −iλ̄3 = iλ3, so that∫
∂Ωl0

E(t, s, λ)iλ3dλ =
∫
∂Ωr0

E(t, s, λ)iλ3dλ.

Hence∫
∂Ωl0

E(t, s, λ)iλ3dλ+
∫
∂Ωr0

E(t, s, λ)iλ3dλ =
∫
∂Ωl0

E(t, s, λ)iλ3dλ+
∫
∂Ωl0

E(t, s, λ)iλ3dλ.

QED
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The inversion of the global relation

We denote by f1(t) and f2(t) the two unknown boundary values given by (1.13), and we let
q̂0(λ) be given by (2.7) and G0(t, λ) be given by

G0(t, λ) =
∫ t

0

e−iλl(s)−iλ
3sg0(s)[l′(s) + λ2]ds, λ ∈ C, 0 < t < T, (6.12)

where g0(t) is the known boundary datum given by (1.5).
Using the definition (6.12), equation (2.10) can be written as

G0(t, λ)− q̂0(λ)−
∫ t

0

e−iλ
3s−iλl(s)f2(s)ds−

∫ t

0

e−iλ
3s−iλl(s)iλf1(s)ds

= −e−iλ
3t

∫ ∞
l(t)

e−iλxq(x, t)dx, 0 < t < T. (6.13)

Our aim is to obtain equations for f1(t), f2(t) in terms of the known data. To this end, since
we have to characterise the two unknown boundary values qx(l(t), t) and qxx(l(t), t), we shall
make use of both relations (3.4) and (3.5). Hence we multiply the global relation by either
λeiλl(t)+iλ

3t or λ2eiλl(t)+iλ
3t, subtract from both sides the terms i g0(t) or iλg0(t) − f1(t)

respectively, and integrate the resulting two equations around ∂Ω0. This results in the
following equation, where all integrals involved are well defined:∫
∂Ω0

{
λeiλ

3t+iλl(t)

[
G0(t, λ)−

∫ t

0

e−iλ
3s−iλl(s)[f2(s) + iλf1(s)]ds− q̂0(λ)

]
− ig0(t)

}
dλ =

= −
∫
∂Ω0

[∫ ∞
l(t)

λe−iλ(x−l(t))q(x, t)dx+ ig0(t)

]
dλ, (6.14)

∫
∂Ω0

{
λ2eiλ

3t+iλl(t)

[
G0(t, λ)−

∫ t

0

e−iλ
3s−iλl(s)[f2(s) + iλf1(s)]ds− q̂0(λ)

]
− iλg0(t) + f1(t)

}
dλ =

= −
∫
∂Ω0

[∫ ∞
l(t)

λ2e−iλ(x−l(t))q(x, t)dx+ iλg0(t) + f1(t)

]
dλ. (6.15)

Note that

• The left hand side of (6.14) is the sum of three terms, I3 − I1 − I2, where

I1(t) =
∫
∂Ω0

∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))if1(s)dsdλ, (6.16)

I2(t) =
∫
∂Ω0

∫ t

0

λeiλ
3(t−s)+iλ(l(t)−l(s))f2(s)dsdλ, (6.17)

I3(t) =
∫
∂Ω0

λeiλ
3t+iλl(t)

[
G0(t, λ)− i

λ
g0(t)e−iλ

3t−iλl(t) − q̂0(λ)
]
dλ. (6.18)
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• The left hand side of (6.15) is the sum of three terms, J3 − J1 − J2, where

J1(t) =
∫
∂Ω0

[∫ t

0

iλ3eiλ
3(t−s)+iλ(l(t)−l(s))f1(s)ds+ f1(t)

]
dλ, (6.19)

J2(t) =
∫
∂Ω0

∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))f2(s)dsdλ, (6.20)

J3(t) =
∫
∂Ω0

λ2eiλ
3t+iλl(t)

[
G0(t, λ)− i

λ
g0(t)e−iλ

3t−iλl(t) − q̂0(λ)
]
dλ. (6.21)

We now find:
• The contribution of the right hand side of (6.14) is equal to 2π

3 if1(t); the contribution of
the right hand side of (6.15) is equal to 2π

3 f2(t).
This follows from equations (3.4) and (3.5).
• The following identities hold:

