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Abstract

The motion of a car is described using a stochastic model in which
the driving processes are the steering angle and the tangential accel-
eration. The model incorporates exactly the kinematic constraint that
the wheels do not slip sideways. Two �lters based on this model have
been implemented, namely the standard EKF, and a new �lter (the
CUF) in which the expectation and the covariance of the system state
are propagated accurately. Experiments show that i) the CUF is bet-
ter than the EKF at predicting future positions of the car; and ii) the
�lter outputs can be used to control the measurement process, leading
to improved ability to recover from errors in predictive tracking.

1 Introduction

In systems for monitoring road tra�c it is an advantage to have �lters which can
model accurately the motion of a car and predict its future positions. It becomes
easier to track individual cars and to analyse their behaviour. Many current �lters
use over-simpli�ed models based on general motion in the ground plane, without
taking into account the speci�c nature of vehicle kinematics. An example can be
found in[3]. These �lters are easily distracted by bad measurements, and they tend
to lose track of the car when it turns or when its speed changes sharply. This paper
describes a new �lter for tracking cars and predicting their future positions. The
motion model is driven by the steering angle and the tangential acceleration. It
incorporates exactly the constraint that the wheels of the car do not slip sideways
during the motion.

An earlier version of the �lter is described in [4]. There the driving processes
are the orientation of the car in the ground plane and the tangential acceleration.
The new model, developed below, gives a better description of the motion of the
car at low velocities. In [4] the orientation of the car can change even when the
tangential velocity is zero, i.e. the car can spin on the spot. The new model is
more realistic, in that the orientation of the car cannot change at zero tangential
velocity.

As in [4] the state of the car conditional on the measurements is approximated
by a Gaussian random variable. The measurement process is assumed to be linear
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Figure 1 Vehicle kinematics: The instantaneous trajectory follows an arc whose radius
is determined by the steering angle (φ) and the wheelbase (a).
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and subject to Gaussian noise. The measurements are incorporated using the
standard Kalman update [5]. Also as in [4], we use a new mathematical technique
for computing the evolution of the state expectation and covariance over time,
the Covariance Update Filter (CUF). The CUF propagates the expectation and
covariance of the state over a time interval t with an error of magnitude O(t3). It
o�ers greater accuracy than the conventional extended Kalman Filter (EKF).

This paper explores the accuracy of the CUF and the EKF using Monte Carlo
simulations. It then shows how the �lter output can be used to control the meas-
urement process, thereby improving tracking performance.

2 Model

It is assumed that the car moves in the ground plane. The motion is modelled by a
stochastic processM = (X;Y;�; V;�; _V )> in IR6, where (X;Y )> is the position of
the car, � is the orientation, V is the speed and � is the steering angle. The speed
V is positive for forward motion and negative for reverse motion. It is assumed
that the initial stateM0 = (X0; Y0;�0; V0;�0; _V0)

> is a Gaussian random variable.
The motion geometry is illustrated in Figure 1.

Let a be the wheelbase of the car. The driving processes are �, _V . The
remaining components of M are obtained by integrating the following stochastic
di�erential equations over time t � 0.

(dXt; dYt)
> = Vs(cos(�s); sin(�s))

> dt

d�t = a�1Vt�t dt

dVt = _Vt dt (1)

The processes �, _V are Gaussian, and satisfy the equations

d�t = ���t dt+ � dCt d _Vt = q dBt

where (B;C)> is a Brownian motion independent of M0, such that (B0; C0)
> = 0.

The constants �, �, q are chosen to suit particular car motions.
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The second equation of (1) is an approximation to the more accurate d�t =
a�1Vt tan(�t) dt, which arises from the constraint that the wheels of the car do not
slip sideways [1]. The quantity �t = V �1t d�t=dt is the curvature of the trajectory
of the car. In a typical car a � 2:5m and �t � 0:2m�1, with the bound of 0:2m�1

only reached at full lock. It follows that j tan(�t)j � 0:5. The error in replacing
tan(�) by � is about 7% in the worst case, and it is usually much less.

3 Expectations and Covariances

In the CUF the estimates of the expectation and covariance of M are propagated
forward in time according to the equations given in this section.

