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The Underlying Return Generating Factors for  REIT 
Returns: An Application of Independent Component Analysis 

 
Abstract: 
 
Multi-factor approaches to analysis of real estate returns have, since the pioneering 
work of Chan, Hendershott and Sanders (1990), emphasised a macro-variables 
approach in preference to the latent factor approach that formed the original basis of 
the arbitrage pricing theory. With increasing use of high frequency data and trading 
strategies and with a growing emphasis on the risks of extreme events, the macro-
variable procedure has some deficiencies. This paper explores a third way, with the 
use of an alternative to the standard principal components approach – independent 
components analysis (ICA). ICA seeks higher moment independence and maximises in 
relation to a chosen risk parameter. We apply an ICA based on kurtosis maximisation 
to weekly US REIT data using a kurtosis maximising algorithm. The results show that 
ICA is successful in capturing the kurtosis characteristics of REIT returns, offering 
possibilities for the development of risk management strategies that are sensitive to 
extreme events and tail distributions.  
 
 
1. Introduction 
 
The role of real estate in mixed asset portfolios depends on the return generating 

process when compared to other asset classes. Analysis in private real estate markets 

is badly hampered by data inadequacies, but the existence of traded real estate 

securities – REITs – enables factor models to be tested in real estate markets. As with 

common equities, single factor models and extended-CAPM models have proved 

limited in characterising risk-return characteristics and attention has switched to 

multi-factor models developed from the Arbitrage Pricing Theory framework. Early 

applications utilised the original direct principal components analysis (PCA) approach 

of Roll and Ross but increasingly have used macro-factor models. These are easier to 

interpret but leave questions concerning independence and missing variable 

specification problems. As a parallel development, greater attention has focussed on 

the distributional qualities of asset returns and, in particular, persistent evidence of 

non-normality in returns. This paper examines equity REIT data from the US to 

investigate whether non-normality results in the relatively weak performance of PCA 

relative to multi-factor models and introduces Independent Component Analysis – a 

modelling strategy that is more sensitive to the presence of kurtosis.  
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This paper is in the spirit of Chan, Hendershott and Sanders (1990) who provided an 

early application of multi factor analysis, examining EREIT returns using CAPM and 

APT approaches, with the latter based on a mimicking portfolio model, based around 

the Chen, Roll and Ross (1986) macro-factors. Chen et al. (1997) similarly compared 

macro-variable multi-factor models with derived, principal component models for 

REIT returns over the period 1974-1991. They suggest that the macro-variable model 

outperforms a factor loading model over the 1980-1995 period. Subsequent work has 

tended to utilise macro-factor approaches (see for example Ling, Naranjo and 

Ryngaert, 2000). 

 
There are three principal reasons why it might be valuable to revisit the statistical 

approach. The first relates to the evolution of investment strategies that rely on active 

trading on a frequent basis. Macro-factor models require proxies for the key priced 

systematic risk factors, but these are rarely available at high frequency and are 

frequently subject to revision (notably macro-economic data). Given high frequency 

trading models, it is thus necessary to explore statistical procedures that may be used 

to inform investment policy and strategy. The second results from the interaction of 

the principal components analysis model and the observed distribution of real estate 

returns. Third, risk management strategies are increasingly focused on extreme events 

rather than general volatility.  

 
Relative underperformance of the principal components approach may, in part, result 

from the nature of REIT return distributions. Non-normality is a feature that is evident 

in commercial real estate returns (noted a decade ago, for example, in Young & Graff 

(1995) for a review, see Lizieri & Ward, 2000) and is a characteristic of equity 

returns, with fat tails being commonplace. Given that principal components analysis 

focuses only on the first and second moments of the distribution, then standard PCA 

approaches may neglect information that is available in asset returns. 

 
Principal components analysis attempts to capture as much variance as possible in the 

underlying data set. However, if variance is insufficient as a risk measure, one might 

prefer to maximise with respect to some other risk metric. Unfortunately, many risk 

measures, such as Value at Risk, Expected Loss or Semi-Variance, are not amenable 

to standard optimisation techniques, as they measure some aspects of joint and 

marginal tail distributions ( for real estate examples see Bond & Patel, 2003; 
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Hamelink & Hoesli, 2004; Knight et al., 2005). However, measures based on higher 

moments are somewhat more amenable for optimisation – hence our focus on kurtosis 

in this paper. 