I1(t) =
∫ t

0

K2(s, t)if1(s)ds+
π

3
if1(t), J2(t) =

∫ t

0

K2(s, t)f2(s)ds+
π

3
f2(t); (6.22)

I2(t) =
∫ t

0

K1(s, t)f2(s)ds, (6.23)

where K1(s, t), K2(s, t) are given by (1.17), (1.18) respectively.
Note that E is bounded and analytic in C− \Ω0. Indeed, the real part of the exponent of E
is given by

Re[iλ3(t− s) + iλ(l(t)− l(s))] = −(t− s)λI [3λ2
R − λ2

I + l′(τ)], s ≤ τ ≤ t, (6.24)

hence by definition, E is bounded and analytic in C−\Ωa, with a = l′(τ). Since each domain
Ωa is asymptotic to Ω0 by lemma 6.1, the claim follows.
Integration by parts and the analyticity properties of E imply∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))if1(s)ds = −f1(t)

λ
+O

(
1
λ2

)
, λ ∈ C− \ Ω0.

Therefore ∫
L0

[∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))if1(s)ds

]
dλ =

π

3
if1(t),

where L0 is defined in (6.5), and it follows that∫
∂Ω0

[∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))if1(s)ds

]
dλ =

∫
R

[∫ t

0

λ2eiλ
3(t−s)+iλ(l(t)−l(s))if1(s)ds

]
dλ+

π

3
if1(t).

We now interchange of order of integration, and obtain

I1(t) =
∫ t

0

K2(t, s)if1(s)]ds+
π

3
if1(t), K2(t, s) =

∫
R

λ2E(t, s, λ)dλ. (6.25)
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The integral defining K2 in (6.25) can be evaluated explicitly. After changing variable to
µ = λ(t− s)1/3, the resulting integral yields the Airy function [1] (as can also be verified by
using Mathematica [16]):

K2(t, s) =
1

(t− s)

∫
R
µ2e

iµ3+iµ
l(t)−l(s)
(t−s)1/3 dµ =

1
(3(t− s))1/3

[
−2π

3
l(t)− l(s)

(t− s)
Ai

(
l(t)− l(s))

(3(t− s))1/3

)]
.

Hence the first of identities equation (6.22) follows.
The second of identities (6.22) is derived in an analogous manner.
Finally, to show (6.23) we note that by definition

I2(t) =
∫
L0

∫ t

0

λE(t, s, λ)f2(s)dsdλ+
∫

R

∫ t

0

λE(t, s, λ)f2(s)dsdλ.

By the analyticity of E in the domain C− \ Ω0, whose boundary is L0, the first integral
on the right hand side vanishes, and the order of integration in the second integral can be
exchanged. Then the explicit evaluation of

∫
R λE(t, s, λ)dλ yields (6.23).

• The term I3(t) equals N1(t) given by (1.15); the term J3(t) equals N2(t) given by (1.16)
Using the analyticity properties of E , the integral defining I3 can be transformed to an
integral along R. A direct evaluation shows that I3 is well defined. Indeed, integrating by
parts and using that g0(0) = q0(0), I3 can be written as

I3(t) = i

∫
R

[
eiλ

3t+iλl(t)q̂′0(λ)−
∫ t

0

E(t, s, λ)g′0(s)ds
]
dλ. (6.26)

Similarly, using the analyticity properties of E(t, s, λ) and integration by parts, the term J3

can be written as

J3(t) = i

∫
R

eiλ
3+iλl(t)

[
q̂′′0 (λ)−

∫ t

0

e−iλ
3s−iλl(s)λg′0(s)ds

]
dλ. (6.27)

To show that (6.26) and (6.27) can be written in the form (1.15) and (1.16 ) respectively, we
interchange the order of integration in (6.26) and (6.27), and then use explicit computations
analogous to the computations of the kernels K1 and K2.
• The following identity holds:

J1(t) =
∫ t

0

Klr(s, t)f1(s)ds, (6.28)

where Klr(t, s, λ) is given by (1.19) (or (1.20)).
In the definition (6.19) of the term J1 there appears a term f1(t). This term is essential for
the integrability of the integrand. Indeed, integrating by parts the inner integral we find∫ t

0

iλ3eiλ
3(t−s)+iλ(l(t)−l(s))f1(s)ds+ f1(t) = eiλ

3t+iλl(t)f1(0) +O

(
1
λ3

)
. (6.29)

