
Intrinsic chess rating 
Conference or Workshop Item 

Accepted Version 

Regan, K. W. and Haworth, G. M. ORCID: 
https://orcid.org/0000-0001-9896-1448 (2011) Intrinsic chess 
rating. In: AAAI-11: the 25th AAAI Conference on Artificial 
Intelligence, 07-11 August 2011, San Francisco, USA, pp. 834-
839. (ISBN: 9781577355076) Available at 
https://centaur.reading.ac.uk/19778/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3779 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Intrinsic Chess Ratings

Kenneth W. Regan ∗

University at Buffalo
Guy McC. Haworth

University of Reading, UK

February 12, 2011

Abstract

This paper develops and tests formulas for representing playing strength at
chess by the quality of moves played, rather than the results of games. Intrinsic
quality is estimated via evaluations given by computer chess programs run to high
depth, ideally whose playing strength is sufficiently far ahead of the best human
players as to be a “relatively omniscient” guide. Several formulas, each having
intrinsic skill parameters s for “sensitivity” and c for “competence,” are argued
theoretically and tested by regression on large sets of tournament games played by
humans of varying strength as measured by the internationally standard Elo rating
system. This establishes a correspondence between Elo rating and the parame-
ters. A smooth correspondence is shown between statistical results and the century
points on the Elo scale, and ratings are shown to have stayed quite constant over
time (i.e., little or no “inflation”). By modeling human players of various strengths,
the model also enables distributional prediction to detect cheating by getting com-
puter advice during games. The theory and empirical results are in principle trans-
ferable to other rational-choice settings in which the alternatives have well-defined
utilities, but bounded information and complexity constrain the perception of the
utilitiy values.

1 Introduction
Player strength ratings in chess and other games of strategy are based on the results
of games, and are subject to both luck when opponents blunder and drift in the player
pool. This paper aims to rate players intrinsically by the quality of their decisions, as
refereed by computer programs run to sufficient depth. We aim to settle controversial
questions of import to chess policy and enjoyment, and then extend the answers to
other decision-making activities:

1. Has there been “inflation”—or deflation—in the chess Elo rating system over the
past forty years?

2. Does a faster time control markedly reduce the quality of play?
∗Dept. of CSE, 201 Bell Hall, University at Buffalo Buffalo, NY 14260-2000; (716) 645-3180 x114, fax
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3. Was Old Master X stronger than modern master Y ?

4. Can game scores from tournaments where high results by a player are suspected
to result from fraud reveal the extent to which “luck”—or collusion—played a
role?

5. Can we objectively support assertions of the kind: this player is only an average
master in the openings and middlegames, but plays at super-grandmaster strength
in endgames?

The most-cited predecessor study, [Guid and Bratko2006], aimed only to compare
the chess world champions, used a relatively low depth (12 ply) of a program Crafty
[Hyatt2011] generally considered below the elite, and most importantly for our pur-
poses, evaluated only the played move and Crafty’s preferred move, if different. The
departure point for our work is that to model probabilistic move-choice to needed ac-
curacy and assess skill at chess, it is necessary to evaluate all of the relevant available
moves. At a game turn with `-many legal moves, we can list them m0,m1, . . . ,m`−1

in nonincreasing order of their (composite) evaluations e(m0), e(m1), . . . , e(m`−1)
by a (jury of) computer program(s), and use these as a measure of the moves’ utilities.
(When the convention of stating scores always from White’s point of view is used, for
Black moves the evaluations can be negated.) Our work uses the commercial chess pro-
gram Rybka 3 [Rajlich and Kaufman], which was rated the best program on the CCRL
rating list [CCR2010] between its release in August 2007 and the release of Rybka 4
in May 2010.

Guven the evaluations, for each i, 0 ≤ i < `, define δi = e(m0)− e(mi). A vector

∆ = (δ0 = 0, δ1, . . . , δN−1)

is called the spread of the top N moves. Often we cap N at a number such as 20 or 50,
and if ` < N , we can pad out to length N with values of “+∞” if needed.

