Accessibility navigation


Filter for Car Tracking Based on Acceleration and Steering Angle

Downloads

Downloads per month over past year

Maybank, S.J., Worrall, A.D. and Sullivan, G.D. (1996) Filter for Car Tracking Based on Acceleration and Steering Angle. In: 7th British Machine Vision Conference, 9-12 Sept 1996, Edinburgh, pp10.

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

602Kb

Abstract/Summary

The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.

Item Type:Conference or Workshop Item (Paper)
Refereed:Yes
Divisions:Faculty of Science > School of Systems Engineering
ID Code:2

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation