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Abstract 

Many recent papers have documented the existence of periodicities in returns, return volatility, bid-

ask spreads and trading volume, in both equity and foreign exchange markets. In this paper, we 

propose and employ a new test for detecting subtle periodicities in time-series data based on a signal 

coherence function. The technique is applied to a set of seven half-hourly exchange rate series. 

Overall, we find the signal coherence to be maximal at the 8 hour and 12 hour frequencies. Retaining 

only the most coherent frequencies for each series, we implement a trading rule based on these 

observed periodicities. Our results demonstrate in all cases except one that, in gross terms, the rules 

are able to generate returns considerably greater than those of a buy-and-hold strategy, although they 

are unable to retain their profitability net of transactions costs. We conjecture that this methodology 

could constitute an important tool for financial market researchers, which will enable them to better 

detect, quantify and rank the various periodic components in financial data. 
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1. Introduction 

Many recent papers have documented the existence of periodicities in returns, return volatility, bid-ask 

spreads and trading volume, in both equity and foreign exchange markets. Such systematically recurring 

features or regularities have sometimes been termed calendar anomalies or seasonal effects. Examples 

include open and close effects, lunchtime effects, day-of-the-week effects, and holiday effects. Studies of 

day-of-the-week effects include French (1980), Gibbons and Hess (1981), and Keim and Stambaugh 

(1984), for example, all of whom have found that the average market close-to-close return in the US is 

significantly negative on Monday and significantly positive on Friday. Moreover, Rogalski (1984), and 

Smirlock and Starks (1986) observed that this negative return between the Friday close and Monday close 

for the Dow Jones Industrial Average (DJIA) occurs on Monday itself during the 1960's but moves 

backward to the period between the Friday close and Monday open in the late 1970's. By contrast, Jaffe 

and Westerfield (1985) found that the lowest mean returns for the Japanese and Australian stock markets 

occur on Tuesdays. Harris (1986) also examines weekly and intraday patterns in stock returns and finds 

that most of the observed day-of-the-week effects occur immediately after the open of the market, with a 

price drop on Mondays on average at this time and rises on all other weekdays.  

 

Recent research has also exploited the increasing availability of very high frequency and tick data together 

with more powerful computational abilities in order to analyse more closely the intraday patterns in 

financial markets. Wood et al. (1985) examine minute-by-minute returns data for a large sample of NYSE 

stocks. They find that significantly positive returns are on average earned during the first 30 minutes of 

trading and at the market close, a result echoed by Ding and Lau (2001) using a sample of 200 stocks from 

the Stock Exchange of Singapore. Andersen and Bollerslev (1997b) show that the return volatility of the 

German mark – dollar exchange rate exhibits the same general intraday pattern as trading volume and bid-

ask spreads. Using the same set of data, Andersen and Bollerslev (1998) also study the effects of 

macroeconomic announcements on the behaviour of the series
2
.  

 

                                                      
2
 An extensive survey of the literature on intraday and intraweek seasonalities in stock market indices and futures 

market contracts is given in Yadav and Pope (1992).  
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The existence of such periodicities has typically been reconciled with the efficient markets hypothesis by 

appealing to market microstructure arguments (e.g. cyclical variations in market depth or liquidity; price 

discovery; inventory management), information arrival, macroeconomic announcements, or tax effects. 

Many theoretical models of investor and market behaviour have also been proposed to explain these 

stylised features of many financial time series, including those that account for the strategic behaviour of 

liquidity traders and informed traders (see, for example, Admati and Pfleiderer, 1988). An alternative 

method for reconciling a finding of recurring seasonal patterns in financial markets is the possible 

existence of time-varying risk-premia, implying that expected returns need not be constant over time, and 

could vary in part systematically without implying market inefficiency. 

 

Traditionally, studies concerned with the detection of periodicities in financial time series would either use 

a regression model with seasonal dummy variables (e.g., Chan et al., 1995) or would apply spectral 

analysis to the sample of data (e.g. Bertoneche, 1979; Upson, 1972). Spectral analysis may be defined as a 

process whereby a series is decomposed into a set of mutually orthogonal cyclical components of different 

frequencies. Calculating the spectrum involves fitting by least squares a set of sinusoidal curves, equivalent 

to a regression with trigonometric transformations of the independent variable. The spectrum, a plot of the 

signal amplitude against the frequency, will be flat for a white noise process, and evidence of periodic 

behaviour is indicated by statistically significant amplitudes at any given frequency. By examining the 

spectrum, Upson (1972) observed periodicities representing cycles of duration 32, 3.8 and 2.5 weeks in US 

dollar – British pound data for the 1960’s, while Bertoneche (1979) was not able to detect any significant 

departures from randomness in an application of spectral analysis to a set of weekly European stock 

returns. Spectral analysis was a popular tool for data analysis in economics and finance in the 1960’s and 

1970’s (see also Granger, 1966; Granger and Hatanaka, 1964; Granger and Morgenstern, 1969), although it 

has been largely discarded in the empirical economics and finance literature more recently. This seems to 

stem partly from the perceived inability of the spectral methods that were previously available to detect the 

relevant temporal dependencies in financial time series data.  
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In this paper, we propose and employ a new test for detecting periodicities in financial markets based on a 

signal coherence function. Our approach can be applied to any fairly large, evenly spaced sample of time 

series data that is thought to contain periodicities. A periodic signal can be predicted infinitely far into the 

future since it repeats exactly in every period. In fact, in economics and finance as in nature, there are no 

truly deterministic signals and hence there is always some variation in the waveform over time. The notion 

of partial signal coherence, developed in this paper into a statistical model, is a measure of how much the 

waveform varies over time. The coherence measures calculated are then employed to hone in on the 

frequency components of the Fourier transforms of the signal that are the most stable over time. By 

retaining only those frequency components displaying the least variation over time, we are able to detect 

the most important seasonalities in the data, and these are then used to derive a trading rule for buying or 

selling a currency in a hold-out sample. The performance of the trading rule is then compared with that of 

buy-and-hold and randomised trading strategies. Our approach is able to capture a much broader range of 

regularities than a linear regression with time-dependent dummy variables. The model that we propose 

based on the signal coherence function has been shown to provide additional detectability relative to a 

Fisher test (see Hinich, 2003). 