The only game-specific information used by our methods is the spread, the actual
move played, and the overall evaluation of the position. This minimal information
is common to other games of strategy, and our work aspires to handle any decision-
making application with bounded rationality in which utilities (taken already to include
risk/reward tradeoffs) must be converted into probabilities.

2 Background and Previous Literature
The Elo rating system (see [Elo2011]) computes an expected score E based on the
differences rP − rO between the rating of a player P and the ratings of various op-
ponents O, and adjusts rP according to the difference between the actual score and
E. Although different particular formulas for E and (especially) the change to rP
are used by the World Chess Federation (FIDE) and various national federations, they
are generally set up so that rP − rO = 200 means that P must score approximately
75% in games versus O in order to avoid losing rating points. (Under the logistic-
curve model used by the United States Chess Federation, USCF, this is close to 76%.)
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Since only rating differences matter there is no absolute meaning to the numbers pro-
duced, but considerable effort has been expended by FIDE and national federations
to maintain the strength levels indicated by particular numbers stable over time. For
four decades all World Champions and their closest contenders have held ratings in
the neighborhood of 2800, while 2650 is the most commonly cited threshold for the
unofficial “super-grandmaster” status, 2500 is typical of Grandmasters, 2400 of Inter-
national Masters, 2300 of FIDE Masters (indeed, awardees of the the last three titles
must have current ratings above those floors), while 2200 is often designated “master”
by national federations. The USCF then uses 2000 as the threshold for “Expert,” 1800
for “Class A,” officially down to 1000 for “Class E” which has also been referred to as
the strength of “bright beginners.” Hence we refer to 200 points as a “class unit.”

By fitting to these itemized skill levels, our paper continues work on reference
fallible agents in the game context [Reibman and Ballard1983, Korf1987, Korf1988,
Haworth2003, Haworth and Andrist2004, Andrist and Haworth2005]. The aim going
beyond these papers, and beyond the results reported in this preliminary work, is to
fit probabilities and confidence intervals for move section by thus-calibrated agents.
The present work establishes that a reference-fallible model is supported by data
taken on a far larger scale than previous studies, and using a more-ramified model
than [DiFatta, Haworth, and Regan2009, DiFatta, Haworth, and Regan2010] which are
based on Bayesian inference.

3 Basic Model
Our key abstract concept is the probability pi = pi(s, c, . . .) of a player P of skill level
corresponding to parameters s, c, . . . choosing move mi at a given turn t. We wish
to fit pi as a function of the spread ∆t for that turn. We make three basic modeling
assumptions:

(a) A player’s choices at different game turns are independent, even for successive
game turns.

(b) There is a relation between the probability pi of selecting the i-th move and the
probability p0 of choosing an optimal move that depends simply and mainly on
the value δi alone.

(c) For players at all skill levels, the relation has the form r(pi, p0) = g(δi), where
r is a ratio, g is a continuous, decreasing function of δi, and g depends only on
the parameters s, c, . . . for the skill level.

Assumption (3) is de rigeur for the whole enterprise of regarding pi as a function
of information for the given turn t alone. It also enables us to multiply probabilities
from different turns, and add probabilities to project (for instance) the total number of
matches to a computer’s first choices over a sequence of moves. We justify it further
below.

Note that (3) does not assert that pi depends on δi alone. The quality of alternative
moves must factor into the probability of selecting move mi somehow. Our assump-
tion (3) asserts what seems to be the simplest and weakest dependence on alternatives,
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however, saying all their effect is bundled into p0. We assert no other dependence on
δj for j 6= i. In (3) we allow a smaller dependence on the overall evaluation e, but only
to down-weight or filter out cases where e is extreme—i.e. for poor moves or when one
side is clearly winning—as detailed in Section 5.

The function r is said to define the model, and the functions g = gs,c,..(δ) are curves
used to fit the model. The models and curves are normalized so that g(δ0) = g(0) = 1.
Plausible models include:

1. “Shares”: r is pi/p0, so pi = p0 · g(δi).

2. “Powers”: r is log(1/p0)/ log(1/pi), so pi = p
1/g(δi)
0 .

3. r(pi, p0) = pi log(1/p0)
p0 log(1/pi)

= g(δi).

Another way of describing Model (1) is that the curve value si = gs,c,..(δi) is
the “share” of move mi, and its probability pi is the ratio of si to the sum of the
shares, S =

∑`−1
i=0 si. Hence the name “Shares.” In Model (2), the curve represents an

“exponential decay” of probability in going from an optimal move to an inferior one.

Justification of the Assumptions
Assumption (3) is intuitively false when a sequence of move choices constitutes a single
plan. For example, if White plays 20.Nh1-g3 and the best square for the Knight is d4,
then White is humanly likely to follow with 21.Ng3-e2 and 22.Ne2-d4. However, this
is one of several places where our modeling requires only that assumptions be “usually
approximately true,” and where the degree of compliance is ascertainable from the data.

Assumption (3) tacitly assumes that r itself is monotone in pi, so that holding p0
constant, the probabilities pi(s, c, . . .) are also decreasing functions of δi, for all fixed
skill levels. How reasonable is this? It is easy to devise positions with an attractive but
inferior move that most human players would choose, where the best move may—or
may not—be found by our computer jury at the reference depth, thus falsifying (3) for
that position. However, the “Shares” model extends naturally to assert

pi = p0 ·
∑
d

wdg(δd,i),

and the others can be extended similarly. Then weaker players can be recognized as
those with higher values of wd for lower d, and their fitted ensembles of curves may be
non-monotone for fixed higher values of d. Although we do not fit such wd parameters
in this work, and use evaluations only at the given fixed depth 13 ply of Rybka 3, there
is reason to believe from our results that we have gotten a representative “slice” of this
spectrum for a fairly wide variety of players. Thus we have two defenses to objections
on (3) that stay within our basic modeling assumptions, and we can use goodness-of-fit
data to justify both it and (3).

A third kind of objection is that important chess-specific information has been left
out, such as received evaluations of chess openings (especially gambits whose com-
pensation is not recognized quickly enough by engines), player styles, tournament sit-
uations, time-pressure during specific games, and more. To this we answer that the
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very force of our model is its chess-neutrality, and that a statistical yardstick can be
objective only when it does not adapt to any player style or situation internally. The
most we allow are ideas of putting external weights on the significance of the models’
results according to situation, such as weighting games at rapid time controls less.

To justify this answer, and turn away objections similar to those leveled at the Guid-
Bratko study, we need internal means of measuring the effectiveness of our simple
model, and a good positive result from such measurements. First we describe the kinds
of curves to fit.

4 Possible Move-Choice Formulas
We regard the two parameters already called “s” and “c” above as organic, with a com-
mon meaning across models and curves. The s parameter represents a conversion from
the hundredths-of-a-pawn units of δi into the dimensionless quantity δi/s used in all of
our curves. The smaller s, the greater the ratio when δi is moderate, thus lowering the
projected probability of the i-th move. Hence s governs a player’s ability to discrimi-
nate moderately inferior moves, so we call it the sensitivity. We use the symbol s, and
divide rather than multiply, because it equals or scales with the standard deviation of
several of the curves when the curves themselves are viewed as distributions.

The parameter c appears as an exponent of δ/s, directly or with some intervening
terms. Intuitively it governs how often a player avoids moves in the range the player
discriminates as inferior, and avoids poor moves overall. Hence we regard it as a notion
of competence.

Additional parameters to fit may come from fitting linear combinations of curves,
and will come as weights over ply-depths in the full model with “swing.” However we
regard s and c, together with the model and curve family, as determining the shape of
skill at chess. Salient families of curves g, all normalized to make g(0) = 1, that we
have considered are:

• Inverse-exponential curves:

invexp(δ) = e−(δ/s)c .

• Inverse-polynomial curves:

ipa(δ) =
1

1 + (δ/s)c
, or

ipb(δ) =
1

(1 + δ/s)c
.