Hence, for λ ∈ ∂Ω0 the λ-integrand of J1 is O
(

1
λ3

)
.
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However, since the term f1(t) cannot be separated from the t-integral, its presence prevents
the interchanging of the order of integration between the t and λ integrals. We can overcome
this difficulty, by rewriting J1 in a different form. Recalling the notation (6.7), we write
J1 = Jr1 + J l1 where Jr1 denotes that Ω0 is replaced by Ωr0 in the definition (6.19) of J1, and
similarly for J l1. Now, using (6.9), we find that we can cancel the term f1(t) and write

Jr1 − αJ l1 =
∫
∂Ωr0

[∫ t

0

iλ3eiλ
3(t−s)[eiλ(l(t)−l(s)) − eiα

2λ(l(t)−l(s))]f1(s)ds
]
dλ. (6.30)

However, by (6.11), we have J1 = 2ReJr1 = 2ReJ l1, hence

Re(Jr1 − αJ l1) = (1− α)ReJr1 =
(1− α)

2
J1. (6.31)

Using (6.31) in (6.30) we arrive at an expression for J1 that does not involve the term f1(t):

J1(t) =
2

1− α
Re

[∫
∂Ωr0

[∫ t

0

iλ3[E(t, s, λ)− E(s, t, α2λ)]f1(s)ds
]
dλ

]
. (6.32)

Note that both exponentials E(t, s, λ) and E(s, t, α2λ) are bounded along ∂Ωr0. Furthermore,
integration by parts shows that their difference is O

(
1
λ3

)
. Indeed, we have∫ t

0

iλ3eiλ
3(t−s)[eiλ(l(t)−l(s))−eiα

2λ(l(t)−l(s))]f1(s)ds = eiλ
3t[eiλl(t)−eiα

2λl(t)]f1(0)+O
(

1
λ3

)
,

where λ lies on the boundary of the region where the exponential involved on the right hand
side are decaying for λ→∞.
We can now interchange the order of integration and write

J1 =
∫ t

0

Klr(s, t)f1(s)ds,

Klr(s, t) =
2

1− α
Re

[∫
∂Ωr0

iλ3eiλ
3(t−s)[eiλ(l(t)−l(s)) − eiα

2λ(l(t)−l(s))]dλ

]
. (6.33)

It is shown in the appendix how the kernel Klr given by (6.33) can be written in the form
(1.19) or, computing explicitly the relevant integrals, in the form (1.20). Regarding the
latter expression, note that

Γ
(

3m+ 5
3

)
∼ m! =⇒

Γ
(

3m+5
3

)
(3m+ 1)!

≤ 1
m3

.

Moreover the boundedness of l′(t) guarantees that(
l(t)− l(s)
t− s

)3

(t− s)2 < l′(t)3T 2 ≤MT 2, M constant.

Hence the series in (1.20) converges.

24



In summary, we obtain

2π
3
if1(t) = i

∫
R

[
eiλ

3t+iλl(t)q̂′0(λ)−
∫ t

0

E(t, s, λ)g′0(s)ds
]
dλ

−
∫ t

0

K2(t, s)f1(s)ds− π

3
if1(t)−

∫ t

0

K1(t, s)f2(s)ds, (6.34)

2π
3
f2(t) = i

∫
R

eiλ
3+iλl(t)

[
q̂′0(λ)−

∫ t

0

e−iλ
3s−iλl(s)g′0(s)ds

]
λdλ

−
∫ t

0

Klr(t, s)f1(s)ds−
∫ t

0

K2(t, s)f2(s)ds− π

3
f2(t). (6.35)

These equations are precisely equations (1.14).