 

The remainder of this paper is organised as follows. Section 2 introduces some notation and defines the test 

statistics employed to detect the periodicities, while Section 3 describes the data. Section 4 presents and 

analyses the results while Section 5 concludes and offers suggestions for extensions and further research. 

 

2. Methodology 

2.1 Development of a Test for Signal Autocoherence 

This paper develops below a model for a signal with randomly modulated periodicity, and a measure 

known as a signal coherence function, which embodies the amount of random variation in each Fourier 

component of the signal. Let {x(tn), n = 0, 1, 2, …} be a time series of interest sampled at equally spaced 

times t  = n . The series would be said to exhibit randomly modulated periodicity with period T if it is of 

the form  
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where fk = k/T are called Fourier frequencies and K = T/. The uik (i=1,2) are jointly dependent zero mean 

random processes that are periodic block stationary and satisfy finite dependence. The modulations are in 

the fundamental and harmonic frequency components and so a0 is a constant. Note that we do not require 

u1k(tn) and u2k(tn) to be Gaussian. It is apparent from (1) that the random variation occurs in the modulation 

rather than being additive noise; in statistical parlance, the specification in (1) would be termed a random 

effects model. The modulations are produced by the data generating mechanism and may in fact be 

deterministic but in most cases the statistician analysing the data does not know the modulations process 

and thus they are treated as random processes. The signal x(tn) can be expressed as the sum of a 

deterministic (periodic) component and a stochastic process term as follows: 
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where ak = a1k - ia2k and uk(tn)= u1k(tn)- iu2k(tn). The task at hand then becomes one of quantifying the 

relative magnitude of the kth modulations to the magnitude of the fixed effect ak for each k. 

 

A common approach to processing signals with a periodic structure is to portion the observations into M 

frames, each of length T = N , so that there is exactly one waveform in each sampling frame. There could 

alternatively be an integer multiple of T observations in each frame. The periodic component of a(t) is the 

mean component of x(t). In order to determine how stable the signal is at each frequency across the frames, 

the notion of signal coherence is employed. Signal coherence is loosely analogous to the standard R
2
 

measure used in regression analysis, and quantifies the degree of association between two components for 

each given frequency. It is worth noting that the methodology that we propose here is based on the 

coherence of the signal across the frames for a single time series (which may also be termed 
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autocoherence). This is quite different from the tests for signal coherence across markets used, for 

example, by Hilliard (1979) and Smith (1999)
3
.  

 

The discrete Fourier transform of the m
th
 frame, beginning at observation m=((m-1)T)+ and ending at 

observation mT for frequency fk = k/T is given by 
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where )]()([),( 21

*

21 tutuEttc mmu  , and the variance is of order O(T). Provided that um(tn) is weakly 

stationary, (4) can be written 
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where Su(f) is the spectrum of u(tn). 

 

Although the model for randomly modulated periodicity is not in general a cyclostationary one, when the 

assumption of weak stationarity is added, it becomes so (see Gladyshev (1961), Gardner and Franks 

(1975), Gardner (1985), and Gardner (1994) for extensive writings on cyclostationarity). The signal 

coherence function, x(k), measures the variability of the signal across the frames, and is defined as follows 

for each frequency fk 
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3
 Both of these papers employ the frequency domain approach in order to examine the extent to which stock markets 

co-move across countries. Our technique is also distinct from that proposed by Durlauf (1991) and used by Fong and 

Ouliaris (1995) to detect departures from a random walk in five weekly US dollar exchange rate series. Both Fong and 

Ouliaris (1995) and Andersen and Bollerslev (1997a) detect long memory effects in the currency rates. 
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It is obvious from the construction of x(k) in (6) that it is bounded to lie on the [0,1] interval.  The 

endpoint case x(k) = 1 will occur if ak0 and u
2
(k)=0, which is the case where the signal component at 

frequency fk has a constant amplitude and phase over time, so that there is no random variation across the 

frames at that frequency (perfect coherence). The other endpoint, x(k) = 0, will occur if ak=0 and u
2
(k)0, 

when the mean value of the component at frequency fk is zero, so that all of the variation across the frames 

at that frequency is pure noise (no coherence). 