• Logistic function-related curves:

secha(δ) =
2

(e(δ/s)c + e−(δ/s)c)
or

sechb(δ) =
4

(e(δ/s)c + 2 + e−(δ/s)c)
.
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All of these curves were found to give similar results, largely owing to the way they
approximate each other near the origin. We standardized our results on the inverse-
exponential family.

5 Data Methodology and Experiments
Two large sets of data were taken, the former acting as a control for the latter. The for-
mer comprises approximately 150,000 games of chess, including every match for the
world championship, every qualifying match for the championship, the top round-robin
tournaments from London 1851 onward, large selections from the Chess Olympiads,
every USSR/Russia and USA Championship, and a host of other kinds of chess compe-
tition including rapid, blitz, correspondence, and computer play. These were scripted
by running Rybka 3 in so-called Single-PV mode, whereby it computes a full evalu-
ation only for the preferred move, to reported depth 13-ply in the Arena chess GUI
[Blume2010], which logs the evaluation of each move and other information automat-
ically to a text file.

These runs re-created a somewhat simpler form of the Guid-Bratko experiment
[Guid and Bratko2006]. Similar to there, each game was begun on move 9 since earlier
moves are often repeated and are considered part of common opening theory. Moves
where one side was already established as being more than 3 pawns ahead according
to Rybka 3 were discarded; [Guid and Bratko2006] used a similar 2-pawn cutoff for
Crafty run to 12 ply, but 3 pawns was felt better for Rybka 3 owing to its deeper
search. The percentage of moves on which the player and Rybka 3 agreed, called
the move-match percentage (mm), were tallied for each player in each event. The
difference in evaluation in cases where the player chose a sub-optimal move according
to Rybka 3, summed and averaged over all moves, comprised our version of the Guid-
Bratko “Average Difference” (ad) statistic.

When the average difference was plotted against the overall evaluation e of a given
position for the player to move, it was found that the former scaled markedly up with
|e|. The effect was so pronounced that in many kinds of chess events, the same players
when judged ahead by only 0.5 pawns showed a 60-70% higher average-difference
than when the position was judged very close to dead-even. Since it seemed strange
to infer that players in such cases were performing 60–70% worse, it was decided to
institute a scale correction. This was done by integrating a line differential `(x). Thus
if e = +0.50 for a White move turn, but the move mi played was judged a 1.25 pawn
error, the δ(mi) value was recorded as the integral of `(x) from −0.75 to +0.50. It
was found that a simple proportional scale correction equalized the global ad statistics
in relation to e fairly well.

The main data set comprised games in which both players were within 10 Elo rating
points of one of the “milepost” values: 2700, 2600, 2500, . . . , run under standard time
controls in individual-player round-robin or small-Swiss tournaments. Team events
and large-Swiss (meaning more than six times as many players as rounds) tournaments
were excluded. Games were taken from three time periods: 2006–2009, 1991–1994,
and 1976–1979. These games were evaluated to depth 13 ply in 50-PV mode; since
most positions have fewer than 50 legal moves, and all but a trace with more legal
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moves have fewer than 50 remotely sensible ones, this guaranteed full evaluation and
consideration of alternatives to the played move and/or the preferred move. Each set
had at least 5,000 moves that were not subject to the 3-pawn cutoff or discarding for
“repetitions,” while the largest set had just over 25,000 moves, so the relative sizes
were reasonably consistent. In each case we ran all available games meeting the de-
scription, from two major commercial game collections marketed by ChessBase Gmbh.
and OpeningMaster.com, so as to avoid any bias in selection.

For 1976–1979 it was possible to find relaible and large-enough game sets only
for the 2300 through 2600 mileposts, while 1991–1994 made it possible to add 2700
and 2200. Since the World Chess Federation has expanded its FIDE rating system
to players below 2200 in recent years, for 2006–2009 it was possible to find enough
games down to 1600. The ranges around mileposts were expanded from ±10 to ±15
or ±20 for some of the lower sets.

For each non-discarded move of each game, evaluation and spread data was pro-
cessed from the Arena analysis logs into the following format:

Move played: 12.Ng5
Engine move: 12.e5
Eval end-13: +0.63
Delta = (0.00,0.04,*0.12,0.12,0.39,...)