The solvability of equations (1.14)

The explicit form of the kernels implies that K1(s, t), K2(s, t) and Klr(s, t) are well defined,
weakly singular kernels of order 2/3, 1/3 and 1/3 respectively.
Moreover, using the properties of the Airy function and the form of the series appearing in
the representation (1.20), it can be shown that these kernels are all of the form K̃(t,s)

(t−s)γ , with

K̃ ∈ L∞[0, T ] as a function of both s and t.
The functional dependence of N1(t), N2(t) on the given data can be computed explicitly.
Indeed, the function N1(t) ∈ L1[0, T ] provided that∫ T

0

∣∣∣∣∣
∫ ∞
l(t)

1
t1/3

Ai

(
l(t)− x
(3t)1/3

)
q′0(x)dx

∣∣∣∣∣ dt <∞,
and ∫ T

0

∣∣∣∣∫ t

0

1
3
√

3(t− s)1/3
Ai

(
l(t)− l(s)

3
√

3(t− s)1/3

)
g′0(s)ds

∣∣∣∣ dt <∞.
These conditions hold provided that

q′0 ∈ L1[0,∞) and
∫ T

0

(T − s)2/3|g′0(s)|ds <∞. (6.36)

Similarly, N2(t) ∈ L1[0, T ] if

q′′0 ∈ L1[0,∞) and
∫ T

0

(T − s)1/3|g′0(s)|ds <∞. (6.37)

Hence the conditions (a), (b) in the statement of the theorem 1.3 guarantee that N1(t),
N2(t) are in L1[0, T ].
The above conditions on the kernels and on the known functions Ni(t) guarantee the exis-
tence and uniqueness of a solution for a scalar Volterra integral equation. In our case, we
have two scalar coupled integral equations, which can be written as a single vector equation:(

f1(t)
f2(t)

)
=

1
π

(
N1(t)
N2(t)

)
− 1
π

∫ t

0

K(t, s)
(
f1(s)
f2(s)

)
ds, (6.38)
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with K(t, s) =
(

K2(s, t) K1(s, t)
Klr(s, t) K2(s, t)

)
. (6.39)

The contraction principle arguments and estimates used to prove the scalar case (see [13])
can be generalised in a straightforward way to the vector case, using the L∞ matrix norm:

‖K‖∞ = max(‖K2‖∞ + ‖K1‖∞, ‖K2‖∞ + ‖Klr‖∞).

Hence the existence of a unique solution of class C1[0, T ] follows from the conditions (6.36)-
(6.37), that guarantee that the vector function (N1(t), N2(t))τ is in L1(0, T ).
This completes the proof of the theorem.

7 Explicit examples

We have already remarked in the introduction (see also Remarks 2.2 and 2.3) that it is
possible to use the formulas obtained in this paper to derive explicit expressions in several
interesting cases, and it is also possible to generalise our approach to higher dimensional
linear evolution equations and to forced problems.
In particular, the formal inclusion of forcing allows us to derive qualitative estimates of the
behaviour of more general problems, obtained as small perturbations of basic linear problems
of the form (2.1).
In what follows we show that, by using a perturbation expansion, it is possible to obtain
explicit formulas. These formulas allow us to obtain qualitative information about the
solution.

7.1 Perturbation of a linearly moving boundary

Consider the boundary value problem for the heat equation (1.3) in the domain D(T ), with
the given initial and boundary conditions (1.5), where we assume that the equation of the
moving boundary has the form

l(t) = t+ εL(t), t > 0, (7.1)

where L(t) is a differentiable function of t such that 0 ≤ L′(t) ≤ M for some constant
M > 0.
Then, retaining terms only to order ε, we find

l(t)− l(s)
t− s

= 1 + ε
L(t)− L(s)

t− s
,

(l(t)− l(s))2

4(t− s)
=
t− s

4
+
ε(L(t)− L(s))

2
.

Using the first-order approximation

e−
ε
2 (L(t)−L(s)) ∼ 1− ε

2
(L(t)− L(s)),

the kernel (1.11) of the Volterra integral equation becomes

K(s, t) =
√
π

2
e−

t−s
4

√
t− s

(
1 + ε

L(t)− L(s)
t− s

− ε

2
(L(t)− L(s))

)
, 0 < s < t <∞ (7.2)
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and the known function N(t) given by (1.12) becomes

N(t) = −
√
π

∫ t

0

e−
t−s
4

√
t− s

(
1− ε

2
(L(t)− L(s))

)
g′0(s)ds, 0 < t <∞. (7.3)

We now consider the equation (1.10) in the limit as ε → 0. We denote by f0(t),N0(t)
and K0(s, t) the limits of the functions f(t) and N(t) and of the kernel K(s, t) as ε → 0.
Explicitly, we have

N0(t) = −
√
π

∫ t

0

e−
t−s
4

ġ0(s)√
t− s

ds, K0(s, t) =
√
π

2
e−

t−s
4

√
t− s

, 0 < s < t <∞. (7.4)

In this limit, after rearranging the equation (1.10), we find for the unknown Neumann datum
the following Abel equation of the second kind:

f0(t)e
t
4 =

1
π
N0(t)e

t
4 +

1
2
√
π

∫ t

0

f0(s)e
s
4

√
t− s

ds. (7.5)

This equation can be solved explicitly (see e.g. [15]) and its solution is given by

f0(t) = G0(t) +
1
4

∫ t

0

G0(s)ds, G0(t) =
1
π
N0(t) +

1
2π3/2

∫ t

0

N0(s)e−
t−s
4

√
t− s

ds. (7.6)

Then, denoting
fp = f − f0, Kp = K −K0, Np = N −N0, (7.7)

we can write the Volterra integral equation (1.10) in the form

π(f0 + fp)(t) = N0(t) +Np(t) +
∫ t

0

(K0 +Kp)(s, t)(f0 + fp)(s)ds.

In summary, neglecting the term Kpfp which is of higher order in ε, we obtain for fp(t) the
following equation:

πfp(t) ∼
[
Np(t) +

∫ t

0

Kp(s, t)f0(s)ds
]

+
∫ t

0

K0(s, t)fp(s)ds. (7.8)

The expression in square bracket is known, thus this equation has the same form as (7.5)
and can be solved in the same way, namely

fp(t) = Gp(t) +
1
4

∫ t

0

Gp(s)ds, (7.9)

where

Gp(t) =
1
π
Ñp(t) +

1
2π3/2

∫ t

0

Ñp(s)e−
t−s
4

√
t− s

ds, Ñp = Np(t) +
∫ t

0

Kp(s, t)f0(s)ds. (7.10)

Expression (7.6) and (7.9) yield an explicit approximation of order ε to the solution f =
f0 + fp.
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7.2 Periodic boundary conditions on a linearly moving boundary

We investigate the case that the given Dirichlet boundary condition is a periodic function,
with zero initial condition, when the boundary of the domain has linear dependence on time,
l(t) = t, t > 0.
Consider the heat equation (1.3), with zero initial condition and t∗-periodic, smooth Dirichlet
boundary conditions:

q(x, 0) = 0, 0 < x <∞; q(l(t), t) = g0(t) :
{
g0(t+ t∗) = g0(t) (fixed t∗ > 0),
ġ0(t) bounded t > 0.

(7.11)
We prove that the solution of the D-to-N is periodic with the same periodicity, at least in the
limit as t→∞. We denote by N0(t) and K0(s, t) the values of N(t) and K(s, t) appearing
in (1.10) corresponding to the case l(t) = t, and denote by f0(t) the corresponding solution
of the integral equation, given in this case by (7.6). Note that since ġ0(t) is bounded, so is
N0(t). Indeed, using ∫ t

0

e−
t−s
4

√
t− s

ds = 2
√
πErf

(√
t

2

)
, (7.12)

we find

|N0(t)| ≤ ‖ġ0‖∞
√
π

2

∫ t

0

e−
t−s
4

√
t− s

ds = ‖ġ0‖∞πErf
(√

t

2

)
≤ π‖ġ0‖∞ ∀ t > 0.

Similarly, this implies that G0(t) given by (7.6) is bounded.

Proposition 7.1 Consider the boundary value problem for the heat equation posed on the
domain {t > 0, t < x <∞}, with the initial and boundary conditions (7.11).
Then the solution f0(t) of the Dirichlet-to-Neumann map, given by (7.6), is asymptotically
t∗-periodic:

lim
t→∞

[f0(t+ t∗)− f0(t)] = 0.

