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ABSTRACT
In the earth sciences, data are commonly cast on complex
grids in order to model irregular domains such as coast-
lines, or to evenly distribute grid points over the globe. It is
common for a scientist to wish to re-cast such data onto a
grid that is more amenable to manipulation, visualization,
or comparison with other data sources. The complexity of
the grids presents a significant technical difficulty to the re-
gridding process. In particular, the regridding of complex
grids may suffer from severe performance issues, in the worst
case scaling with the product of the sizes of the source and
destination grids. We present a mechanism for the fast re-
gridding of such datasets, based upon the construction of a
spatial index that allows fast searching of the source grid.
We discover that the most efficient spatial index under test
(in terms of memory usage and query time) is a simple look-
up table. A kd-tree implementation was found to be faster
to build and to give similar query performance at the ex-
pense of a larger memory footprint. Using our approach, we
demonstrate that regridding of complex data may proceed
at speeds sufficient to permit regridding on-the-fly in an in-
teractive visualization application, or in a Web Map Service
implementation. For large datasets with complex grids the
new mechanism is shown to significantly outperform algo-
rithms used in many scientific visualization packages.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval; I.3.3 [Picture/Image Generation]:
Computer Graphics; H.2.8 [Database management]: Data-
base applications—Spatial databases and GIS

General Terms
Experimentation, Performance
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regridding, GIS, Web Map Service, visualization, curvilinear
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1. INTRODUCTION
Gridded data appear very frequently in environmental and

geospatial science. Such data are produced by numerical
models and many kinds of remote sensing instruments, and
may also be derived from the interpolation of in situ mea-
surements. It is common for a scientist to re-cast such data
onto new grids for the purposes of visualization, compar-
ing datasets with each other, for calculating derived fields
that are functions of more than one variable, or simply for
reasons of convenience in data handling. This is known as
regridding.

Geographic Information Systems (GIS) commonly per-
form regridding operations on raster datasets in order to dis-
play a dataset in a user-specified coordinate reference system
(CRS). In a service-oriented architecture, this regridding
may be performed on a server, such as a Web Map Service
(WMS, [6]). The transformation from one CRS to another
is often defined as a mathematical function. However, in the
Earth sciences, notably meteorology, oceanography and cli-
mate science, complex grids are commonly used [9], which do
not have transformations from grid space to real space that
are easily captured as mathematical functions. This leads to
technical difficulties in regridding these datasets and hence
hinders their use in visualization tools, including GIS.

Although earth science data are commonly multidimen-
sional (covering two horizontal dimensions, a vertical di-
mension and time), we are most concerned here with the
two-dimensional horizontal component of the grids, which
is usually the largest and most complex in terms of its re-
lation to real space. We use the following terminology: in
a rectangular grid, each cell is addressable by two integer
indices i and j. Rectangular grids may be further catego-
rized by their relation to real space. In rectilinear grids, the
two grid axes are aligned with axes in a real-world CRS,
and so the grid cells are rectangular in the CRS. Regular
grids are rectilinear grids in which the grid cells are square
in the CRS. Curvilinear grids are rectangular grids that are
referenceable to a real-world CRS, but the grid cells are not
rectangles in the CRS.

Curvilinear grids are found in many Earth science com-
munities, notably oceanography, in which they are used to
ensure that the grid follows complex features such as coast-
lines and straits (see figure 1 for an example). They can also
be defined in order to avoid singularities at the poles; the
tripolar grid [9] is an example of this. Curvilinear grids are
usually defined empirically by explicitly specifying the real-



Figure 1: An portion of a sample curvilinear grid
covering the Strait of Gibraltar, illustrating a snap-
shot of sea level in centimetres derived from one of
the test datasets in this study (UCA, see table 1). In
latitude-longitude space, the quadrilateral grid cells
are distorted in order to resolve small-scale features
in the strait.

world coordinates (usually spherical coordinates, i.e. longi-
tude and latitude) of each grid cell1.

The primary motivation behind this study was to devise
an efficient algorithm for server-side generation of images of
curvilinear datasets for use in a Web Map Service implemen-
tation [3]. This paper tests a number of different approaches
against datasets of various sizes, from a few thousand to a
few million grid cells. This is a short and practical study:
a discussion of the theory and technical details behind the
techniques under test is beyond the current scope.