Move played: 12...h6
Engine move: 12...h6
Eval end-13: +0.56
Delta = (*0.00,1.05,1.06,1.20,1.85,...)

Move played: 13.Nxf7+
Engine move: 13.Nh3
Eval end-13: +0.57
Delta = (0.00,0.10,2.40,2.42,2.46)*

Move played: 13...Rxf7
Engine move: 13...Rxf7
Eval end-13: -2.20
Delta = (*0.00,9.30,9.42,---,---,---,..)

In this hypothetical example, the White move 13.Nxf7+ (giving check) might be
classed as a “blunder,” and the * after the closing ) signifies that it wasn’t among the
top ten moves. At the next move the --- marks indicated that Black had only 3 legal
replies; one could pad “Delta” with a large value such as 5.00 or 10.00 instead. Since
Black’s 13. . . Rxf7 capturing the Knight is a forced move (else Black loses Queen for
Knight as hinted by δ2 = 9.30 and δ3 = 9.42 for the two other legal moves), it has a
near-total share, and the turn itself has entropy near zero, a non-critical move. Since
the evaluation after 13. . . Rxf7 shows an imbalance above 2.00, this last datum might
be discarded anyway.
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6 Fitting Methodology
If all spread tuples were the same ∆ = (0, δ2, . . . , δN ), or if we had a large-enough
set of nearly-equal tuples to form a histogram, fitting the results to a curve would
be relatively simple. Let f1, f2, . . . , fN , fN+1 be the observed frequencies of which
indexed move in the spread was played, with fN+1 standing for “move played not in
the top N” and hopefully negligibly small. Then given a curve gs,c(δ) and distance
measure µ, such as µ(x, y) = |x−y|2 for least-squares, we could compute the fit score
Sq,c =

µ(f1, 1/S) + µ(f2, gs,c(δ2)/S) + · · ·+ µ(fN , gs,c(δN )/S),

where S = 1 + gs,c(δ2) + · · · + gs,c(δN ). In the case of equal spreads this yields the
same best-fit s, c as maximum-likelihood estimation.

With heterogeneous spreads, however, the estimation is trickier. Maximum-
likelihood estimation can still be applied to obtain the best s, c, . . . for a given curve or
hybrid g, but this alone does not judge whether g has the right “shape” across a range
of δ.

To this end we devised a “percentiling” method. Given a curve gs,c(δ), let q ad-
ditionally stand for a percentile. For each point (q, s, c) in a fine-enough grid, say
stepping q by 0.05 from 0 to 1, s by 0.02 from 0 to 0.70, and c by 0.20 from 1 to 5, we
iterate through each spread tuple ∆t = (0, δ2, . . . , δN ). For each i, 1 ≤ i ≤ N , com-
pute the probabilities pi = gs,c(δi)/St, where St =

∑
i gs,c(δi). Let it be the index of

the played move. Define p− =
∑it−1
j=1 pj and p+ = p− + pit , giving the endpoints of

the predicted probability interval of the played move. Then:

• If p+ ≤ q, call the tuple “up.”

• If p− ≥ q, call the tuple “down.”

• If p− < q < p+, so that the prediction for the played move straddles the q-th
percentile, count the tuple as being |q − p−|/pit up, and |q − p+|/pit down.

Finally define Rqs,c to be the percentage of “up” tuples. Given a distance measure µ as
above, the score now becomes

Ss,c =
∑
q

µ(Rqs,c, q).

A low score indicates a good fit across a range of percentiles for the curve gs,c(δ).
Note that for a spread ∆ with one clearly-indicated best move, say with δ2 = 1.50,