Proof: Using the expression (7.6) for f0(t), we can write

f0(t+ t∗)− f0(t) =
1
π

[N0(t+ t∗)−N0(t)] +
1
4

∫ t+t∗

t

G0(s)ds

+
1

2π3/2

{∫ t+t∗

0

N0(s)e−
t+t∗−s

4

√
t+ t∗ − s

ds−
∫ t

0

N0(s)e−
t−s
4

√
t− s

ds

}
and, after splitting and changing variables in the first integral, we find

f0(t+ t∗)− f0(t) =
1
π

[N0(t+ t∗)−N0(t)] +
1
4

∫ t+t∗

t

G0(s)ds

+
1

2π3/2

{∫ t∗

0

N0(s)e−
t+t∗−s

4

√
t+ t∗ − s

ds−
∫ t

0

[N0(s+ t∗)−N0(s)]e−
t−s
4

√
t− s

ds

}
.
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Hence

lim
t→∞

[f0(t+ t∗)− f0(t)] =
1
π

lim
t→∞

[N0(t+ t∗)−N0(t)] +
1
4

lim
t→∞

∫ t+t∗

t

G0(s)ds

+
1

2π3/2
lim
t→∞

{∫ t∗

0

N0(s)e−
t+t∗−s

4

√
t+ t∗ − s

ds−
∫ t

0

[N0(s+ t∗)−N0(s)]e−
t−s
4

√
t− s

ds

}
. (7.13)

The proof of the proposition now follows from the four claims below:
Claim 1:

lim
t→∞

∫ t+t∗

t

G0(s)ds = 0.

A direct computation, using the definitions of G0 and N0, yields∫ t+t∗

t

G0(w)dw =
1
π

∫ t+t∗

t

N0(w)dw +
1

2π3/2

∫ t+t∗

t

∫ w

0

N0(s)e−
w−s

4

√
w − s

dsdw

= − 1√
π

∫ t+t∗

t

∫ w

0

ġ0(s)e−
w−s

4

√
w − s

dsdw +
1

2π3/2

∫ t+t∗

t

∫ w

0

N0(s)e−
w−s

4

√
w − s

dsdw.

Exchanging order of integration, we find that the inner integral in both terms is given by∫ t+t∗

t

e−
w−s

4

√
w − s

dw = 2
√
π

[
Erf

√
t∗ + t− s

2
− Erf

√
t− s
2

]
.

In summary

lim
t→∞

∫ t+t∗

t

G0(s)ds = lim
t→∞

∫ w

0

[
1

2π3/2
N0(s)− 1√

π
ġ0(s)

]
2
√
π

[
Erf

√
t∗ + t− s

2
− Erf

√
t− s
2

]
ds.

Computing the limit under the integral term, using

lim
t→∞

[
Erf

√
t∗ + t− s

2
− Erf

√
t− s
2

]
= 0,

we obtain our claim.
Claim 2: N0(t) is asymptotically t∗-periodic, with exponential rate:

et [N0(t+ t∗)−N0(t)]→t→∞ 0.

Indeed, we have

e
t
4N0(t) = −

√
π

∫ t

0

e
s
4
ġ0(s)√
t− s

ds.

Hence, after rearranging the integral on the right hand side and changing variables, we can
write

e
t
4N0(t+ t∗)e

t∗
4 = −

√
π

∫ t∗

0

e
s
4

ġ0(s)√
t+ t∗ − s

ds−
√
π

∫ t

0

e
s
4
ġ0(s+ t∗)e

t∗
4

√
t− s

ds
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=⇒ e
t
4 [N0(t+ t∗)−N0(t)] = −

√
π

{∫ t∗

0

e−
t∗
4 e

s
4

ġ0(s)√
t+ t∗ − s

ds+
∫ t

0

e
s
4
ġ0(s+ t∗)− ġ0(s)√

t− s
ds

}
.

The integrand of the second term on the right hand side is zero, while the first integral on
the right hand side has fixed integration limits and is of order t−1/2. Hence the claim.
Claim 3:

lim
t→∞

∫ t∗

0

N0(s)e−
t+t∗−s

4

√
t+ t∗ − s

ds = 0.

This follows immediately from the decay of the integrand and the fixed limits of integration.
Claim 4:

lim
t→∞

∫ t

0

[N0(s+ t∗)−N0(s)]e−
t−s
4

√
t− s

ds = 0.