2. REGRIDDING ALGORITHMS
Regridding algorithms vary greatly in the manner in which

they transfer data from one grid to another. Some algo-
rithms treat the grids as sets of points, largely ignoring the
shapes of the grid cells and casting data from one set of
points to the other using an interpolation scheme such as
nearest-neighbour, bilinear or bicubic. Others calculate the
precise overlap of cells in each grid, transferring data be-
tween grids in an area-weighted scheme. Some algorithms
are designed to be conservative, preserving the values of in-
tegrated quantities such as mass, energy and fluxes on the
new grid [8].

Algorithms can broadly be divided into two types. An al-
gorithm may iterate through the source grid S, transferring
data to the destination grid D; we call this a “source-push”

1http://www.cfconventions.org

algorithm. Such algorithms are common in scientific visual-
ization tools including Matplotlib [7] and Panoply2, which
both iterate over S, drawing each grid cell onto a canvas
representing D. The Modis Swath-To-Grid toolbox3 also
iterates over S, recording weights (based on euclidean dis-
tance) and data values in D, normalizing the values by the
weights at the end of the iteration to produce an output
image.

Alternatively, the algorithm may iterate through D, ex-
tracting corresponding data from S; this is a “destination-
pull” algorithm. Such an algorithm is employed in ncWMS,
a Web Map Service implementation for multidimensional
Earth science data [3].

A key factor controlling the efficiency of these algorithms
is the invertibility of the source and destination grids. For
the purposes of this paper we say that a grid is invertible
if there exists an O(1) algorithm that will find the grid cell
that contains a given real-world position. By this definition,
rectilinear grids are invertible, but curvilinear grids are usu-
ally not. In this paper we are particularly concerned with
cases involving large, non-invertible source grids. The rela-
tive performance of the two classes of algorithm will depend
on many factors including the relative sizes of the two grids.
In general, however, for a source grid with NS cells and a
destination grid of ND cells, it is clear that a “destination-
pull” algorithm will be highly inefficient (O(NSND)) if S
must be searched exhaustively to find correspondences with
every point in D. We therefore seek strategies that allow for
much more efficient searching of large, non-invertible source
grids such as curvilinear grids.

3. SPATIAL DATA STRUCTURES
There is a rich literature in the use of data structures and

algorithms that allow multidimensional space to be searched
efficiently by using the data structure as an index into the
source data [10]. In this study we consider that the primary
purpose of the spatial data structure is to find the cell CSP

within S that contains a given point P . From this initial
search, most regridding schemes are then implementable.
Note that in the case of non-rectilinear grids, P may be
closer to the centre of a neighbouring cell than it is to CSP

(see figure 2) so this query is not quite the same as a nearest-
neighbour query on the set of the centres of cells in S.

4. TESTING
In this study, we investigate the suitability of different

spatial indexes for finding CSP in three curvilinear datasets
of different sizes and characteristics (Table 1). The indexes
in this study were chosen because they are well-known and
readily available (or relatively easily implemented). Many
other alternatives are possible, including algorithms specif-
ically designed to index spheres [11]. A fuller investigation
of the large number of alternative approaches is beyond the
scope of this short study. Each of the spatial indexes was
implemented in Java and tested against each dataset in the
following manner:

1. The source grid S was loaded from the source data file.

2. The cells of S were inserted into the spatial index un-
der test, measuring the time taken to construct the

2http://www.giss.nasa.gov/tools/panoply/
3http://nsidc.org/data/modis/ms2gt/



Figure 2: Sketch of a portion of a curvilinear grid in
latitude-longitude space. This illustrates that the
cell CSP that contains a given point P is not al-
ways the cell that contains P ’s nearest-neighbour
grid point (grey point).

index. The cells were defined in longitude-latitude co-
ordinates.

3. The memory footprint of the index was estimated by
using Java system calls to measure the size of data on
the heap before and after construction of the index4.

4. A destination grid D of size 256×256 was constructed
in longitude-latitude coordinates, covering the spatial
extent of the source grid.