The process N � (V;�; _V )> is the solution of a linear stochastic di�erential
equation [2]. Let A, � be the matrices de�ned by

A =

0
@ 0 0 1
0 �� 0
0 0 0

1
A � =

0
@ 0 0 0
0 � 0
0 0 q

1
A (2)

The random variable Nt is Gaussian with expectation exp(At)E(N0) and covari-
ance

exp(At)

�
Cov(N0; N0) +

Z t

0

exp(�As)��> exp(�A>s) ds
�
exp(A>t) (0 � t)

The process � is non-Gaussian, however the expectation, E(�), and the cov-
ariances involving � and V , �, _V can be evaluated exactly. Let 	 be any random
variable independent of (B;C)>, and let the functions hi, 0 � i, and ct(	), ds;t
be de�ned by

hi(t) =

Z t

0

si exp(��s) ds (0 � t)

ct(	) = Cov(	;�0V0)h0(t) + Cov(	;�0
_V0)h1(t) (0 � t)

ds;t = Cov

�Z s

0

Vu�u du;

Z t

0

Vu�u du

�
(0 � s � t)

Let p; q : [0;1)2 ! IR be de�ned by

ps;t = Cov

�
q

Z s

0

Bu du;

Z t

0

Vu�u du

�
(0 � s; t)

qs;t = Cov

�
�

Z s

0

exp(�u) dCu;

Z t

0

Vu�u du

�
(0 � s; t)

It follows that for 0 � s; t,

E(�t) = E(�0) + a�1(E(V0�0)h0(t) +E( _V0�0)h1(t))

Cov(�s;�t) = Cov(�0;�0) + a�1(cs(�0) + ct(�0)) + a�2ds;t

Cov(�t; Vs) = Cov(V0;�0) + Cov( _V0;�0)s+
1

a
(ct(V0) + ct( _V0)s+ ps;t)
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Cov(�t;�s) = exp(��s)(Cov(�0;�0) + a�1ct(�0) + a�1qs;t)

Cov(�t; _Vs) = Cov(�0; _V0) + a�1ct( _V0) + q2(2a)�1E(�0)h2(t) (t � s)

Cov(�t; _Vs) = q2a�1E(�0)s
�
h1(t)� h1(s)� 2�1s(h0(t)� h0(s))

�
+Cov(�s; _Vs) + ct( _V0)� cs( _V0) (s � t) (3)

The expressions (3) for the expectation and covariances involving � are com-
plicated, however they can in practice be evaluated without di�culty using a
computer algebra system such as Mathematica [7].

The expectations and covariances involving X or Y are more di�cult to calcu-
late than those involving �. The calculations are reduced �rstly by combining X ,
Y to make a complex valued stochastic process Z, Z = X + iY , where i2 = �1,
and secondly by estimating expectations and covariance only to within an error of
order O(t3).

It follows from (1) that

Zt = Z0 + exp(i�0)

�
V0t+

1

2
_V0t

2

�
+
1

2
a�1i exp(i�0)V

2

0
�0t

2 + : : : (0 � t)

Let g be the function de�ned on Gaussian random variables W by g(W ) =
Cov(Zt;W ). The covariances of Zt with �t, Vt, �t, _Vt, 0 � t, are

Cov(Zt;�t) = g(�0) + a�1(Cov(Zt; V0�0)h0(t) + Cov(Zt; _V0�0)h1(t))

Cov(Zt; Vt) = g(V0) + g( _V0)t

Cov(Zt;�t) = exp(��t)g(�0)

Cov(Zt; _Vt) = g( _V0)

4 Calculation of Expected Values

The expectations and covariances listed in x3 are often di�cult to evaluate by hand
because of the number of terms that arise when then are written out in terms of
the expectations and covariances of the driving processes � and _V . Fortunately
they can be evaluated e�ciently using computer algebra. It su�ces to consider
only the evaluation of expectations of the form

E

 
nY
i=1

Ai

!
or E

 
exp(iA1)

nY
i=2

Ai

!
(4)

where the Ai are Gaussian random variables.
Let A = (A1; : : : ; An)

>, e = E(A), C = Cov(A;A), and let p = (p1; : : : ; pn)
>

be an n-dimensional vector of indeterminants pi, 1 � i � n. Then it follows that

E(exp(ip:A)) = exp

�
�1

2
p>Cp+ ip:e

�
(5)

Let cn be the coe�cient of the product p1 : : : pn in the Taylor series expansion of
the right-hand side of (5). It follows from (5) that

E

 
nY
i=1

Ai

!
= (�i)ncn
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To obtain the second expectation in (4), set p1 = 1 on the right-hand side of
(5). The resulting expression is expanded as a Taylor series in p2; : : : ; pn. Let dn
be the coe�cient of the product p2 : : : pn in the expansion. Then it follows that

E

 
exp(iA1)

nY
i=2

Ai

!
= (�i)n�1dn

5 Experiments

This section reports experiments to investigate the relative performance of the
CUF and the EKF in estimating the behaviour of the kinematic model.