 
Recently, new procedures have emerged that attempt to handle these issues. One such 

procedure is Independent Component Analysis (ICA). Independent components 

analysis is a procedure analogous to principal components but based on higher 

moments than the second. It is one of a family of somewhat disparate techniques; we 

choose this particular approach – a kurtosis maximisation procedure - because of its 

applicability to portfolio construction, its ability to deal with large portfolios, and 

because of structural comparability with principal components analysis.  

 
The algorithm we use iterates between orthogonalisation (enforcing zero correlation) 

followed by maximization of non-Gaussianity - in our case, maximization of kurtosis. 

We need to maximize kurtosis because the solution to zero correlation is not unique 

(it is ‘rotationally invariant’). By maximizing kurtosis, we hope to find components  

which are as independent as possible. The model allows us to test whether kurtosis 

maximization indeed gives us independent components. By bootstrapping the 

variance of covariance, we test the null hypothesis that cov{g(Si),h(Sj)}=0, where g() 

and h() are nonlinear transformations of S, and where the S refer to different 

components. We can reorder the independent components based on kurtosis and 

calculate what proportion of total kurtosis is explained by the first i independent 

components. This generalizes the variance decomposition used in PCA.  For ICA, we 

tend to find that there is no value at which the plot of kurt(i) against i flattens out.  

 
There are a number of practical implications of the model. For example, it is hoped 

that such calculations may find use in portable alpha applications by concentrating the 

kurtosis  in a particular portfolio. This paper, however, will concentrate more on 

methodological and empirical issues rather than applications to fund management. We 

apply the ICA model to a sample of US REIT returns, comparing the results with the 

standard PCA approach. The next section briefly reviews some of the existing 

literature on multi-factor models in real estate. We then introduce the independent 

component analysis method. The fourth section provides details of the data set. We 

then present results and draw conclusions.  
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2. Multi-factor Models in Real Estate 
 
The growth of the REIT market in the 1980s allowed researchers to explore the use of 

arbitrage pricing and multi-factor models in real estate. An early application of APT 

modelling was provided by Titman and Warga (1986) who use factor analytic 

procedures in an attempt to link NYSE and AMEX risk factors to REIT returns. In 

parallel, the principles of application were laid out in Blundell & Ward (1987). The 

paper by Chan, Hendershott and Sanders (1990) represents a significant step forward 

and lead to a focus on macro-economic or fundamental factors. The authors examine 

equity REIT returns using both CAPM and APT approaches, with the latter based on a 

mimicking portfolio model, based around the Chen, Roll and Ross (1986) macro-

factors. They demonstrate that the excess returns to REITs observed using a simple 

CAPM framework “evaporate” when a multi-factor approach is used. They identify 

three key factors driving both equity market and REIT returns: changes in the risk and 

term structures and unexpected inflation. Other macro factors such as forward 

industrial production and expected inflation have lesser impact or switch between 

positive and negative influence. The impacts of macro factors on real estate returns 

are consistently lower than the impacts on general stock returns.  

 
Chen et al. (1997), following the work of Chen & Jordan (1993), compare macro-

variable multi-factor models with derived, principal component (factor loading) 

models for REIT returns over the period 1974-1991. Their macro-variable model 

utilises five factors – change in term structure, change in risk premium, the 

unanticipated inflation rate, changes in expected inflation and an orthogonalised 

market index residual. They suggest that the macro-variable model outperforms a 

factor loading model over the 1980-1995 period.  