 

The signal coherence function is estimated from the actual data by taking the Fourier transform of the mean 

frame and for each of the M frames. The mean frame will be given by 
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Letting )(ˆ ka  denote the mean frame estimate, with its Fourier transform being )(ˆ kA , and letting Xm(k) 

denote the Fourier transform for the m
th
 frame, then )(ˆ)()( kAkXkD mm   is a measure of the 

difference between the Fourier transforms of the m
th
 frame and the mean frame for each frequency. The 

signal coherence function can then be estimated by 
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and 0  )(ˆ kx   1. It can be shown (see Hinich, 2000) that the null hypothesis of zero coherence at 

frequency fk can be tested using the statistic 
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, which is asymptotically distributed under the 

null as a non-central chi-squared with two degrees of freedom and non-centrality parameter given by 
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 , where Su(fk) is the spectrum of {u(t)} at the frequency fk. We also employ a joint test of 

the null hypothesis that there is zero coherence across the M frames for all K/2 frequencies examined. This 

test statistic will asymptotically follow a non-central Chi-squared distribution with K degrees of freedom. 
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2.2 Development and Testing of a Trading Rule 

The sample is split into (M=) 52 non-overlapping frames each of length one week, with each week of 

observations containing 240 half-hourly observations
4
. This implies that a total of 120 periodicities will be 

examined: 240, 120, 80, 60, 48, …, 240/119, 2, using the whole sample of data, and the autocoherence 

measures are calculated across the 52 frames. Following initial exploratory analysis and estimation of the 

signal coherence function for the whole year’s set of frames data, the sample is then split into two portions. 

The first 26 weeks (6,240 half-hourly observations) are used for in-sample estimation of the coherence 

function (across the resulting 26 frames), and the remaining data is held back for out-of-sample trading rule 

evaluation. The out-of-sample period begins with the return of 00:30am-01:00am on 1 July 1996.  

 

For the out-of-sample trading rule analysis, the signal coherence function is re-estimated using the first half 

of the sample only, and the mean frame is “cleaned” by removing all frequency components with signals 

whose random variation implies that they are not statistically coherent at the 1% significance level. 

Statistically, if Pr( )(ˆ kx =0)<0.01, jkâ  (j = 1,2) are kept, otherwise jkâ  are set to zero. The coherent part 

of the mean frame is analogous to the fitted value of the dependent value in a standard regression model. 

Retaining only the most coherent frequencies for each series, we implement a trading rule based on these 

observed periodicities, “buying” the foreign currency if the return is predicted to be positive and assuming 

no position if it is predicted to be negative. The trading rule is then compared with a buy-and-hold the 

foreign currency strategy and also in a novel way involving a simulation. In order to evaluate the statistical 

significance of the strategies, we generate random binomial 0/1 draws equal in number to the out-of-sample 

observations. This column of zeros and ones is then multiplied by the actual return series and added over 

the hold-out sample to generate a profit from a randomised market entry and exit rule. This is repeated 

10,000 times to generate a distribution of artificial rules and subsequent artificial returns, which is then 

compared with the profit generated by the rules based on the coherent periodic signal. If the actual rule 

                                                      
4
 The choice of frame length is bound to be somewhat arbitrary, although in our case it represents a trade-off between 

having a sufficient number of frames over which to compute the tests, while having a long enough frame to detect 

interesting periodic components.  
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generates a profit larger than 95% of those generated by artificial timing, it is considered to produce 

statistically significant abnormal returns.  

 

We then exploit the information contained in the lower half of the signal coherence function by short-

selling the foreign currency when it is periodically expected to exhibit negative returns, as well as taking a 

long position when it is expected to yield positive returns. The relevant simulation comparator is now one 

where the column of zeros and ones is modified to a column of –1 and +1 to be mutliplied by the actual 

returns to give a set of returns from randomised long and short positions. 

 

3. Data 

The high frequency financial data provided by Olsen and Associates as part of the HFDF-96 package 

includes 25 exchange rate series sampled half-hourly for the whole of 1996, making a total of 17,568 

observations for each series. However, this series contains observations corresponding to weekend periods 

when all the world’s exchanges simultaneously have virtually no trading. This period is the time from 

23:00 GMT on Friday when North American financial centres close until 23:00 GMT on Sunday when 

Australasian markets open. The incorporation of such prices would lead to spurious zero returns and would 

potentially render trading strategies which recommended a buy or sell at this time to be nonsensical. 

Removal of these weekend observations leaves 12,575 observations for subsequent analysis and 

forecasting.  

 

We do not account for differences in the dates that different countries switch to daylight saving time, since 

the effect of this one-hour difference is likely to be negligible as trading occurs virtually around the clock 

at some destination around the world. Moreover, it is not clear how such an adjustment could be made. 

This problem would be much more serious if we were examining, say, cross-correlations between equity 

returns for stocks on markets that were in different time zones. Such an approach appears to be consistent 

with the existing literature - for example, Andersen and Bollerslev (1997a) do not correct for bank holiday 

effects. Finally, it is worth noting that if asynchronous switches to daylight saving time did make a 
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difference to our results, since it is not possible to create coherence, only to destroy it, the impact would be 

to render our results less strong than they otherwise would have been rather than causing spurious findings.  

 

The price series used are the average of the most recent best bid and best ask in that half-hour interval, and 

are transformed into a set of continuously compounded half-hourly percentage returns in the standard 

fashion. The first observation in the sample corresponds to the period between 00:30am and 01:00am GMT 

on 1 January 1996, while the last corresponds to 11:30pm-midnight GMT on 31 December of the same 

year.  

 

Of the 25 exchange rate series provided by Olsen, only 7 are used in this study to avoid repetition, and due 

to space constraints. These are (using the usual neumonic) DEM_JPY, GBP_DEM, GBP_USD, 

USD_CHF, USD_DEM, USD_ITL, and USD_JPY. These are all quoted as units of the second (foreign) 

currency per unit of the first (domestic) currency. For example, xxx_yyy would be the units of yyy per unit 

of xxx. Hence a positive return implies that the number of units of the foreign currency yyy per unit of the 

domestic currency (xxx) has increased. This would imply a profit for an investor who’s domestic currency 

is xxx, but who had switched into yyy at the start of the period and converted the terminal sum back at the 

end.  