5. The spatial index was used to find CSP , taking P as
the centre of each grid cell in D, measuring the average
time per query.

The test machine was a laptop running Fedora 13, with
an Intel Pentium dual core T3400 2.16 GHz processor and
3 GB of RAM. Four spatial indexes were tested:

R-Trees [10] are among the most widely-used spatial in-
dexes, storing rectangles (in the 2D case) and allowing fast
queries to find all the rectangles within the R-tree that in-
tersect a given rectangle. We tested an R-tree implemen-
tation from the Java Spatial Index library5, version 1.0b6.
The Priority R-Tree (PR-tree [2]) is an R-tree variant

that exhibits O(
√
N) worst-case query performance. We

used a Java implementation of the PR-tree6, version 1.4. In
each case, the index was used to store the minimum bound-
ing rectangle (MBR) of each cell in S, then the intersection
query was used to find all MBRs that contain P . The cells
corresponding to these MBRs were then searched to find
which cell contains P , using the contains() method of the
java.awt.geom.Path2D class. The R-tree implementations
allowed the setting of a parameter (the branching factor).
Results were found to be insensitive to the choice of value
for this parameter, and so the default value of 10 was used.

Adaptive Kd-trees [10] store points rather than rect-

angles and exhibit O(
√
N) performance for searching for

points that lie within a given target rectangle. We imple-
mented an adaptive kd-tree in Java, populating it with the

4Unfortunately Java does not provide an easy way to cal-
culate the size of an object. We were careful to maximize
the possibility that all unused objects had been garbage-
collected.
5http://jsi.sourceforge.net/
6http://www.khelekore.org/prtree/

centres of all the grid cells in S. Initially the standard near-
est neighbour search algorithm was implemented, but this
was found to perform very poorly, due to the existence of
cells in D which do not have a corresponding P in S, and
therefore having a nearest neighbour lying a considerable
distance away (e.g. cells in the centre of a masked region).
An alternative approach was adopted, where for each P , the
kd-tree was searched by constructing a bounding rectangle
around P and finding the points in the kd-tree that contain
the rectangle. If the rectangle did not contain any points,
it was repeatedly expanded by an expansion factor until re-
sults were returned or a defined size limit was reached. Of
these results, the nearest point to P was found by linear
search through the result set. This cell, together with its
neighbouring cells, were then searched to find CSP using
Path2D.contains() as above. The use of this technique im-
proved performance, but suffers from the need to choose em-
pirically the initial rectangle size and the expansion factor.
In these tests, these parameters were chosen to be optimal
for each individual dataset by exhaustively testing a large
number of parameter combinations and selecting the combi-
nation that yielded the shortest query time.

The final approach we investigated was to construct a
simple look-up table (LUT). The LUT is a regular grid
of latitude vs longitude, in which each cell contains the i,j
index of the cell in S whose centre is closest to the latitude-
longitude point represented by the cell of the LUT. The LUT
is implemented as two congruent arrays of short (2-byte) in-
tegers, one array for the i indices and one for the j indices.
We found an O(NS) means to construct the LUT using a
“source-push” algorithm, avoiding brute-force searches of S
for each point in the LUT. Queries on the LUT were per-
formed as follows: For each point P , the nearest latitude-
longitude grid point P ′ within the LUT was found (note that
the LUT is an invertible grid). The LUT was then used to
find the cell in S whose centre is closest to P ′. This lookup
is a very fast process (O(1)) but is only an approximation
to a nearest-neighbour search on P itself. The true nearest
neighbour of P was then found by a short gradient-descent
algorithm. The cell containing the true nearest-neighbour of
P and its immediate neighbours were then searched to find
CSP using Path2D.contains(). The size (i.e. resolution) of
the LUT was chosen to be approximately 3 times finer than
the source grid; empirically we have found that this gives an
acceptable balance of performance and memory usage. A
coarser look-up table would occupy less memory, but would
require a lengthier gradient-descent step to refine the initial
lookup. A finer look-up table would provide a more accurate
lookup at the expense of a larger memory footprint.