Since N0(t+ t∗)−N0(t) tends ot zero exponentially, there exists T > 0 such that for s > T ,
|N0(s+ t∗)−N0(s) < s−α, for some α > 1. Hence∫ t

0

[N0(s+ t∗)−N0(s)]e−
t−s
4

√
t− s

ds ≤
∫ T

0

[N0(s+ t∗)−N0(s)]e−
t−s
4

√
t− s

ds+
∫ t

T

s−α√
t− s

ds

Both these integrals can be shown explicitly to have a zero limit as t→∞, see also [12].
QED

8 Conclusions

We have derived explicit integral formulas for evaluating the Dirichlet to Neumann map for
boundary value problems for linear evolution PDEs in time-dependent domain; the shape of
the boundary is assumed known and of class C1, but not necessarily convex. To illustrate
our methodology, which is applicable to any linear, constant coefficient evolution PDE, we
have solved three specific examples of relevance for mathematical physics and applications.
Our approach is based on the global relation, whose importance in the analysis of boundary
value problems has been elucidated by one of the authors [7], and used in several contexts,
fro both linear and nonlinear problems. Although the use of the analysis of this relation in
the complex spectral plane is not necessary to solve the second order problems presented
here, such technique is crucial in order to solve the third order case, when two boundary
functions need to be determined.
The present work is a substantial extension and simplification of previous results by the
same authors.
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Appendix

We give details of how the kernel Klr given by (6.33) can be written in the form (1.20),
namely we derive the following identity:

Klr(s, t) =
2

1− α
Re

[∫
∂Ωra

iλ3eiλ
3(t−s)[eiλ(l(t)−l(s)) − eiα

2λ(l(t)−l(s))]dλ

]
=

=
2√

3(t− s)1/3

l(t)− l(s)
(t− s)

 ∞∑
m=0

(
l(t)−l(s)
t−s

)3m

(t− s)2m

(3m+ 1)!
Γ
(

3m+ 5
3

) .
First, we exploit the boundedness properties of the exponentials involved in the integrand
of the left hand side, and the known asymptotics of the integration contour ∂Ωra, to deform
the latter contour to the line {λ : arg(λ) = π

3 } ∪ {λ : arg(λ) = 4π
3 }. Then using a rotation

of α2, we find that this integral can be written as an integral along R:

Klr(s, t) =
2α2

1− α
Re

[∫
R
iλ3eiλ

3(t−s)[eiαλ(l(t)−l(s)) − eiα
2λ(l(t)−l(s))]dλ

]
.

Changing variable in the above integral to µ = λ(t− s)1/3, we find (1.19). We now write

e
iαλ

(l(t)−l(s))
(t−s)1/3 − e

iα2λ
(l(t)−l(s))
(t−s)1/3 = iλ

(l(t)− l(s))
(t− s)1/3

(α− α2) +
1
2

(iλ
(l(t)− l(s))
(t− s)1/3

)2(α2 − α)

+
1
3!

(iλ
(l(t)− l(s))
(t− s)1/3

)3(α3 − α6) + ...

Note that all powers that are multiple of 3 vanish, because α3 = α6 = 1. Hence we can
write this as the infinite series

2α2

1− α
e
iαλ

(l(t)−l(s))
(t−s)1/3 − e

iα2λ
(l(t)−l(s))
(t−s)1/3

t− s
=

2iλ
(t− s)1/3

l(t)− l(s)
(t− s)

∞∑
k=0

(
iλ l(t)−l(s)t−s (t− s)2/3

)k
(k + 1)!

ηk,

(8.14)
where

ηk =

 1 k = 0 mod (3)
−1 k = 1 mod (3)
0 k = 2 mod (3).

Thus

Klr =
2i

(t− s)1/3

l(t)− l(s)
(t− s)

∞∑
k=0

(
l(t)−l(s)
t−s (t− s)2/3

)k
ik+1

(k + 1)!
ηk

∫
R
λk+4eiλ

3
dλ, (8.15)

where the integral is interpreted as a principal value. Since

pv
∫

R
λk+4eiλ

3
dλ =

eiπ/6

3
Γ
(
k + 5

3

)[
ei(k+4)π/6 − ei5(4+k)π/6+2iπ/3

]
=

{ iκ√
3
Γ
(
k+5

3

)
k = 0 mod (3)

0 k = 1 mod (3)
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with κ+ 2 = m(mod4) when k = 3m. We thus arrive at the expression

Klr =
2√

3(t− s)1/3

l(t)− l(s)
(t− s)

∞∑
m=0

(
l(t)−l(s)
t−s

)3m

(t− s)2m

(3m+ 1)!
Γ
(

3m+ 5
3

)
. (8.16)

(in the sum, the power of i is 3m + κ + 2 = 4m (mod 4), so that the contribution of this
term is always equal to 1 ). Hence we find (1.20).
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