 

Some summary statistics for these seven returns series are presented in Table 1. It is clearly evident that all 

series are non-normal (predominantly due to fat tails rather than asymmetry), and all exhibit evidence of 

negative first order autocorrelation, and conditional heteroscedasticity (as the Ljung Box and Engle tests 

respectively show). The BDS statistic therefore rejects the null hypothesis of independent and identical 

distribution at the 0.1% level of significance.  

 

4. Results 

4.1 Evidence for Periodicities 
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Table 2 gives the p-values for tests of the joint null hypothesis that there is zero coherence at all 

frequencies examined for the whole 52-week sample. Clearly, there is significant evidence of coherence at 

one or more frequencies for the pound-mark and the dollar-yen, while the result for the dollar-lira is 

marginal. The joint test results would also suggest that there is no coherence at any frequency for the other 

four exchange rate series. A non-rejection from the joint test does not in practice imply that there is 

actually no coherence at any frequency, however, since the effect of significance at one or two frequencies 

could be diluted by many insignificant frequencies. Hence Table 3 presents the periodicities for which the 

individual autocoherence estimates are statistically significant, together with the associated p-values for the 

chi-squared test, and the log of the spectrum (in dB). Whilst there is no single periodicity where all seven 

series show significant coherence simultaneously, there are several common features across the exchange 

rate returns. The mark-yen and dollar-yen both have statistically significant (at the 0.3% level or higher) 

autocoherence at a periodicity of 120 half-hourly units (i.e. 60 hours, or half a week), while all of the series 

denominated against the dollar, except the lira, show autocoherence at the 8-hour periodicity. Interestingly, 

the dollar-Swiss franc and the dollar-yen also have significant coherence at the 15-hour periodicity, 

corresponding to 8 cycles per week. In the latter case, this is the most empirically stable periodicity, with a 

coherence statistic of 0.362 (on a 0-1 scale), and an associated p-value of less than 0.1%. What is also 

evident from Table 3 is that none of the coherence statistics are larger than 0.362, implying that there is 

still a considerable amount of variation in the waveform over the frames even for the most coherent parts. 

The log-spectrum in dB is 20 times the natural log of the spectral amplitude or equivalently, it is 10 times 

the spectrum (in variance units). The measure in dB, as shown in Table 3, gives on a log-scale the average 

sizes of the periodic movements in terms of the heights of the peaks and troughs of the coherent 

periodicities. Whilst autocoherence quantifies how stable these periodicities are, the amplitude measures 

how big the cyclical fluctuations are. It is evident from the second column of Table 3 that, in general, the 

higher frequency components have the largest amplitudes, with some even being positive (on a log scale) at 

frequencies of lower than three hours for the dollar-Swiss, dollar-lira, and dollar-yen.  
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How can one explain the observed 8-, 12-, and 15-hour periodicities? A number of factors could justify 

their existence, including the opening and closing times of the three major markets in different time zones 

(London, New York and Japan), and related changes in market volatility and liquidity through each 24-

hour period. For example, Andersen and Bollerslev (1998, Figure 3) report cycles in intra-day volatility, 

where it is highest from 1pm-5pm, and lowest from 3am to 5am (GMT). It may therefore simply be that the 

cycles in returns are rewards for bearing time-varying intra-daily risks, which are themselves cyclical. A 

cycle that repeats every 8 hours is consistent with an effect driven by the opening and closing of the three 

markets, while a 15-hour cycle
5
 is consistent with an effect that is attributable to the currency being heavily 

traded in two of the three major centres (e.g., the yen-dollar being heavily traded in New York and Tokyo 

but not London). This is exactly the kind of result that Baillie and Bollerslev (1991) observed when hourly 

dummies were applied to intra-daily exchange rate volatility. The Asian market generated much less 

volatility than the other two, with noticeable increases in volatility occurring around the start of the trading 

days for the London and New York markets.  

 

A 12-hour cycle is arguably harder to explain but may arise from behaviour caused by the full trading day 

of one market combined with the morning of another (e.g., if the German mark – yen) were actively traded 

during the full European trading day and for the morning of the Japanese trading day, but with very thin 

trading for the Japanese afternoon and the whole of the North American trading day. 

 

Figures 1 and 2 present plots of the coherence statistics at each frequency for the dollar-denominated and 

non-dollar denominated currencies respectively. The first of these seems to suggest some correlation 

between the coherences for the dollar-mark and dollar-Swiss franc, while in all cases the low frequency 

components (those with the highest periods) show less variation across frames; most coherence statistics 

appear to lie within the range (0.1, 0.2). Figure 2, on the other hand, seems to show no visible relationship 

                                                      
5
 Periodicities of 15 rather than 16 hours would result if the time between the time when one regional market “opens” 

and the regional market in the next time zone “closes” were 15 hours rather than 16 due to slightly shorter busy trading 

hours. 
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across the currencies in the coherences of the waveforms at any frequency. Again, the statistics appear 

largest at the lowest frequencies, and smallest at the hourly frequency. 