5. RESULTS
The results of the above tests are shown in Table 1. Three

test datasets were used (UCA, ORCA025 and METEOSAT),
described in the table. Of the spatial indexes under test, the
look-up table occupies the smallest amount of memory in
each case, whereas the kd-tree was consistently the fastest
index to build. Query times were consistently of the order of
a few microseconds for the kd-tree and LUT for all datasets,
with the LUT query being slightly quicker. Results for the
R-trees are more complex. Although both R-tree implemen-
tations are competitive with other indexes for the smallest
dataset (UCA), query times for the other datasets are many
times slower. Unexpectedly, query times for the R-tree and



Table 1: Results of constructing and querying four different types of spatial index based upon three different
curvilinear datasets. Results are means of five trials in each case; a single trial for query time consisted of
taking the mean of 256× 256 queries of the source grid. Standard deviations were small (a few percent) and
omitted for clarity.

Dataset No. cells Notes Index Build time (s) Size (MB) Query time (µs)

UCA 7,920

Covers Mediterranean out-
flow, including large dis-
tortions around Strait of
Gibraltar (figure 1)

kd-tree 0.03 0.82 5.75
R-tree 0.43 0.76 8.22
PR-tree 0.06 0.96 5.48
LUT 0.13 0.62 4.05

ORCA025 1,472,282

Based on Murray tripo-
lar grid, global coverage at
nominal resolution of 0.25
degrees

kd-tree 10.5 163 8.62
R-tree 81.3 160 513
PR-tree 332 193 36.7
LUT 22.0 76.4 5.60

METEOSAT 4,576,701
Geostationary satellite im-
age over Africa / Middle
East from Meteosat-7

kd-tree 54.9 564 8.10
R-tree 247 542 24.0
PR-tree 3620 824 6.59
LUT 95.4 295 5.36

PR-tree were faster for the largest dataset (METEOSAT)
than for ORCA025. We interpret this as a consequence of
the highly-distorted grid cells (in latitude-longitude space)
in ORCA025, which we expect to cause greater overlap be-
tween bounding rectangles in the R-trees, causing more can-
didate results to be returned and requiring filtering. The two
R-tree variants were by far the slowest indexes to build.

5.1 Application to a Web Map Service
Although the above approaches could be applied to im-

prove the performance of a variety of regridding algorithms,
we focus here on the problem of generating raster imagery
from complex data in a Web Map Service implementation.
It is important that WMS implementations can return im-
ages quickly in response to requests from many simultaneous
users (the INSPIRE7 Draft Implementing Rules for View
Services v3.0 say that the response time for an 800× 600 8-
bit image shall be a maximum of 5 seconds, for 20 requests
per second).

We compare here the performance of a “source-push” al-
gorithm for generating images with a “destination-pull” al-
gorithm. The source-push algorithm was simply to paint
the source grid cells directly onto a canvas, in the manner
of a typical visualization package. The destination-pull al-
gorithm iterated through each pixel in the required image,
using a look-up table as an index to help to find the source
grid cell that contained the position representing the centre
of the pixel. The pixel was then coloured according to the
value of the source grid cell. The two algorithms produce
images that appear identical to the naked eye.

Figure 3 shows the results of applying these algorithms
to the three datasets for different requested image sizes. As
expected, the performance of the source-push algorithm de-
pendes strongly on the size of the source grid, but only very
weakly (if at all) on the size of the destination grid. The per-
formance of the destination-pull algorithm depends strongly
on the size of the destination grid.

We see that, for the smallest dataset (UCA), the source-
push algorithm significantly outperforms the destination-
pull algorithm. For the middle-sized dataset (ORCA025)
the destination-pull algorithm is faster for images up to and

7http://inspire.jrc.ec.europa.eu/

Figure 3: Times to create images of different sizes
using source-push (solid lines) and destination-pull
(dashed lines) algorithms. Source datasets were
UCA (triangles), ORCA025 (diamonds) and ME-
TEOSAT (squares); see table 1 and section 5.1. Re-
sults are means of five trials in each case. Standard
deviations were small (a few percent) and omitted
for clarity.

including 1024 × 1024 pixels. For the largest dataset (ME-
TEOSAT), the destination-pull algorithm is faster for all
image sizes under test (up to 2048× 2048 pixels).