5.1 Monte Carlo simulation

Given a deterministic state M0 2 IR6 at time zero, the kinematic model was run
for a time t to determine a realisation of the random variable Mt. On repeatedly
running the model from the same starting point M0, we obtained a distribution
of states at time t. These provided an approximation to the distribution of Mt.
Figure 2 (top two rows) illustrates results obtained from Monte Carlo experiments
in which approximate realisations of M = (X;Y;�; V;�; _V )> were obtained with
a timestep of 1/25 sec. over a time interval of 1 sec. Each point is the projection
of a �nal state of the model onto the x, y plane. In all cases (X0; Y0)

> = (0; 0)>,
�0 = �=4, and V0 = 4m/sec; individual diagrams show di�erent values of �0 and
_V0.

In Figure 2, top two rows, the best-�tting 2-D Gaussian is shown superimposed
on the points (as a white line at the 1 sd. deviation contour). A �2 test showed
that the realisations of Mt produced by the Monte Carlo simulation were not
drawn from a Gaussian distribution. A typical set of 1000 runs with �0 = 0 and
_V0 = 0 yielded a �2 value of 3166.2. Under the null hypothesis that the data
are drawn from a Gaussian distribution, the random variable G = (�2 � p)=

p
2p

is approximately Gaussian, with zero expectation and unit variance. The value
realised by G for the 1000 runs was 49.0, which is strong evidence for rejecting the
null hypothesis.

Figure 2 (bottom two rows) reproduces the best-�tting Gaussian (magni�ed)
as a grey ellipse occupying the area within 1 sd. deviation of the expected value,
together with the estimates of the distribution obtained by the CUF and the EKF
(black and white lines respectively). In all cases the EKF seriously underestimates
the variance of the empirical data. The CUF provides a much more accurate
estimate of variance.

The tendency of the EKF to underestimate covariance is \folklore" in computer
vision, but we do not know of a reference. A consequence the underestimation is
that the EKF pays insu�cient attention to the measurements.

5.2 Predictive Tracking

The new kinematic model has been incorporated into a vehicle tracking system,
using either the standard EKF [6] or the CUF. For each �lter, the current estimate



British Machine Vision Conference

φ
=

0.
0

φ
=

0.
5

φ 
=

0.
0

φ 
=

0.
5

Figure 2 Top two rows: Monte Carlo trials of the kinematic model, projected onto the
(x,y) plane (black dots). Initial conditions x=y=0,θ=π/4, v=4ms-1 in all
cases. Separate graphs for steering angleφ=(0, 0.5) radians and acceleration

 =(0. 2.0) ms-2. Best-fitting ellipse at 1sd shown in white.
Bottom two rows: Same conditions, best fitting ellipses (grey) with covariance
estimated by EKF (white) and the CUF (black). NB: change of scales.
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a b

c d

Figure 3 Search regions (perpendicular in the image to the projected model lines)
determined by +/- 3 sd of the estimated filter covariance for forward
predictions of (a,b,c,d) 0, 5, 10 and 15 fields (@ 50 Hz).

of the state vector was used to predict the expected pose of the vehicle in a new
image. The prediction became the seed pose for model-based pose re�nement,
using the \active" method described in [8]. The recovered pose provided a meas-
urement of (x; y; �)> which was incorporated into the state estimate using the
standard Kalman measurement update. For prediction over short intervals (20 to
60 �s) both �lters worked extremely well, even in sequences in which the vehicle
underwent sudden changes of behaviour, for example during a three point turn.

5.3 Control of the Measurement Process

The pose recovery technique in [4,8] performs a standard search for high image
derivatives close to the lines of the projected model. However, an accurate estimate
of the covariance of the pose provides a means to control the search, taking account
of the current uncertainty.