 

Figures 3 to 9 plot the coherent part of the mean frame for frames of length one week for each of the 

returns series. As one would expect, the graphs look very different from one another, at least at first glance, 

since different frequencies have been retained for different currencies, and even when the same frequencies 

are included, differences in their relative amplitudes will alter the shape of the plot. In all cases, however, 

the cyclical patterns are obvious in the figures now that the mean frame has been purged of frequencies 

with higher amounts of random variation. In Figure 3, it is evident that the mark-yen has a low-frequency 

component (with 2 full cycles per week) and a high frequency cycle around that with a period of 

approximately 2 hours. In Figure 4, the low-frequency component of the pound-mark is harder to visualise 

since it is smaller in amplitude than that of the mark-yen and there are two high-frequency cycles around it. 

Figures 5 to 7, showing plots of the coherent parts of the mean frame for the pound-dollar, dollar-Swiss 

franc, and dollar-mark respectively, look similar in shape as all have two coherent frequencies close 

together that have exceeded the 99% threshold. The dollar-Swiss also has two additional coherent high 

frequency components. In Figure 8, the coherence plot for the dollar-lira has a very jagged appearance, due 

to the high frequency (approximately one-hour-and-twenty-minutely) component with far larger amplitude 

than the other two. Finally, Figure 9 showing the dollar-yen is arguably the most complex, since the highest 

number of frequencies (5) have been retained. 

 

It is also of interest to examine Figures 3 to 9 for the purpose of determining on average at which times of 

the week the exchange rate moves in particular directions. The x-axis shows the half-hourly observations 

for a week, starting with the return for the interval midnight-00:30am, and plotted against it the average 

continuously compounded return, in percent, during that period. Examining the low-frequency cyclical 

component of Figure 3, the returns are negative (i.e. the mark weakens) for the first 60 half-hours (1 and ¼ 

trading days), then the mark rises until mid-week, before falling again for 1¼ days and rising on Friday. 

The most easily interpretable behaviour can be examined where there are time-zone differences between 
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the foreign and domestic currencies, and coherent frequency components with periods of 8, 12, or 15 

hours, which there appears to be for many of the other series. For example, the pound-dollar exchange rate 

(Figure 5) on average rises (the pound becomes stronger) from the early hours of the morning GMT, until 

mid-day GMT, followed by falls when the US East coast markets start trading. The dollar-German mark 

exchange rate on average rises (the dollar strengthens) until around 10am GMT, and then falls (the mark 

strengthens) while the European markets are open until 4pm GMT, followed by further dollar appreciation. 

Similarly, the mark-Swiss franc exchange rate (Figure 6) on average rises (the dollar strengthens) until 

10am, with falls (the franc appreciates) until around 3pm, followed by franc depreciation into the European 

evening. The dollar-yen (Figure 9) appears to fall (dollar weakens) from midnight until 4am GMT, when 

the US markets are closed, and then rises until around 2pm GMT before falling back again. Finally, the 

dollar-lira has such a large number of high-frequency movements that any associations with market 

opening and closing times are indiscernible.  

 

These results support those of Ito and Roley (1987), who find a systematic dollar appreciation against the 

yen during the US trading hours, and a systematic depreciation during Japanese trading hours. Our results 

are also consistent with those of Baillie and Bollerslev (1991), who observed hourly patterns in foreign 

exchange market volatility related to major market opening and closing times. This is, perhaps, to be 

expected, since the weight of trading volume will move between the different world centres through the 

day. 

 

4.2 Evaluation of Trading Rule Profitability 

Given the results presented above showing evidence that there are periodically recurring patterns in all 

seven exchange rate return series, we now continue to investigate whether trading opportunities arise from 

exploiting such structure in the first half of the sample, as described above. The total gross profits, 

continuously compounded, and expressed as a percentage of the initial investment, for the 6-month out-of-

sample period, are presented in Table 4. The row immediately following the column headers presents the 

gross profits for a rule based on a long position only in the foreign currency or no position (i.e. it is 
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assumed that no short sales of the foreign currency are permitted). For comparison, the last panel of the 

table presents the profitability of buying the foreign currency at the start of the 6-month-period, holding it 

until the end of the year and then converting it back to the domestic currency. This is termed a “buy-and-

hold-the-foreign-currency” rule. As can be seen, the trading rules based on the notion of signal coherence 

appear to generate useful entry and exit rules since the returns in all cases exceed those obtained by simply 

buying and holding the foreign currency, except for the pound-dollar. For example, a British investor 

buying marks and holding them for the 6 months to December 1996 would have experienced a foreign 

currency appreciation of 10.8%, but switching in and out of marks using the coherent parts of the signal as 

a guide would have increased returns to 17%. The lira depreciated against the dollar over the period by 

0.11%, so that a US investor would have lost money by buying and holding lira. However, the switching 

rules would have generated gross profits of 7.8% over the period.  

 

The sixth row of Panel A in Table 4 presents the percentage of times that randomly generated entry times 

into the foreign currency would have led to higher returns than those generated by the signal coherence-

generated rules. It is then argued that figures below, say, 5%, imply that the rule generates profits that are 

statistically significant at the 5% level, since this would indicate that it is less than 5% likely that the rules 

could generate such high profits by chance alone. The figures in the third row of the table are lower than 

1% for four of the cases, and are only larger than 5% for the pound-dollar. In the case of the dollar-yen, 

none of the 10,000 sets of randomised rules were able to generate a higher return than that of the rules 

based on spectral methods. Clearly, the gross profitability of the entry and exit rules from foreign currency 

investment appear to show evidence of market timing ability. This is examined statistically using the 

Pesaran-Timmerman (1992, 1994) non-parametric test for market timing ability, which is generalised from 

the Henriksson-Merton (Henriksson and Merton, 1981; Merton, 1981) test for independence between the 

signs of the forecast and realised values. The statistic is not derived here
6
, but is asymptotically distributed 

standard normal under the null hypothesis that the signs of returns and the buy-sell signals are independent.  

 

                                                      
6
 Interested readers are referred to the original papers for a derivation of the test statistic. 
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The number of correct sign predictions varies between 53% and 55% across the currencies, while the 

number of correct predictions that would be expected to result if the buy-sell signals and actual returns 

were independent is very close to 50% in all cases. Note that in the use of very high frequency data implies 

that a non-negligible number of actual returns per half-hour interval are zero. Although it is not clear from 

an examination of the formulation of the test, we define zero returns as implying correct sign predictions if 

the rule signal for that observation had been a zero (so that the transactions costs associated with buying 

the foreign currency are correctly avoided). However, incorrect sign predictions are argued to result if the 

rule generated no buy signal, but the return turned out to be positive. The relatively high proportion of 

correct sign predictions combined with the large sample size leads the Pesaran-Timmerman statistic to 

convincingly reject the null hypothesis at the 1% level in all cases. 

 

The trading profitability of rules exploiting the sell-signals generated for those observations when the 

coherence plots are negative are also examined in Panel B of Table 4. In this case, a positive expected 

return for a given observation is taken to imply a buy order, while a negative expected return is taken to 

imply short-selling, with all results being expressed as a percentage of the initial position. In all cases 

except one, enabling short selling leads to considerable increases in gross profitability – in fact, gross 

profitability is typically doubled, as one may have expected. For example, the 18.4% and 7% gross profits 

from trading the yen against the dollar and the mark against the dollar respectively, become 31.8% and 

12.5%. However, the profit made by taking long positions only in the dollar against the pound actually fell 

when short positions are permitted. This result does not seem to arise from anomalous behaviour in the 

series, such as a larger trend component or larger outliers than were present in the other series. Rather, it is 

possible simply that the behaviour of the pound-dollar exchange rate was more different than the others 

between the in-sample and out-of-sample periods; an examination of the coherence statistics revealed that 

this was indeed the case.  

 

Comparing the standard deviations of the long only, long and short, and buy-and-hold rules, the latter two 

have very similar risk profiles, while the long only rule implies, by definition, less risk since there will be a 
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flat position in the foreign currency for part of the period. Also presented are the largest half-hourly gains 

and largest half-hourly losses for each of the three strategies. In all cases except that of the dollar-lira, the 

largest gains and largest losses are identical for the long only and long-short rules, suggesting that the 

extreme returns in both directions arise from being long rather than short the foreign currency. The Sharpe 

ratios for each rule and currency are also calculated by taking the average half-hourly risk-free rate of 

return (proxied by the domestic country 3-month Treasury bill rate) from the average half-hourly rule rate 

of return, and dividing by its standard deviation. Again, across the three panels of Table 4, in all cases 

except the pound-dollar, the Sharpe ratios are larger for the coherence-based rules than for the buy-and-

hold approach. This suggests that after accounting for any differences in the riskiness inherent in the rules, 

they are still able to outperform a buy-and-hold the foreign currency rule. Also, the long and short rule 

Sharpe ratio is typically only very slightly higher than that of the long only approach. Thus, even though 

gross profitability generally increases considerably when short positions are permitted, the increased risk 

counters this to leave the risk-adjusted performance only slightly altered. 

 

Figure 10 shows the cumulative returns for the long and short trading rules based on the signal coherence 

concept. Buying and selling German marks is the only activity that is seen to lose an American investor 

money for a protracted period. Trading in DEM using the methods described above would have been a 

loss-making activity from July until mid-September when there was a substantial reversal of fortune. UK 

investors trading marks or US investors trading yen would have earned steady profit streams, while the 

rules corresponding to German investors would have given a fairly flat return profile indicating a relatively 

lacklustre performance.  

 

Finally, the last row of Panel A in Table 4 displays the number of “round trips” required to apply the 

coherence-based rules, that is – the number of purchases and sales of the foreign currency per week. For a 

large inter-bank trade, the bid-ask spreads on foreign exchange trades are very small – of the order of 

0.05%, and there are no other fees involved. The average bid-ask spreads for each currency over the sample 

period, expressed as a percentage of the mid-point quotes, are given in the last row of the table. It is clear 



 17 

that, in spite of such small transactions costs, the rules are not able to generate any positive net returns, 

since such a large number of trades are made. This is true for all exchange rates tested, including both the 

dollar-yen, where gross profits were quite phenomenal, and for the dollar-mark, where the smallest number 

of trades was suggested.  

 

The lack of net trading profits as a result of excessive transactions costs suggests the use of a filter rule, so 

that the number of round trips is reduced. We experimented with various filter rules, including those that 

imply buying or selling the foreign currency when the predicted return fell outside of threshold limited 

equivalent to the bid-ask spread. Whilst the filter rules were successful in reducing the number of trades, 

they also considerably reduced the gross profitability, so that these were unable to generate net positive 

returns either. 

 

5. Conclusions  

This paper has proposed and employed a new methodology for evaluating and quantifying the 

autocoherence of financial time series, which was then tested on a set of seven half-hourly exchange rate 

returns. Significant coherence for at least one frequency across frames was revealed for all series. Overall 

we find the signal coherence to be maximal at the 15 hour, 12 hour and especially 8 hour frequencies. In 

the latter case, this may be attributable to the opening and closing of the world’s three financial market 

time zones.  