5.2 Comparison with other tools
It is difficult to compare these results fairly and accu-

rately with the performance of other visualization packages.
Such packages may perform a variety of tasks in addition
to regridding, including the addition of contextual informa-
tion (axes, colour scale bars, titles) as well as data ma-
nipulations such as interpolation. However, in simple tri-
als we found that the Panoply visualization package (ver-
sion 2.9.4) took around 10 seconds to display an image of
ORCA025. Panoply uses a source-push algorithm and this
result matches very closely the equivalent result in figure 3,
which is perhaps not surprising since Panoply is implemented
using many of the same Java libraries. The Matplotlib li-



brary for Python (version 1.0.1), which also uses a source-
push algorithm, took around 200 seconds to produce an im-
age of the ORCA025 data at full resolution, or around 30
seconds if the data are subsampled prior to plotting by a
factor of six8. These results were not sensitive to the size
of the generated image, as we would expect from the results
from our own source-push algorithm in figure 3.

6. DISCUSSION AND CONCLUSIONS
We have shown that it is possible to regrid large, com-

plex data in a matter of seconds or less, allowing for regrid-
ding to be performed “on the fly” in an interactive graphical
application. For example, a 256 × 256 image of a curvi-
linear source grid containing nearly 1.5 million points (the
ORCA025 dataset) can be generated in 2.1 seconds, or 3.1
seconds for a 512× 512 image.

This study suggests that different strategies for regridding
may be optimal in different situations:

• Where the source grid is small or the destination im-
age is large, a simple source-push algorithm may be
sufficient, avoiding the need to create a spatial index.
With large source grids, a destination-pull approach
may be optimal, particularly if (as is usual) it is not
required to view the data at full resolution.

• Where a spatial index is required, the look-up table
approach appears optimal in a server situation (such
as a Web Map Service), since it gives the fastest query
times with the smallest memory footprint. With a per-
sistent server process, the look-up table can be gener-
ated once and cached in memory, therefore the creation
time is not very important.

• For “one-shot” regridding operations that are not as-
sociated with a persistent process, the kd-tree may be
the best choice of spatial index since its creation time
is much shorter than that of the look-up table, leading
to a shorter overall time for the operation. However,
its memory footprint is much higher, so the user would
need to take care with very large source grids. It would
also be necessary to tune the parameters of the kd-tree
to the source grid in question.

In addition to its performance for large source datasets,
the destination-pull approach has further advantages. If the
destination grid is coarser than the source grid (i.e. not all of
the data in the source grid is required), the destination-pull
approach ensures that it is not necessary to read all source
data from disk, assuming that the spatial index has already
been constructed. Disk input/output can be a bottleneck
to fast visualization and processing. Although in most use
cases the destination grid is invertible, the destination-pull
approach does not require this to be the case, allowing for
easy regridding onto a complex destination grid.

Further performance enhancements are possible. The use
of the java.awt.geom.Path2D.contains() method to test
whether a candidate point falls within a grid cell appears
to be expensive. Tuning the spatial indexes to return fewer
candidate points would lead to fewer calls to this method,

8This factor was chosen to match the resolution of the data
to that of the image, so that the library was not attempting
to plot data that would not be seen by the user.

tending to increase overall performance. The R-tree and
PR-tree implementations under test were not specifically de-
signed to hold large numbers of items (nevertheless, the PR-
tree performed competitively for the largest dataset in terms
of query time). There are many ways of constructing [1, 5]
and querying [4] R-trees and so it may be possible to choose
more efficient algorithms for the situation at hand.

Future work will include the application of these tech-
niques to unstructured data (in which space is filled by incon-
gruent shapes, commonly triangles or a mixture of shapes)
and ungridded data (where there is no topological relation-
ship between data points). Heuristics could be developed to
determine the optimal approach (source-push vs. destination-
pull) and spatial index to employ in a given situation. In
this study, spatial indexes were constructed using spherical
coordinates (latitude-longitude), which are not ideal for data
that approach the poles. Therefore future refinements will
involve dealing with the poles more appropriately through
the use of alternative coordinate systems or spatial indexes
(e.g. [11]).
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