Let p0, C0 be the expectation and covariance of the pose p, let l(p) be the
projection of a model line and let n0 be a unit vector normal to l0 � l(p0). The
neighbourhood of each line l0 was searched for points at which the image derivative
in the direction n0 is large. The method was to choose points r0 uniformly spaced
on l0 and to search along each normal r0+�n0. The covariance C0 was used to �x
the range ��m � � � �m for the search; �m was the largest value of � such that
r0+�n0 is on l(p), and such that (p�p0)>C�10

(p�p0) = 9. A linear approximation

l(p) = l0 +
@l

@p

����
p0

(p� p0) +O(kp� p0k2)

was made and �m was estimated by minimising a quadratic in �.
Typical consequences are shown in Figure 3, where the search regions are shown

for forward predictions of 0, 5, 10 and 15 video �elds. The 0 case indicates search
areas based only on the current uncertainty of the �lter state; 5, 10 and 15 show
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Figure 4 Performance of the kinematic model using the EKF estimator (left); and the
CUF estimator (right). “Ground truth” is given by ordinate = 0.0 (scaled in
metres), and +/- 1 sd. of the estimated y-parameter is shown shaded.
Top: Forward predictions for 5, 10, and 15 fields (@50 Hz).
Middle: Recovered poses using fixed length normals (+/-4 pixels).
Bottom: Recovered poses using search regions controlled by the current

estimate of filter covariance.
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how the search areas grew rapidly as the noise sources in the �lter take e�ect. Note
that many lines (e.g. the roof of the car) were relatively una�ected by legitimate
changes of pose allowed by the �lter, whereas others (e.g. near vertical lines in
this pose) were strongly a�ected.

5.4 Comparisons of Performance

A short four way experimental assessment of the techniques has been carried out
using a video sequence of a car coming into a corner and slowing down. The 25 Hz
video sequence was deinterlaced by creating full sized �elds in which the missing
lines were replaced by the averages of their neighbours. Images were therefor
available at 50 Hz.

The four cases examined the EFK and the CUF, both using either a �xed
search distance of �4 pixels (previously regarded as standard) or by controlling
the normal search as described in x5.3. In each case the �lter was conditioned by
\ground truth" data, determined in advance, using images spaced one �eld apart
(i.e. at 50 Hz). At any given time, each �lter was run forward to predict 5, 10
and 15 �elds ahead (top row of Figure 4), and then pose re�nement was carried
out. Results are illustrated in Figure 4 (bottom two rows) for one of the three
pose parameters, namely the y coordinate in the ground plane. The results for
x and � are similar. Each graph shows, for a given video �eld, the error in the
recovered pose, when the search is begun from the pose predicted by the �lter.
The prediction is based on ground truth data up to 5, 10 and 15 �elds previously,
as �ltered by the appropriate �lter. Errors are shown with respect to the �ltered
ground truth (0:0 on the ordinate) and the �1 sd. deviation of the currently
�ltered parameter (here y) is shown shaded. Note that the ground truth data was
obtained using �xed normals so that the results are likely to be biased against
variable normals.

The results show three main things.

i) The prediction error of the CUF is better than that of the EKF; note that
both �lters initially overshoot, but the CUF recovers more rapidly (Figure
4, top row).

ii) Improved predictions lead to better pose recovery using the CUF; note the
pose recovery fails for a forward prediction of 15 �elds, but the failure is less
for the CUF (Figure 3, bottom two rows, right) than for the EKF (Figure
3, bottom two rows, left).

iii) The variable normal search technique outperforms �xed normal search at
long prediction times; note that there are fewer failures using variable nor-
mals (Figure 3, bottom row) for the CUF than for the EKF.

6 Conclusion

The main conclusion of this paper is that the kinematic model for car motion
described in x2 is detailed and accurate enough to be the basis of a predictive
�lter to track vehicles undergoing complex motion, for example a three point turn.

In addition, we have shown that predictions of expectation and covariance can
be made accurately to O(t3), using a technique we have called the Covariance
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Update Filter (CUF). By means of Monte Carlo simulations we have shown that
the CUF is better able to describe the behaviour of the kinematic model than
the EKF. Finally, a technique for using the current �lter state to control the
measurement process is outlined and shown to improve the performance still more.
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