
A comparison of extreme value theory 
approaches for determining value at risk 
Article 

Accepted Version 

Brooks, C. ORCID: https://orcid.org/0000-0002-2668-1153, 
Clare, A. D., Dalle Molle, J. W. and Persand, G. (2005) A 
comparison of extreme value theory approaches for 
determining value at risk. Journal of Empirical Finance, 12 (2). 
pp. 339-352. ISSN 0927-5398 doi: 
10.1016/j.jempfin.2004.01.004 Available at 
https://centaur.reading.ac.uk/20555/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1016/j.jempfin.2004.01.004 
To link to this article DOI: http://dx.doi.org/10.1016/j.jempfin.2004.01.004 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



NOTICE: this is the author’s version of a work that was accepted for 

publication in the Journal of Empirical Finance. Changes resulting from the 

publishing process, such as peer review, editing, corrections, structural 

formatting, and other quality control mechanisms may not be reflected in this 

document. Changes may have been made to this work since it was submitted for 

publication. A definitive version was subsequently published in the Journal of 

Empirical Finance, 12.2 (2005), DOI: 10.1016/j.jempfin.2004.01.004  



 2 

 

A Comparison of Extreme Value Theory Approaches for Determining Value at Risk 

 

by 

 

C. Brooks, A. D. Clare, J.W. Dalle Molle and G. Persand 

 

 

 

 

December 2003 

 

 

 

 

Abstract 

This paper compares a number of different extreme value models for determining the value at risk 

of three LIFFE futures contracts. A semi-nonparametric approach is also proposed where the tail 

events are modeled using the Generalised Pareto Distribution and normal market conditions are 

captured by the empirical distribution function. The value at risk estimates from this approach are 

compared with those of standard nonparametric extreme value tail estimation approaches, with a 

small sample bias-corrected extreme value approach, and with those calculated from bootstrapping 

the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that 

for a hold-out sample, the proposed semi-nonparametric extreme value approach yields superior 

results to other methods, but the small sample tail index technique is also accurate.  
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1.  Introduction 

The calculation of a financial institution’s Value at Risk (VaR) has now become the standard approach to the 

determination of appropriate levels of bank capital.  For example, under the European Union’s second Capital 

Adequacy Directive (CAD II), the use of internal risk management models (IRMM) is now permitted as long as 

the institutions can demonstrate that the model and the operational procedures relating to the model are 

“sound”.   

The standard (“delta-normal”) Value at Risk methodology requires that the underlying returns generating 

distribution for the security in question is normally distributed, with moments which can be estimated using 

historical data and are time-invariant (see Danielsson and DeVries (2000) or Neftci (2000)).  However, the 

stylised fact that returns are fat-tailed is likely to lead to under-prediction of both the size of extreme market 

movements and the frequency with which they occur. These under-predictions have potentially serious solvency 

implications in the context of future margin systems. Margin setting in futures markets is known to be sensitive 

to the occurrence of large price changes. Margin committees and brokers in future markets must deal with the 

following trade-off in the process of setting the margin level: A high margin level protects brokers against 

insolvent customers, which in turn reinforces market integrity, but it also increases the costs that must be 

supported by investors, which in the end makes the market less attractive. Various approaches have been used 

to derive the margin level for a given probability of margin violation desired by margin committees or brokers. 

Longin (1994) proposed a new method to set margins that takes into account the appropriate proportion of 

extremes in the distribution of price changes and provides a simple analytical formula to compute the “optimal” 

margin level. Broussard (2001) and Broussard and Booth (1998) also analyze future margins series using such 

methods. 

Neftci (2000) argues that it is likely that extreme events are “structurally” different from the return generating 

process under normal market conditions.  An obvious response to this problem is to employ a methodology that 

explicitly allows for the fat-tailed nature of return distributions, such as those based on extreme value theory 

(EVT). Although there are a number of extreme value approaches available, little empirical work to date has 

conducted a comparative analysis of the various methods. Moreover, extant approaches using EVT focus on the 

tails only and have nothing to say concerning how observations in the centre of the distribution should be used. 
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By contrast, the approach advocated in this paper makes use of information from both the tails and the centre of 

the distribution, but treats each separately. In this paper we calculate a number of VaR estimates for three of 

London International Financial Futures Exchange’s (LIFFE’s) most popular derivatives contracts. 

We use an unconditional model, a GARCH(1,1) model and a bootstrapping approach based on a combination 

of a Generalised Pareto Distribution (GPD) and the empirical distribution of the returns. These models are 

compared with standard nonparametric tail index estimation methods and with an approach recently proposed 

in Huisman, Koedijk, Kool, and Palm (2001). Our main finding is that out-of-sample tests of the calculated 

VaRs show that the proportion of exceedences produced by the extreme value semi-nonparametric approach, 

which separately models the tail and central regions, are considerably closer to the nominal probability of 

violations than competing approaches which fit a single model for the whole distribution.   

The remainder of this paper is organised as follows: in Section 2 we present the data sets; in Section 3 we 

present extreme value theory; in Section 4 we present the proposed semi-nonparametric method for estimating 

VaR, while nonparametric tail index estimators for comparison are described in Section 5. Section 6 displays 

and analyses the results and finally, Section 7 concludes.  

2. Data   

In this study we calculate VaRs for three futures contracts traded on LIFFE - the FTSE-100 Index Futures 

Contract, the Long Gilt Futures Contract and the Short Sterling Interest Rate Futures Contract - based upon 

their daily settlement prices
1
. Although it has lost some prominence in recent years, the London futures market 

is still among the largest in the world, and we examine data on three of its most heavily traded contracts. This 

should provide an interesting parallel with the majority of existing studies that focus exclusively on US 

markets. Our data were collected from Primark Datastream, and span the period 24 May 1991 to 3 September 

1997. Sample observations from when LIFFE was closed were deleted from the data set to avoid the 

incorporation of spurious zero returns, leaving 1344 observations in the in-sample estimation period (to 16 

September 1996.  Observations from 17 September 1996 to 3 September 1997 are reserved for out-of-sample 

testing). In the empirical work below, we use the daily log return of the original price series.  
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Table 1 exhibits that all three returns series show strong evidence of skewness – the FTSE-100 and Short 

Sterling contract returns are positively skewed while the returns on the Long Gilt contract are negatively 

skewed. They are also highly leptokurtic. In particular, the Short Sterling series has a coefficient of excess 

kurtosis of nearly 200. The Jarque-Bera test statistic consequently rejects normality for all three log-return 

series. The extreme fat-tailed nature of the three series provides a strong motivation for the estimation 

methodologies employed in this paper that specifically focus on the tails.  

3. The Excess Distribution Function and the Generalized Pareto Distribution  

The tail region of a distribution can be modeled using the conditional excess distribution function, which 

describes the conditional distribution of the exceedences (or excesses) over a given threshold level.  The GPD 

is a flexible family of distributions applicable to the approximation of the conditional distribution of scaled 

exceedences – see Pickands (1975)
2
. The distribution for the excesses over a high threshold converges to one of 

three different extreme value distributions: the exponential, Pareto, and Beta distributions, which correspond to 

the Gumbel, Fréchet and Weibull distributions, respectively. Introducing some notation, let  nxxx ,,, 21   

denote the log-returns of the collection of prices  nPPPP ,,,, 210   for nt ,,2,1  . Let  tX xF  denote the 

“unknown” distribution function of the returns. Next, let Ux  and Lx  represent the upper and lower thresholds 

of the tails respectively, such that 0 Ut xx  and 0 Lt xx  lie in the two tails of the distribution  tX xF .  

The log likelihood function for estimating the generalised Pareto distribution parameters u and  at an upper 

tail threshold, U, is given by 
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1
 Since these contracts expire 4 times per year - March, June, September and December - to obtain a continuous time series 

we use the closest to maturity contract unless the next closest has greater volume, in which case we switch to this contract. 

2
 Also see Smith (1987), Embrechts, Kluppelberg, and Mikosch (1997) and Neftci (2000) for further discussions on the 

conditions required for the use of the GPD approximation. 
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where k  is the number of exceedences in a sample of n  observations and 
ML

U
 is the maximum likelihood tail 

index estimator, i  is the exceedence of the threshold for observation i  and 0U  is the scale parameter. 

The log-likelihood function can similarly be derived for the lower threshold, L . In this case, the number of 

sample extremes ( k ) is obtained by first estimating the standard deviation of the entire sample of returns. 

Second, using a normality approximation for the centre of the distribution that incorporates 90% of the data 

(corresponding to two 5 % tail regions), selecting all returns in the sample that are greater than (less than 

minus) 1.96 times the standard deviation to represent the upper (lower) extremes.  

The results for the sample number included in the tail ( k ), the sample normalising coefficient ( ) and the 

coefficient determining the sample fatness of the tail region ( ) are given in Table 2. The number of extremes 

( k ) for the upper tail is higher than those of the lower tail, except for the Long Gilt contract where the number 

of extremes is 44 in the lower tail compared to 29 in the upper tail. As expected, U  is positive for all three 

contracts, and is highest for the FTSE-100 index contract, followed by the Long Gilt and then the Short Sterling 

contracts. The result is quite similar for the lower tail: L  is positive for all the contracts, and is highest for the 

FTSE-100 index contract, followed by the Short Sterling and then the Long Gilt contracts. Whereas the 

parameter   is positive in the lower tail for all three contracts (the highest being for the Long Gilt contract, 

followed by the Short Sterling and FTSE-100 Index contracts), it is negative for the FTSE-100 Index and Long 

Gilt contracts in the upper tail.  

The next step is to estimate the upper and lower VaR threshold levels,  qTT UU  1  and  qTT LL  , which 

are the q
th
 and (1-q)

th
 percentiles, respectively.  Following the definition of Ux  and Lx  

  ULU xxT ,max  and  ULL xxT ,max  (2)  

since for the calculation of the VaRs, it is important that the VaR threshold levels are points far from where the 

tail starts. Following Neftci (2000), the estimator of the tail probability is  
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where, 
ML

U  and 
ML  are the maximum likelihood estimates of U

 and   respectively. Denoting the VaR 

threshold probability by the percentile   tUX xFq  , we can obtain the VaR for the upper tail:  
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Recall the results for both the upper and lower VaR threshold values are presented in Table 2. For the upper 

tail, the threshold (i.e. the start of the tail) is set at 0.01664 for the FTSE-100 Index contract, at 0.01003 for the 

Long Gilt contract, and at 0.00325 for the Short Sterling contract. Thus, the threshold is further in the tail for 

the FTSE-100 Index, followed by the Long Gilt and the Short Sterling contracts, respectively. The same result 

is obtained for the lower tail, with the threshold being 0.018 for the FTSE-100 Index contract, 0.00983 for the 

Long Gilt contract and 0.000189 for the Short Sterling contract. The threshold is higher in the lower tail for the 

FTSE-100 Index contract compared to the upper tail. On the other hand, the threshold is higher in the upper tail 

for the Short Sterling contract compared with its lower tail.  

4. A Semi-nonparametric Methodology for Estimating VaR  

VaR is estimated for 1 day, 1 week, 1 month and 3 month investment horizons by simulating the conditional 

densities of price changes, using the Efron (1982) bootstrapping methodology. The simulation study is 

conducted for the generalised Pareto model by bootstrapping from both the two fitted tails and from the 

empirical distribution function derived from the log returns.   

For the GARCH model, since the standardised residuals from these models are iid (according to the BDS test - 

see Brooks, Clare and Persand (2000)), samples are drawn randomly, with replacement, from the sample 

standardised residuals and a path of future tx ’s can be generated, using the estimates of the GARCH(1,1) 

model parameters from the sample and multi-step ahead forecasts of the conditional variance. 

In the case of the generalised Pareto model, the path for future prices is simulated as follows: (1) draw samples, 

with replacement, of the tx ’s from the empirical distribution  t

ML xF , (2) if T Ltx  , then draw from the 

generalised Pareto distribution fitted to the lower tail, (3) however, if TUtx  , then draw from the generalised 

Pareto distribution fitted to the upper tail, and (4) on the other hand, if tx  falls in the middle of the empirical 
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distribution, i.e. TT UtL x  , then tx  is retained. The number of draws of 
tx
 is equal to the length of the 

investment horizon of 1 day, 1 week, 1 month and 3 months. This procedure can be considered as a type of 

structured Monte Carlo study, where particular attention is paid to the extreme returns in the tails of the 

distribution. It is these extreme returns that strongly influence the value of the VaR, and hence most influence 

the likelihood of financial distress. The reason that the generalised Pareto distribution is used for the tails rather 

than simply using the empirical distribution throughout is that the number of observations in the tails may be 

insufficient to obtain accurate results without using an appropriate fitted distribution.  

To calculate the appropriate VaR, a securities firm would have to estimate the maximum loss that its trading 

positions might experience over the proposed holding period and at a specified coverage level.  For example, 

by tracking the daily value of a long futures position and recording its lowest value over the sample period, the 

firm can report its maximum loss per contract for this particular simulated path of futures prices. Repeating this 

procedure for 20,000 simulated paths generates an empirical sampling distribution for this maximum loss. The 

expression for the maximum loss of a short position is analogously calculated.   

Hsieh (1993) assumed that prices are lognormally distributed, i.e. that the lowest (highest) of the log ratios of 

the simulated prices over the holding period, i.e. )/ln( 0PPx ll    )/ln( 0PPx hh  , is normally distributed.  

However, in this paper (and focusing on long positions in the following exposition), we do not impose this 

restriction, but instead the distribution of lx

 

is transformed into a standard normal distribution by matching the 

moments of distribution of simulated values of lx  to one of a set of possible distributions collectively known as 

the Johnson system of distributions (see Johnson (1949) or Kendall, Stuart, and Ord (1987)).  Matching 

moments to the family of Johnson distributions requires a specification of the transformation that maps the 

distribution of lx  to a distribution that has a standard normal distribution.  In this case, matching moments 

implies finding a distribution whose first four moments are known, i.e. one that has the same mean, standard 

deviation, skewness and kurtosis as the distribution of the samples of lx . For all three contracts, the 

distributions of the lx ’s were found to match the unbounded Johnson distribution.  Therefore, the estimated 5
th
 

percentile of the simulated distribution of lx  fitted to the Johnson system is based on the following 

transformation:  
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cd
b

a
xl


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



 


 645.1
sinh

5,
  (5)  

where xl



5,  is 5
th
 percentile of the Johnson distribution derived from the samples of lx , and a, b, c and d are 

estimated parameters whose values are determined by the first 4 sample moments of the simulated distribution 

of lx .  (For the short position, we use the 95
th
 percentile of the distribution of simulated values of lx  and 

analogously use the 95
th
 percentile xh



95,  derived from the Johnson distribution fitted to the samples of hx ). 

It can be shown that the distribution of 0PQ  where Q  is the maximum loss, will depend on the distribution of 

0PPl .  Hence, the first step is to find the 5
th
 percentile of the distribution of lx  

 
xl

l

llx 



5,




  (6)  

where xl



5,
 is the 5

th
 percentile of the resulting Johnson distribution for lx , l  is the expected value of the 

simulated distribution of lx

 

 and l  is the standard deviation of the simulated distribution of lx .  An 

expression for 0PQ  and 0PPl  can be found by rearranging equation (6) and exponentiating both sides of the 

resulting expression  
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and therefore 

 

  lllx
P

Q
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

5,

0

exp1  (8) 

VaR is also calculated using a semi-nonparametric procedure based on a GARCH(1,1) model. Here, the model 

is estimated for the in-sample returns and the bootstrapping is conducted on the standardised residuals from the 

estimated model. The GARCH equations are then used to construct a simulated path of returns of the required 

length. We also use the unconditional density to calculate VaRs in order to make a direct comparison between 

this and the two other approaches since this simpler approach ignores the non-linear dependence in the 
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conditional volatility (which would be captured by the GARCH formulation). To use the unconditional density, 

the lx ’s are drawn randomly, with replacement, from the in-sample returns.  

5. Comparison of the Semi-nonparametric Approach with Nonparametric Estimators 

The tail index can be estimated parametrically or nonparametrically. The tail index can be estimated 

parametrically using the maximum likelihood method, as was the case for the tail indices used in the semi-

nonparametric bootstrapping procedure in this investigation. As a comparison, the results of three common 

nonparametric tail index estimators and a recently proposed small-sample approach will be examined. In the 

nonparametric estimation of the tail index of a GPD, one chooses a high threshold and then fits the tail index to 

the realizations in the corresponding tail region.  

There are a large number of nonparametric tail index estimators that have been developed.  Chapters 2 and 3 of 

Beirlant, Teugels, and Vyncker (1996), section 6.4 of Embrechts, Kluppelberg, and Mikosch (1997) and Pictet, 

Dacorogna and Müller (1998) contain discussions of a large number of these nonparametric estimators.  The 

nonparametric estimators that are used in the comparison are those of De Haan and Resnick (1980), Hill (1975) 

and Pickands (1975).  The Hill estimator is an estimator for the Pareto index,   of the heavy-tailed 

distributions that are in the maximum domain of attraction of the heavy tailed Fréchet distribution, i.e. for 

positive values of the Pareto index.  The Pickands and the De Haan and Resnick tail index estimators can be 

used over the entire range of the tail index for all three limiting extreme value distributions.  

Let k  be the number of upper order statistics to include in the estimator out of a sample of size n  where 

kn  .  The De Haan and Resnick (1988), Hill (1975), and Pickands (1975) estimators are based on the 

ordered sample,            xxxxxx nnkk   1121  , of the observed sample of log returns 

 nxxx ,,, 21  , where   njx j ,,2,1:   denote the order values of  nxxx ,,, 21  .  The Hill (1975) 

estimator is given by  
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The Hill estimator can be interpreted as the average vertical excess of the log-transformed data above a given 

threshold.  The Pickands (1975) estimator is given by 
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and the DeHaan and Resnick (1988) estimator is given by 

    
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Typically, extreme value theory for tail estimators is based on large samples but in practice, the limited number 

of data points in the tails leads to small sample biases. In order to address this problem, Huisman, Koedijk, 

Kool and Palm (2001) proposed a robust small sample bias-corrected estimator that is based on the linear 

regression of set of Hill tail estimates where each estimate is conditioned on a different number of observations 

included in the tail region.  The Huisman, Koedijk, Kool and Palm estimator can be viewed as a modified Hill 

estimator that is based on the following expression: 

    kknk
HKKP

 
10

,  (12) 

for     25.0int,,2,1  nnkk  .  Huisman, Koedijk, Kool and Palm (2001) provide a generalised least 

squares estimator that corrects for the correlation and heteroscedasticity present in the residual series 

  kii ,,2,1:  .  The optimal estimate for the tail index using this method is the intercept 
0

 as 0k .   

The following estimator of the scale parameter 
F

 of a sample of k  independent observations 

 nixi
,,2,1,   from a Fréchet distribution will be used to estimate 

U
 : 
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 (13) 

where 
F

 is a tail index estimate corresponding to a Fréchet distribution including the 
DR

 
H

, 
HKKP

, and 


P

 estimators, and k  is the number of exceedences used in the estimation of the tail index.  

The results for each of the three nonparametric tail index estimation procedures, the corresponding estimated 

threshold and scaling factor in equation (13) are summarized in Table 3.  For reasons of comparison, the three 



 10 

nonparametric tail index estimation procedures were applied to the same section of the tail as was used above, 

i.e. the same values of k  for the upper and lower tails and for 01.0q .   

To determine the accuracy of this methodology, we compared the actual daily profits and losses of the three 

futures contracts with their daily value at risk estimates. Our measure of model performance is a count of the 

number of times the VaR “underpredicts” realised losses over the out-of-sample period of 250 days from 17
th
 

September 1996 to 3
rd

 September 1997.  The Basel Committee requires the use of a 1-trading year “back-test” 

sample of returns in order to evaluate the suitability of the model.  

6. Results 

The VaRs for the three contracts based semi-nonparametric bootstrapping the unconditional density, the 

GARCH(1,1) and EVT models are presented together with the results of direct calculations from the 

nonparametric tail index estimators in Table 4.  An examination of the results reveals that the VaR estimates 

are always higher for short compared with long futures positions, particularly as the investment horizon is 

increased.  This is because the distribution of log-price changes is not symmetric: there is a larger probability of 

a price rise in all three futures contracts than a price fall over the sample period, indicating that there is a greater 

probability that a loss will be sustained on a short relative to a long position.  For example, the VaR for a long 

Short Sterling position, calculated using the GARCH(1,1) model and held for three months is 3.627%, but is 

5.798% for a short position.   

The VaRs based upon the GARCH(1,1) model are always higher than for the unconditional density and 

extreme value bootstrap methods of calculation.  This result highlights the excess volatility persistence implied 

in the GARCH(1,1) model (see Brooks, Clare and Persand, 2000 for a discussion of this issue).  A higher 

degree of persistence implies that a large innovation in contract returns (of either sign) causes volatility to 

remain high for a relatively long period, and therefore the capital level required is also higher.  

Comparing among the VaRs calculated directly from the three traditional nonparametric tail index estimators, 

there is little to choose between them. There appears to be a tendency for the Pickands estimator to generate 

slightly smaller VaRs, except for the upper tail of the Short Sterling contract. The three nonparametric tail 

estimators typically lead to VaRs that are smaller than both the GARCH and EVT semi-nonparametric 
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bootstrapping approaches, but larger than those resulting from bootstrapping from the returns themselves. The 

VaRs calculated using the modified Hill estimator of Huisman, Koedijk, Kool, and Palm (2001) are close to 

those of the GARCH semi-nonparametric bootstrap approach, and are also higher than those of the other 

nonparametric tail estimators, particularly in the case of the Short Sterling series. 

Considering how the VaRs increase with horizon, it should be noted that the 1-week, 1-month and 3-month 

VaRs are scaled using the square root of time rule for the nonparametric tail index estimators. This leads them 

to increase more slowly with horizon than the bootstrap-based approaches, where the longer period VaRs are 

calculated directly by drawing more bootstrapped observations and simulating over a longer time interval.  

The percentages of days that the VaRs were exceeded by actual trading losses are given in Table 5 for a 250-

day out of sample period for each model. The nominal probability of a violation is 5%, but some of the models 

show considerable deviation from this level. Whilst a “good” model would be one that generated a percentage 

of exceedences close to the nominal 5% value, an inadequate coverage is likely to be far more serious for the 

firm than having too much capital. Considering first the FTSE contract, the traditional nonparametric tail 

estimators lead to too low a VaR for long positions and slightly over-estimated VaRs for short positions. The 

procedures based on the bootstrap and the modified Hill estimator all perform better, with very few or no 

exceedences for the GARCH and EVT bootstrap approaches and for the modified Hill approach. The 

percentage of exceedences is close to 5% for bootstrapping from the unconditional distribution. The VaRs from 

all 6 models appear to yield adequate coverage for the long gilt since none generate any exceedences at all in 

the out of sample period. However, the conventional nonparametric tail estimators and the unconditional 

bootstrap generate insufficient VaRs on close to 40% of days for both the long and short positions in the Short 

Sterling futures contract. It is only the bootstrap with GARCH and EVT, and the small-sample approach to 

measuring the tail index that give reasonable coverage in this case. In fact, the proportion of observations in the 

tails fell for the Long Gilt series, while the distribution of returns on the Short Sterling changed dramatically 

between the in-sample and out-of-sample periods. Short-term interest rates were more volatile during the out-

of-sample period and sterling was at a higher level than at any time during the in-sample period. The average 

percentage error between the in-sample and out-of-sample percentiles was about 2.5 times greater for the Short 

Sterling than for the other two series. Whilst the regulatory focus on the first percentile of returns together with 
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the scaling factor would considerably reduce the number of Short Sterling exceedences, this does suggest that 

the Basel Committee recommendation of 1-year back-tests could be insufficient.  

6. Conclusions 

Under the EU’s CAD II, investment firms and banks in Europe are now permitted to use their own internal risk 

management models to calculate the required capital to cover losses in their trading positions. Given that such 

models are now in widespread usage, it is crucial that a body of research is generated that compares between 

different approaches to computing value at risk. To this end, our paper has sought to propose a new semi-

nonparametric method for calculating value at risk, based on bootstrapping and extreme value theory. This 

approach has been applied to three of the most heavily traded LIFFE futures contracts, and was compared to the 

VaRs obtained from bootstrapping from the actual returns and from a GARCH model. We also examined the 

performance of VaRs calculated directly using three nonparametric tail index estimators. It was observed that 

the semi-nonparametric procedure generated more accurate VaRs than any other method based on a holdout 

sample of returns, although a modified Hill estimator that is explicitly designed for use with small samples also 

performed well.  

While all three series employed in our analysis were asymmetric, the approaches proposed will also work for 

symmetric distributions since the left and right tails are modelled separately. Also, leaving the Short Sterling 

series aside, there appears to be nothing in the properties of our series that would suggest that the semi-

nonparametric approach based on structured Monte Carlo should not be just as applicable to other financial 

time series. Within the structured Monte Carlo approach, we used both a conditional (GARCH) and an 

unconditional (EVT) model, and there was little to choose between them. The important issue, therefore, seems 

to be to treat the tails as being distinct from the rest of the distribution, and to model them separately but to 

incorporate information from both. The choice between conditional and unconditional models appears to be of 

secondary concern. Clearly, setting appropriate capital requirements represents a delicate trade off between 

ensuring the safety of the banking system on one hand and not tying up firms’ resources unnecessarily on the 

other and further research in this area is warranted. The approaches proposed in this paper may also be used in 

risk-based margin setting systems for time when markets are stressed.   
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Table 1: Summary Statistics of Derivative Returns 

Futures Contracts FTSE-100 Long Gilt Short Sterling 

Mean 0.00034 0.00013 0.00004 

Variance 8.283E-5 2.654E-5 1.680E-6 

Skewness 0.29556* -0.09153* 8.55407* 

Kurtosis 2.73215* 3.43428* 199.165* 

Normality Test  Statistic† 484.2252* 639.9767* 2223267* 

Notes: * represents significance at the 5% level (2 tailed-test); † Jarque-Bera test 
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Table 2: Number of Extremes, Maximum Likelihood Parameters of the Generalised Pareto Distribution 

and the Threshold Level 

 FTSE-100 Long Gilt Short Sterling 

 Upper Tail Lower Tail Upper Tail Lower Tail Upper Tail Lower Tail 

k  28 19 29 44 19 15 


ML

 
0.02246 0.05232 0.01243 0.01324 0.00667 0.01773 


ML

 
-0.02521 0.03680 -0.12329 0.86250 0.15124 0.54101 








ML

T  
0.01664 0.01800 0.01003 0.00983 0.00325 0.00189 
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Table 3: Nonparametric Tail Index Estimates of the Generalised Pareto Distribution and the 

Corresponding Threshold Levels  

 FTSE-100 Long Gilt Short Sterling 

 Upper Tail Lower Tail Upper Tail Lower Tail Upper Tail Lower Tail 

k  28 19 29 44 19 15 


DR

 
0.02463 0.02425 0.01345 0.01337 0.004171 0.003851 


H

 
0.02465 0.02366 0.01349 0.01335 0.004284 0.003849 


P

 
0.02488 0.02363 0.01358 0.01340 0.004408 0.004072 


DR

 
-0.3164 -0.30742 -0.3769 -0.20986 -0.8292 -0.4749 


H

 
-0.2997 0.27259 -0.2860 -0.26638 -0.59753 -0.4799 


P

 
0.08703 0.587591 0.08193 -0.12873 -0.37696 0.1305 


HKKP

 

0.4139 0.4738 0.4024 0.6184 0.5302 0.6224 








DR

T  
0.020351 -0.008633 0.01200 -0.01800 0.001673 -0.000434 








H

T  
0.02024 -0.008588 0.01160 -0.01862 0.001648 -0.000434 








P

T  
0.01886 -0.007597 0.01078 -0.01717 0.00163 -0.000444 








HKKP

T  
0.04776 -0.04211 0.02658 -0.01967 0.00707 -0.00564 

Note: DR, H, P and HKKP denote the DeHaan-Resnick, Hill, Pickands, and Huisman, Koedijk, Kool, and Palm estimators 

respectively. 



 18 

 

 
Table 4: Value at Risk Calculated by a Semi-nonparametric Bootstrap using Unconditional Density, a 

GARCH(1,1) model, and Extreme Value Theory, and also Calculated Directly from Nonparametric Tail 

Index Estimators 

Panel A: Long Positions 

    Nonparametric Tail Estimators Semi-nonparametric Bootstrapping 
Horizon DR H P HKKP Unconditional GARCH EVT 

FTSE 100 

3 months 6.685 6.654 5.886 32.618 12.775 25.498 20.391 

1 month 3.859 3.842 3.399 18.832 7.954 10.417 13.369 

1 week 1.930 1.921 1.699 9.416 3.272 6.031 5.600 

1 day 0.863 0.859 0.760 4.211 1.392 4.275 2.340 

Long Gilt 

3 months 13.943 14.423 13.300 15.236 7.906 12.028 4.954 

1 month 8.050 8.327 7.679 8.796 4.855 7.305 3.672 

1 week 4.025 4.164 3.839 4.398 2.007 4.653 2.506 

1 day 1.800 1.862 1.717 1.967 0.849 2.932 1.152 

Short Sterling 

3 months 0.333 0.333 0.341 4.369 1.643 3.627 2.810 

1 month 0.192 0.192 0.196 2.522 0.986 2.377 2.001 

1 week 0.096 0.096 0.098 1.261 0.348 1.423 1.555 

1 day 0.043 0.043 0.044 0.564 0.127 0.903 0.753 

Panel B: Short Positions 

              Nonparametric Tail Estimators                  Semi-nonparametric Bootstrapping 
Horizon DR H P HKKP Unconditional GARCH EVT 

FTSE 100 

3 months 15.793 15.678 14.609 36.995 21.102 32.540 30.820 

1 month 9.101 9.052 8.434 21.359 10.782 14.567 19.763 

1 week 4.550 4.526 4.217 10.679 3.845 7.905 5.998 

1 day 2.035 2.024 1.886 4.776 1.419 5.570 3.161 

Long Gilt 

3 months 9.295 8.985 8.350 20.589 10.906 14.070 5.489 

1 month 5.367 5.188 4.821 11.887 5.623 9.833 4.010 

1 week 2.683 2.594 2.410 5.943 2.090 5.378 3.005 

1 day 1.200 1.160 1.078 2.658 0.898 3.276 1.413 

Short Sterling 

3 months 1.294 1.278 1.263 5.476 3.061 5.798 4.320 

1 month 0.747 0.738 0.729 3.162 1.237 4.008 3.010 

1 week 0.373 0.369 0.364 1.581 0.382 2.799 2.004 

1 day 0.167 0.165 0.163 0.707 0.130 1.437 0.975 

Note: DR, H, P and HKKP denote the DeHaan-Resnick, Hill, Pickands, and Huisman, Koedijk, Kool, and Palm estimators 

respectively. VaR is expressed as a percentage of the initial value of the position.  
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Table 5: Out-of-Sample Tests: Realised Percentages of Daily VaR Violations 

              Nonparametric Tail Estimators                     Semi-nonparametric Bootstrapping 
 DR H P HKKP Unconditional GARCH EVT 

Panel A: Long Position 

FTSE Index 11.6 11.6 15.2 0.0 4.0 0.0 0.8 

Long Gilt 0.0 0.0 0.0 1.6 0.0 0.0 0.0 

Short Sterling 40.8 40.8 40.8 18.4 35.6 2.4 6.4 

               Nonparametric Tail Estimators                    Semi-nonparametric Bootstrapping 
 DR H P HKKP Unconditional GARCH EVT 

Panel B: Short Position 

FTSE Index 0.8 1.2 8.0 0.0 4.8 0.0 0.0 

Long Gilt 0.0 0.0 0.0 0.8 0.0 0.0 0.0 

Short Sterling 38.4 38.4 38.4 21.2 39.6 0.4 2.4 

Note: the nominal probability of VaR violations was set at 5% (see text for more details). Note: DR, H, P and HKKP 

denote the DeHaan-Resnick, Hill, Pickands, and Huisman, Koedijk, Kool, and Palm estimators respectively. 