the predicted range for most s, c will span beyond the 90th percentile. Suppose the
best move is played, as predicted. For q = 0.30, say, the tuple will count as (roughly)
one-third up, two-thirds down. It may seem counter-intuitive for a result that confirms
a prediction to give an overall “down” score, but the prediction that is actually tested
by our method is not the individual move but the overall frequency of hits above/below
a given percentile. Nor is it necessary to estimate the proportion of the cumulative
distribution of gs,c(δ) to the left and right of 0.30 in the spanned range—the straight
one-third/two-thirds division is correct. In effect we have converted from the “δ scale”
to the percentile scale, with the effect that instead of plotting data points for a horizontal
δ-axis and fitting gs,c(δ), we fit the derived percentile curve(s) instead.
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7 Results
A two-parameter model such as ours is trickier to fit, especially when the parameters
trade strongly off against each other. A statistical analyzing program written in C++
carried out the two-dimensional minimization needed to implement the above fitting
method. It was found that while s varied from 0.07 to 0.16 and beyond, the c value
stayed between 0.430 and 0.545. Accordingly we did a simple linear fit of the c values
for 2006–2009, getting intervals coincidentally highly close to 0.007, and then used
these to compute “normalized” fitted s-values for each rating milepost. The results, the
predicted and actual move-match and average-difference statistics, and a measure of
the quality of the fit, are shown in the following table.

2006–2009

Elo s c cfit sfit mmp/mma adp/ada Qfit

2700 .078 .503 .513 .080 56.2/56.3 .056/.056 .009
2600 .092 .523 .506 .089 55.0/54.2 .063/.064 .041
2500 .092 .491 .499 .093 53.7/53.1 .067/.071 .028
2400 .098 .483 .492 .100 52.3/51.8 .072/.074 .016
2300 .108 .475 .485 .111 51.1/50.3 .084/.088 .044
2200 .123 .490 .478 .120 49.4/48.3 .089/.092 .084
2100 .134 .486 .471 .130 48.2/47.7 .099/.102 .034
2000 .139 .454 .464 .143 46.9/46.1 .110/.115 .065
1900 .159 .474 .457 .153 46.5/45.0 .119/.125 .166
1800 .146 .442 .450 .149 46.4/45.4 .117/.122 .084
1700 .153 .439 .443 .155 45.5/44.5 .123/.131 .065
1600 .165 .431 .436 .168 44.0/42.9 .133/.137 .129

1991–1994

2700 .079 .487 .513 .084 55.2/54.9 .058/.060 .043
2600 .092 .533 .506 .087 55.3/54.6 .064/.063 .042
2500 .098 .500 .499 .092 54.3/53.8 .068/.069 .013
2400 .101 .484 .492 .103 52.3/51.9 .077/.079 .016
2300 .116 .480 .485 .117 51.0/50.3 .088/.091 .031
2200 .122 .477 .478 .122 49.7/48.7 .092/.098 .058

1976–1979

2600 .094 .543 .506 .087 53.8/53.0 .062/.061 .038
2500 .094 .512 .499 .091 53.2/52.5 .067/.068 .032
2400 .099 .479 .492 .103 52.3/51.7 .076/.079 .020
2300 .121 .502 .485 .116 50.9/50.0 .088/.090 .070
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Our first major conclusion is that there is a fairly smooth relationship between the
players’ Elo rating and the intrinsic quality of the moves as measured by the chess pro-
gram and the fitting. Moreover, the final sfit values obtained are nearly the same for the
corresponding entries of all three time periods. Since a lower s indicates higher skill,
we conclude that there has been little or no “inflation” in ratings over time—if any-
thing there has been deflation! This runs highly counter to conventional wisdom, but is
predicted by population models on which rating systems have been based [Elo2011].

8 Conclusions and Further Directions
We have demonstrated that quality of move choice can be ascertained based on intrin-
sic measures rather than the results of games. We have essentially fitted only the first-
moments of the respective skill levels. The next main task is to obtain projected confi-
dence intervals from the percentile-fitting method, based on its similarity to Bernoulli
trials, and then test whether they are accurately populated by our large amounts of
data. The result will be a model of move choice that is capable of testing allegations of
whether players—of a given skill level—have been agreeing with computer evaluations
more than chance would warrant. Another use for our model will be a better simulation
of human players of these skill levels, especially being faithful to their observed ten-
dency to make markedly inferior choices (“blunders”). Finally, insofar as our methods
involve almost no information specific to chess, they should be transferable to other
domains.
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