 

The mean frame estimate was cleaned by removing all incoherent frequency components, and the 

remaining estimates were used to generate trading rules based on these most stable cyclical features. The 

strategies were employed to construct a number of performance evaluation measures commonly used by 

financial market practitioners. These trading rules were able to generate in most cases phenomenal gross 

profits that were statistically significant and showed evidence of significant market timing ability, but the 

very large number of required trades meant that these were more than wiped out by transactions costs.  
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Our analysis could be extended and enhanced in a number of ways. First, in the out-of-sample evaluation, 

improved trading performance is likely to result from the use of a rolling window of data, where a one-

frame ahead forecast is produced and the trading rule implemented, and then the sample rolled forward by 

one frame. Second, the use of a 1% significance level cut-off for determining the coherent parts of the 

signal is somewhat arbitrary, and sensitivity analysis could be conducted to determine the impact on 

profitability of increasing or reducing this threshold. If this threshold is set too high, then important cycles 

in the data will not be employed, while the situation if it is set too low is comparable to the effect of 

including irrelevant regressors in a standard time-series regression model used for forecasting.  

 

A third possibility would be an examination of a much longer run of lower frequency data, so that the 

frequency of transacting would be reduced and potential returns per trade increased in order to mitigate the 

effect of the bid-ask spread on profitability. These factors suggest that the profitability demonstrated in this 

paper is probably an understatement of that which is possible if the approach is further refined and 

optimised. In any case, there are many financial agents who do not require immediacy when making 

foreign exchange trades. US Multinational companies, for example, may desire to reduce their holdings in 

marks and increase their holding in pounds, and they may be willing to make the trades at any time in the 

near future, although the exact time is not of concern to them. Such agents would be forced to incur the 

transactions costs whenever they trade, and our research suggests that there are better methods for selecting 

the time to trade than doing so at random.  Some large financial institutions (for example, hedge funds,) 

may be able to trade at much lower transactions costs than the figures that we quote, thus significantly 

improving net returns. We conjecture that the methodology employed in this paper could be a widely 

applicable tool for market microstructure researchers and statistical arbitrageurs, which will enable them to 

better detect, quantify and rank the various periodic components in financial data. 
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Table 1: Summary Statistics for Half-Hourly Exchange Rate Returns 

 DEM_ 

JPY 

GBP_ 

DEM 

GBP_ 

USD 

USD_ 

CHF 

USD_ 

DEM 

USD_ 

ITL 

USD_ 

JPY 

Mean 3.4E-4 9.7E-4 5.6E-4 8.6E-4 4.5E-4 -2.1E-4 6.5E-4 

Variance 6.5E-3 4.6E-3 4.8E-4 8.5E-3 5.1E-3 9.0E-3 6.2E-3 

Skewness -0.049 -0.004 -0.167 -0.156 -0.190 -0.011 -0.019 

Kurtosis 5.642 83.516 13.014 79.408 11.200 15.719 9.723 

Minimum -0.707 -1.966 -1.137 -2.431 -0.698 -0.924 -0.770 

Maximum 0.659 1.992 1.203 2.403 0.777 0.966 0.758 

acf lag 1 -0.198 -0.306 -0.205 -0.189 -0.097 -0.315 -0.150 

acf lag 2 -0.013 -0.0053 -0.001 -0.004 0.005 -0.019 -0.002 

acf lag 3 0.008 0.007 -0.000 0.002 0.015 -0.000 0.005 

acf lag 4 -0.006 0.000 0.004 -0.009 -0.005 -0.005 -0.008 

acf lag 5 0.006 0.004 -0.000 0.032 0.002 -0.017 -0.005 

LB-Q(10) 500** 3144** 536** 476** 129** 1261** 288** 

ARCH(4) 601.1** 23.6** 1355** 2559** 693** 1616** 462** 

BJ Norm 4E+5** 2E+10** 9E+4** 3E+6** 7E+4** 9E+4** 2E+4** 

BDS 32.47** 30.68** 41.00** 37.52** 38.95** 44.12** 33.27** 

% zeros 7.5 6.1 5.0 5.7 5.1 5.4 4.9 

Notes: Kurtosis represents excess kurtosis, LB-Q(10) is a Ljung Box test for autocorrelation of all orders up to 10, and 

is asymptotically distributed as a 
2
 (10) under the null hypothesis; ARCH(4) is Engle’s (1982)  Lagrange multiplier 

test for ARCH which is asymptotically distributed as a 
2
 (4); BJ norm is the Bera Jarque normality test, which is 

asymptotically distributed as a 
2
 (2) under the null of normality; BDS is the Brock, Dechert, and Scheinkman (1987) 

test for iid, which is distributed asymptotically as a standard normal under the null (statistic shown is for m = 5 and  / 

 = 1); % zeros gives the percentage of returns that are zero (i.e. no price change). 

 

 

 

 

Table 2: P-values for Joint Test of Null Hypothesis that there is no signal coherence for all 

120 Frequencies 

 DEM_ 

JPY 

GBP_ 

DEM 

GBP_ 

USD 

USD_ 

CHF 

USD_ 

DEM 

USD_ 

ITL 

USD_ 

JPY 

p-value 0.1532 0.0221 0.5342 0.2574 0.5109 0.0772 0.0000 
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Table 3: Periodicities with Coherence Statistics that are Significant at the 1% Level 

Period (in units of half an hour) Log Spectrum 

(dB) 

Coherence 

statistic 

Coherence 

statistic  

p-value 

 

Panel A: DEM_JPY 

120.0 (half a week = 60 hours) -2.164 0.314 0.003 

4.068 (2 hours & 2 minutes) -0.165 0.307 0.004 

 

Panel B: GBP_DEM 

12.00 (6 hours) -1.357 0.312 0.003 

4.286  (2 hours & 8 minutes) -0.775 0.329 0.002 

3.288 (1 hour & 38 minutes) -1.534 0.317 0.003 

 

Panel C: GBP_USD 

24.00 (12 hours) -3.688 0.302 0.005 

16.00 (8 hours) -2.882 0.295 0.007 

 

Panel D: USD_CHF 

30.00 (15 hours) -1.320 0.336 0.001 

16.00 (8 hours) -2.110 0.345 0.001 

7.059 (3 hours & 32 minutes) -0.803 0.299 0.006 

4.000 (2 hours)  0.096 0.283 0.010 

 

Panel E: USD_DEM 

30 (15 hours) 0.390 0.352 0.001 

16.00 (8 hours) -0.365 0.331 0.002 

 

Panel F: USD_ITL 

24.00 (12 hours) -4.166 0.308 0.004 

11.43 (5 hours & 43 minutes) -3.135 0.329 0.002 

2.824 (1 hour & 49 minutes)  0.139 0.353 0.001 

 

Panel G: USD_JPY 

120.0 (half a week = 60 hours) -1.669 0.341 0.001 

30.00 (15 hours) -0.956 0.362 0.000 

16.00 (8 hours) -1.399 0.349 0.001 

5.217 (2 hours & 37 minutes)  0.046 0.298 0.006 

2.087 (1 hour & 5 minutes) 0.907 0.297 0.006 
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Table 4: Total Profit of Trading Rules derived from Coherent Part of Signal  

For 6-months: 1 July - 31 December 1996 

Rule DEM_ 

JPY 

GBP_ 

DEM 

GBP_ 

USD 

USD_ 

CHF 

USD_ 

DEM 

USD_ 

ITL 

USD_ 

JPY 

Panel A: Long Trades Only 

Coherence rule total 6 month return 

(long only) 

7.16% 17.02% 6.70% 15.75% 6.99% 7.75% 18.43% 

Standard deviation of returns (%) 5.59 5.80 4.91 6.76 5.00 7.30 5.59 

Largest ½-hour gain 0.51 1.99 0.72 0.66 0.62 0.99 0.62 

Largest ½-hour loss 0.56 0.64 0.85 0.72 0.59 0.92 0.45 

Sharpe Ratio 0.012 0.038 0.012 0.030 0.013 0.010 0.044 

Percentage of randomised rules 

with higher return 

0.00 0.11 38.05 0.13 0.40 1.42 0.00 

Percentage of correct direction 

predictions 

53.09 53.76 54.32 53.05 54.03 55.03 55.50 

Percentage of correct predictions 

that would arise if the buy-sell 

signals and returns were 

independent 

50.14 50.04 50.06 50.06 49.99 50.03 50.05 

Pesaran-Timmerman statistic 4.70** 5.94** 6.80** 4.78** 6.51** 7.99** 8.69** 

Number of round trip trades per 

week 

52 46 15 21 10 59 52 

Panel B: Long and Short Trades 

Coherence rule total 6 month return 

(long and short) 

9.28 23.20 4.55 24.56 12.52 15.62 31.84 

Percentage of randomised rules 

with higher return 

0.00 0.02 22.25 0.06 0.65 1.60 0.00 

Standard deviation of returns(%) 7.79 8.41 7.34 10.31 6.79 9.67 7.94 

Largest ½-hour gain 0.51 1.99 0.72 0.66 0.62 0.97 0.62 

Largest ½-hour loss 0.56 0.64 0.85 0.72 0.59 0.92 0.45 

Sharpe Ratio 0.013 0.038 0.004 0.033 0.022 0.021 0.058 

Panel C: Buy-and-hold foreign currency rule results 

Buy-and-hold foreign currency 5.02 10.84 8.85 6.94 1.45 -0.11 5.02 

Bid-ask spread 0.054 0.054 0.048 0.056 0.041 0.069 0.052 

Standard deviation of returns(%) 7.79 8.42 7.34 10.31 6.80 9.67 7.96 

Sharpe Ratio 0.004 0.015 0.013 0.006 -0.003 -0.005 0.042 
Note: Bid-ask spread is taken as the difference between the bid and ask, divided by the average of the bid and ask, and 

multiplied by 100 to express is as a percentage of the exchange rate, and the average is taken over the sample. The 

Pesaran-Timmerman statistic is asymptotically distributed standard normal under the null of return and entry/exit 

timing independence. ** denotes significance at the 1% level.  
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Figure 1: Coherence against Period for USD_CHF, USD_DEM, USD_ITL, and USD_JPY 

 

Figure 2: Coherence against Period for DEM_JPY, GBP_DEM and GBP_USD 
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Figure 4: GBP_DEM Coherent Part of the Mean Frame for a Week
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Figure 3: DEM_JPY Coherent Part of the Mean Frame for a Week

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235

Time

R
e
tu

rn



 26 

 

 

 

 

Figure 5: GBP_USD Coherent Part of the Mean Frame for a Week
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Figure 6: USD_CHF Coherent Part of the Mean Frame for a Week
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Figure 7: USD-DEM Coherent Part of the Mean Frame for a Week
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Figure 8: USD_ITL Coherent Part of the Mean Frame for a Week
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Figure 10: Cumulative Profit for July-December 2001 using Long and Short Positions 

 

 

 

Figure 9: USD_JPY Coherent Part of the Mean Frame for a Week
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