 
Subsequent work has tended to utilise macro-factor approaches. For example, Ling & 

Naranjo (1997) use a multi-factor model that includes the growth rate of real 

consumption, the term structure of interest rates, the real rate of interest, the term 

structure and inflation shocks to test the behaviour of real estate returns. They allow 

for time varying risk factors and point to the importance of the consumption variable 

as casting doubt on prior findings of abnormal real estate returns. Other applications 

include Ling & Naranjo (1999) and Ling, Naranjo and Ryngaert (2000). The emphasis 

on macro-variables has been reinforced by the use of long-run, cointegration methods 
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to examine the links between real estate and the equity market (for example, McCue 

& Kling, 1994; Okunev & Wilson, 1997, Brooks & Tsolacos, 1999). 

 
While there are clear benefits from use of macro-variables, there are technical issues 

concerned with the derivation of innovations (for example, identification of inflation 

shocks requires a model of anticipated inflation) and with the inter-relationship 

between the identified risk factors. More significantly, the use of a macro factor 

approach may constrain the frequency of analysis which is dependent on the release of 

official statistics (inflation, industrial output, for example) and compromised by the 

frequent revision of official statistics. Given the move towards risk-management 

strategies based on higher frequency data and new investment vehicles and products 

that  emphasise higher moments, there may be advantages in using an analytic 

approach that focuses on extreme events and implicit factors. 

 
 
3. Independent Component Analysis 
 
3.1 ICA Principles 
 
Independent component analysis is a technique that aims to extract distinct signals 

from some generalised, commingled distribution. One way in which ICA principles 

are described is the so-called “cocktail-party” problem. Imagine there are two persons 

speaking simultaneously situated at different positions in a cocktail party. We want to 

know their original comments but can only hear combined noise. We recorded the two 

time signals We recorded the two time signals  and ; they are the weighted 

sums of the original signal  and  with weight , where ij=1,2.  To express 

it in linear equations: Expressed in linear equations: 

)(1 tx )(2 tx

)(1 ts )(2 ts ija

 

)()()( 2121111 tsatsatx +=      (1) 

)()()( 2221212 tsatsatx +=      (2) 

 
It will be shown that we can solve for the original signals  and  solely by 

using the principles of statistical independence, with no further assumption needed to 

guarantee that the model can be estimated.  

)(1 ts )(2 ts

 

 5



As will be demonstrated, we can apply this idea to the analysis of REITs. We 

observed the return series  for n REITs, and are interested in the underlying 

return generating factors . In mathematical notation: 

)(txn

)(ts j
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where  is the observed return for the nth REITs at time t; ,  and  
are the independent underlying factors at time t, and  is the mixing matrix. 

)(txn )(1 ts )(2 ts )(ts j

nja
 

Even though we can use the assumption of independence to estimate the signals, there 

remain two ambiguities in the ICA model. First, we cannot determine the variances of 

the independent components because we can multiply any signal by a scalar and 

divide the corresponding weight by the same scalar, while the observed signals 

remain unchanged. In this way, we can change the magnitude of the signal variances. 

To solve this, ICA assumes that E { 2

)(ts j

ija

js }=1, although this still leaves a problem of 

sign ambiguity. Second, we cannot determine the order of the independent 

components. We can change the lines of the weighting matrix and the order of 

independent components without changing the model. 

  

It is more convenient to express the model in matrix notation: 

 

          (6) ASX =

 

Where , , . ),...,,( 21 n
T xxxX = )...,,( ,21 njjj

T aaaA = ),...,( 21 j
T sssS =

 
To estimate the independent components, we need to express them in terms of the 

observed data X. Denote this as , where  are the estimated independent XWS ˆˆ = Ŝ
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components. Obviously if W  is the inverse of A, we can achieve  which is exactly 

the same as the true signal S. However, given the fact that we have no prior 

information about A, we cannot calculate W  directly. We need to solve using the 

principle of statistical independence to find a close approximation. To estimate 

independence, we introduce a simple and intuitive principle: maximization of non-

normality (non-Gaussianity). The central limit theorem says that the sum of N 

independent random variables tends toward a Gaussian distribution if N is large. In 

the case of ICA, it means that the sum of two independent components is more 

Gaussian than any of the two original signals.  

ˆ Ŝ

ˆ

 

By substituting X=AS, we can express  as a linear combination of : Ŝ S
 

SQASWXWS T=== ˆˆˆ                (7)

   

where . Hyvarinen and Oja (2001) used the two signals case to explain how 
to apply the central limit theorem to achieve the independent components: 

AWQT ˆ=

 

∑
=

=+=+=
2

1
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=+=+=
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1
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i
iisqsqsqxwxws                           (9) 

 

Since the sum of two independent components follows a “more Gaussian” distribution 

than the original components, is “more Gaussian” than  and is least 

Gaussian when  is actually equal to ; the same holds for

∑
=

=
2

1
11̂

i
iisqs 1s

1̂s 1s 2ŝ 1.  Given the fact that 

we only have information for X, we can try different values for W  and compare the 

distribution of . More precisely, we can solve ICA by maximizing the non-

gaussianity of  by estimating the weights W . This transforms the ICA 

problem to a numerical optimization problem.  

ˆ

XWS ˆˆ =

XWS ˆˆ = ˆ

 

                                                 
1  It can also be shown that minimizing mutual information is equivalent to maximizing nongaussianity. 

Hence, maximizing nongaussianity can achieve maximally independent components. 
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We can solve ICA on the basis of minimizing or maximizing certain contrast 

functions. There are several potential measures of non-gaussianity: for instance, 

negentropy, information theory, kurtosis. The negentropy of a random variable is the 

amount of information that can be captured by observing the variables: more 

unpredictable and unstructured data will have large entropy. Since the normal 

distribution is the least structured of all distributions, random variables with a normal 

distribution will have the largest negentropy; random variables with a non-gaussian 

distribution will have a lower negentropy. We can achieve independent components 

by minimizing negentropy. We can also maximize the independence by minimising 

the mutual information between the components. Theoretically in terms of statistical 

properties, they are good measures of non-normality; however, computationally they 

are rather difficult to use because we need to estimate the density function for 

negentropy estimating. 

 

In econometrics, however, it is standard to measure normality with reference to  

kurtosis, which is a classic quantitative measure of non-normality, embedded in 

standard normality tests such as the Jarque-Bera statistic: 

 

                  (10) 224 }){(3}{)( yEyEykurt −=

 

The formula above has been simplified to account for zero-mean case. Furthermore, 

we approximate kurtosis by the fourth central moment. The excess kurtosis can be 

either positive or negative: if excess kurtosis is positive, it is supergaussian (or 

leptokurtic); if negative, it is subgaussian (or platykurtic); if it is zero, we get the 

gaussian distribution.  In this paper, we will use the absolute value or squared value of 

kurtosis as a measure of non-gaussianity. 

 

3.2 The ICA  Algorithm 

 

In what follows, we draw on insights from Hyvarinen et al. (2001). As discussed 

above, to find the independent components, we need to maximize the non-gaussianity 

of  by estimating the weights W . In practice, we start from some weighting 

matrix , compute the direction in which the absolute value of kurtosis of X is 

XWS ˆˆ = ˆ

Ŵ
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increasing most strongly, and use a gradient method to find a new W . This is an 

iterative algorithm. To simplify and reduce the complexity initial pre-processing steps 

is conducted: for example, centring, whitening and dimensionality reduction.  

ˆ

 

The observed variables are centred by subtraction of their sample means. Thus, the 

signals are also zero mean by taking expectations on both sides of equation (7). The 

mixing matrix W  is unaffected by this pre-processing. We can add W*E(X) to the 

centred estimates of S to obtain the original signals. 

ˆ

 

In order to whiten the data, we need to apply a linear transformation V on X such that 

the transformed data Z=VX are uncorrelated and have unit variance. This, again, 

reduces the complexity of the ICA. 

 
Z=VX=VAS= A~ S                      (11) 
E {ZZT}=I                     (12) 

 
To whiten, we can use the eigenvalue decomposition of the covariance matrix: 

 
   E{XXT}=EDET                    (13) 
 
Where E is the orthogonal matrix of eigenvectors of E {XXT} and D is the diagonal 

matrix of its eigenvalues. Thus, 

 
   V=ED-1/2 ET                   (14) 
 
Where D-1/2 =diag(d1

-1/2,d2
-1/2,…,dn

-1/2). It is easily to prove that2:  
 
   Var(Z)=E(ZZT)=E(VXXTVT)=I              (15) 
 
On the other hand, from equation (11), we obtain a new mixing matrix A~ =VA. As the 

variance of signals S and variable Z are constrained to unity, for whitened data, this is 

equivalent to constraining the norm of A~  to be the unit matrix: 

   
   E(ZZT)=E( A~ SST A~ T)= A~ A~ T =I              (16) 
 

                                                 
2 We can also set V=D-1/2ET and still get var(Z)=var(VX)=I. Whitening can only give up an orthogonal 
transformation. Any orthogonal transformation of Z can achieve unit variance. 
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As A~  is an orthogonal matrix, we only need to estimate up to n(n-1)/2 degrees of 

freedom rather than n2, considerably reducing estimation problems.  

 
It is also useful to reduce the complexity further; a third common pre-processing step 

is to reduce the dimensionality of the data by retaining only larger eigenvalues in the 

covariance matrix. Whitening and dimension reduction can be achieved with principal 

components analysis.  

 
However, this whitening process only determines that the components are 

uncorrelated. For non-gaussian data, independence is a much stronger assumption 

than lack of correlation. Thus, we can apply PCA to do most of the pre-processing and 

then perform ICA on the most important principal components to achieve 

independence.  

 
As noted above, we use the principle of maximization of non-gaussianity to estimate 

independence. Here, we use kurtosis (as defined in equation 10, above) as a measure 

of non-gaussianity. We can solve ICA by maximizing the absolute value of kurtosis of 

 by estimating the weights W . We test different values for W  so as to 

maximize the absolute value of kurtosis for S. This transforms the ICA problem to a 

numerical optimization problem. The algorithm is based on the gradients of the cost 

function.  

XWS ˆˆ = ˆ ˆ

 
First, we show how to estimate one independent component: 
 
                (17) Xwxwxwxws T

nn 112121111 ˆˆ...ˆˆˆ =+++=
 
where , . )ˆ,...,ˆ,ˆ(ˆ 112111 n

T wwww = ),...,,( 21 n
T xxxX =

 
Starting from some initial weighting vector , we find the direction in which the 

kurtosis of  is increasing most strongly if kurtosis is positive, or decreasing 

most strongly if kurtosis is negative, based on the observable data. A gradient method 

is then used to find a new vector .  So we are trying to find the direction of  so 

that the projection  maximizes the non-gaussianity, as measured by the absolute 

value of kurtosis.  

)0(ˆ1w

Xws T
11 ˆˆ =

1ŵ 1ŵ

Xw T
1ˆ
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The pre-processing steps, such as centering and whitening, guarantee that the variance 

of  and the norm of  are constrained to unity. This transfers the ICA problem 

to an optimization problem with the constraint of optimizing on the unit circle: 

Xw T
1ˆ 1ŵ

   
  22

1
4

11 ]}ˆ{[3}ˆ{)ˆ( XwEXwEMaxskurtMax TT −=              (18) 

          subject to 1ˆ1 =w  

]ˆˆ3})ˆ({))[ˆ((4
ˆ

)ˆ( 2
11

3
11

1

1
wwXwXEXwkurtsign

w

Xwkurt
TT

T

−=
∂

∂
=0            (19) 

 
We can form a Lagrangian function: 

 
  )1ˆ()ˆ(),ˆ( 11111 −+= wXwkurtwL T λλ                          

(20) 
 
The gradients with respect to  and 1ŵ 1λ : 

 

11
2

11
3

11
1
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1

1

11 −=
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λ
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We get the solution to the constrained optimization problem when the gradients are 

zero with respect to both  and 1ŵ 1λ . We need to start from some initial value of  

and 

1ŵ

1λ , then apply Newton iteration or other iteration methods to solve the set of 

equations. 

 
If the constraint is simple, for example that some quadratic form of  is constant, we 

can apply another optimization technique: projections on the constraint set. In our 

case, we face the simple constraint that the norm of  is equal to 1. Thus we can use 

the projection method. This means that the maximization problem can be solved with 

an unconstrained learning rule; and after each iteration, we need to project  onto the 

unit sphere, which means dividing  by its norm. This is a two-step process:  

1ŵ

1ŵ

1ŵ

1ŵ

 

 )()1(ˆ)(ˆ 11 ttwtw φ+−=
)1(ˆ

))1(ˆ(

1

1

−∂

−∂

tw
Xtwkurt T

               (23) 
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There is a more convenient way to write the above rules, to conform with standard 

programming language: 

 

 φ+← 11 ˆˆ ww
1

1

ˆ

)ˆ(

w

Xwkurt T

∂

∂
                 (25) 

 111 ˆ/ˆˆ www ←                               (26) 
 
Iterations continue until convergence 0ˆ1 =∆w  is achieved. Here φ  is a learning rate, 

which is an important factor for the speed of convergence. Too small a learning rate 

will result in low convergence; too large a learning rate can result in instability and 

local maxima.  

 
A more efficient fixed-point iteration, which has neither a learning rate nor other 

adjustable parameters in the algorithm can be defined.  As we are trying to maximize 

the kurtosis function under the constraint 1ˆ1 =w , at the maximum point, the gradient 

must point in the same direction as , which means the gradient must be equal to w 

multiplied by some scalar constant. This is the condition for convergence: as only in 

this case, adding the gradient to  will not change the direction. Thus we can set  

proportional to the  gradient of kurtosis: 

1ŵ

1ŵ 1ŵ

 
   2

11
3

11 ˆˆ3})ˆ({ˆ wwXwXEw T −∝                 (27) 
 
Where  means “proportional to”. We can obtain a fixed-point algorithm where ∝

 
                (28) 1

3
11 ˆ3})ˆ({ˆ wXwXEw T −←

  

We omit 2
1ŵ  from equation (24) as after each fixed-point iteration, we will project 

 onto the unit sphere.  The final vector  will give us one of the independent 

components.  

1ŵ 1ŵ

 
The algorithm presented above computes only one of the independent components, to 

get all the independent components, it is necessary to repeat the process. In principle, 

this can be done with different weighting vectors for , ,…, . In order to make 1ŵ 2ŵ iŵ
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sure that different independent components do not converge to the same solution, the 

vectors  corresponding to different independent components must be orthogonal in 

the whitened space because =0 for X with unit variance. 

As iteration algorithms do not guarantee orthogonality of weighting vectors  

automatically, we need to orthogonalize the vectors after each iteration step. We can 

apply a deflationary orthogonaliztion where the vectors  are estimated one-by-one, 

or a symmetric orthogonalization where the vectors are estimated in parallel. Usually 

it is more desirable to use the symmetric approach to estimate the sources 

simultaneously, because the deflationary approach will cumulate the estimation error 

in the first vectors to the subsequent ones. In this paper, we employ a symmetric de-

correlation to estimate all the  in parallel, until convergence. The symmetric 

orthogonalization of the matrix  can be obtained by the classic 

method involving the matrix square root: 

iŵ

j
T
i

T
j

T
i wwXwXwE ˆˆ)}ˆ)(ˆ{( =

iŵ

iw

iŵ

T
mwwW ),...,( 1=

 
WWWW T 2/1)( −←      (29) 

 
where , which can be obtained from the 

eigenvalue decomposition. 

T
m

T EdddiagEWW *),...,(*)( 2/12/1
1

2/1 −−− =

 
4. Data 
 
To test the ICA model against the standard PCA approach, a dataset of US equity 

REITs was assembled. Larger REITs (by market capitalisation) were selected from 

each of the sector categories3 to reduce problems of the lack of trading activity for 

smaller stocks. Weekly data were collected from DataStream, starting in 1986, but it 

was decided to begin the analysis in 1992, to focus on what has been described as the 

“modern era” of the REIT market4. After removing any REITs where there were 

inexplicably large movements in share price, this left a usable sample of 46 REITs 

with continuous returns from 1992 to 2005 available for analysis. Inevitably there is 

some survivorship bias in the sample set, resulting both from REIT failure and from 

                                                 
3 Information was drawn from the NAREIT REIT Watch pages which provides basic information 

including sector and market cap on each REIT analysed.  
4 That is the period after Kimko REIT IPO in 1991 that established the UPREIT structure and the 1992 
IRS changes that allowed greater institutional holdings of REIT stocks (see, e.g., Ling & Ryngaert, 
1997, Chan et al. 2003).   
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the process of consolidation observed in the market. The sample is felt to be 

sufficiently robust for conclusions to be drawn.  Both price appreciation and total 

return (including dividends) series were collected. The results presented here relate to 

total returns (expressed as log differences).  

 
Table 1 presents summary descriptive statistics for the REIT sample5. The results 

appear broadly consistent with the overall NAREIT index over the same period. The 

most striking feature of the dataset is its non-normality. For all 46 REITs, the Jarque-

Bera statistic indicates strongly significant departure from normality – similar results 

were obtained using the Lilliefors test. Inspection indicates clearly that this results 

largely from kurtosis in the individual return series, rather than skewness. These 

results are consistent with prior analyses which show non-normality in real estate data 

(for a review, see Lizieri & Ward, 2000). The high significance of kurtosis in the data 

series provides strong support for our ICA approach.  

 
Table 1: Descriptive Statistics: REIT Sample Total Returns 
 
 ------ Statistics from Sample ------ 
Statistic: Mean Median Upper Quartile Lower Quartile 
Mean 0.003 0.003 0.002 0.004 
Median 0.001 0.001 0.000 0.002 
Standard Deviation 0.039 0.030 0.027 0.040 
Skewness -0.222 0.037 -0.136 0.266 
Kurtosis 15.031 6.885 4.889 9.467 
Jarque-Bera 67063 477 115 1337 
Note: Sample size = 46, Data are weekly total returns, 1992-2005, skewness and 

kurtosis normalised to zero. 
 
 
5. Results 
 
Following the steps discussed in section 3, initial processing involved subtraction of 

the mean of each REIT return series from the returns at time t, then normalization of 

the resulting values to give unit variance. As a preprocessing step of ICA, we employ 

the PCA technique to restrain our subspace. Based on the Kaiser criterion, which 

gives us a cut-off for choosing the number of components we keep i components at 

which still exceeds iλ ∑
=

=
n

i
in 1

1 λλ , where is the eigenvalue of the iiλ
th component 

                                                 
5 Individual descriptive statistics are available from the authors by request but are not presented here 

for reasons of space. 
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(equivalent to retaining eigenvalues greater than one, that is that have greater 

explanatory power than an individual REIT series). 

 
Using this criterion, twelve components, which together capture 70.8% of the total 

variance are retained. Figure 1 shows the cumulative proportion of variance explained 

by the principal components, Table 2 shows the twelve retained components, along 

with the proportion of variance explained, the cumulative variance and the kurtosis. 

Thus, the PCA procedure reduces the dimensionality significantly.  

  
Figure 1 Principal Components: Variation Explained 
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Table 2: PCA Retained Components 
  Eigenvalue %Var Cu Var Kurtosis

1 6.0514 12.7% 12.7% 6.166 
2 5.2723 11.0% 23.7% 35.239 
3 4.6978 9.8% 33.5% 17.404 
4 3.3344 7.0% 40.5% 19.324 
5 2.6990 6.1% 46.7% 4.334 
6 2.5656 5.5% 52.2% 4.150 
7 1.5614 5.4% 57.5% 7.670 
8 1.4306 3.3% 60.8% 6.327 
9 1.2126 2.9% 63.7% 6.957 

10 1.1173 2.5% 66.2% 4.629 
11 1.0633 2.3% 68.6% 5.382 
12 1.0027 2.2% 70.8% 20.834 

 
We now proceed to estimate Independent Components, based on our kurtosis 

criterion. By applying the iteration procedure for W  to maximize the absolute value ˆ
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of kurtosis, we obtain the estimated weighting matrix ,  and 12 independent 

components S. Thus we successfully project the original 46-dimension vectors to the 

subspace spanned by these 12 independent components. This method is especially 

useful in a case such as this where we have multiple return series.  

Â Ŵ

 
 Table 3: ICA Kurtosis 

  Kurtosis Cum Kurtosis % 
1 58.46 14.51% 
2 44.76 25.62% 
3 43.37 36.38% 
4 42.96 47.04% 
5 39.25 56.79% 
6 36.96 65.96% 
7 30.62 73.56% 
8 29.50 80.88% 
9 28.40 87.93% 

10 16.52 92.03% 
11 16.45 96.11% 
12 15.68 100.00% 

 
Figure 2: Kurtosis – ICA vs PCA 
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Figure 3 Cumulative Kurtosis, ICA vs PCA (ordered) 
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It is immediately apparent that the kurtosis of the independent components are 

significantly larger than those of the PCA components – Figures 2 and 3, which 

compare kurtosis measures from the twelve ICA components to those of the PCA 

components ordered by kurtosis, illustrates this graphically. The average kurtosis of 

the twelve ICA components is 33.6 compared to an average of 11.5 for the first twelve 

PCA components.  The method has clearly been successful in creating highly kurtotic 

“portfolios” of REIT returns. This offers the opportunity to develop risk measures that 

are sensitive to exogenous factors that generate extreme events. 

 
Figure 4 shows the factor scores from the independent components over time, scaled 

to unit variance. As can readily be seen, the components capture key return driver 

moments over time. It appears that many of the components capture periods of 

extreme volatility which suggests that they may well map onto particular shock events 

or factors in financial markets or the wider economy. That mapping exercise is 

outside the scope of this current paper but offers the possibility of characterising the 

components and identifying factors that drive extreme REIT returns.  
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Figure 4: ICA Factor Scores (Rescaled) 
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We should emphasise that our use of independence in this paper really only involves 

zero correlation for our ICA components. A more sophisticated procedure, currently 

under development, is to impose third order and fourth order zero cross moment 

constraints, to achieve fourth moment, rather than second moment, independence. 

Results, not reported here but available from the authors on request, show that the 

higher cross-moments are statistically insignificant.  

 
 
6. Conclusions 
 
The development of multi-factor models in real estate has seen an increasing focus on 

macro-factor approaches. While this has many advantages, the growing attention on 

extreme events, high frequency data and the data constraints of a macro variable 

approach suggest that there may be advantages in revisiting latent factor models as 

originally set out in the formulation of the arbitrage pricing model. However, the 

standard principal components model has certain deficiencies – notably that it 

emphasises only second moment independence. In this paper, we set out an alternative 

set of procedures – Independent Component Analysis – and provide a practical 

application using a kurtosis maximisation procedure. This is applied to individual 

weekly US equity REIT returns between 1992 and 2005. 

 
The results demonstrate that ICA is successful in capturing much of the kurtosis in the 

REIT returns, the twelve ICA components explaining three times more kurtosis than 

the twelve retained PCA components (which, in turn, explain over 70% of the 

variance in REIT returns). Examination of the scaled components over time shows 

that they individually capture periods of extreme volatility in the market.  

 
To generate a wider acceptance of the ICA approach, it will be necessary to develop a 

characterisation of the risk factors. This is a task outside the scope of the current 

paper. As a first step, one might examine the scaled factor score graphics, identify 

peaks and troughs and map these onto real world events and shocks to attempt to 

derive markers. These events are not necessarily equity market shocks – an extension 

would be to examine the extent to which general equities and REITs exhibit similar 

risk characteristics with respect to kurtosis-maximising Independent Components.  
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The ICA procedure set out here represents a first step in developing an analysis and 

techniques for management of extreme events. This is a critical task with the 

development of high time frequency trading models and the growing evidence that in 

market meltdowns, correlations tend to one – suggesting that risk management based 

on conventional mean-variance models are inadequate. Growing activity in real estate 

derivatives provides an added urgency for this task.  
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Appendix One: PCA and ICA 
 
Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

are closed related. As a pre-processing step of ICA, PCA is mainly used to reduce the 

number of variables. The principal components (PC) are a set of variables that can 

capture the maximum amount of variation in a dataset and are orthogonal to all 

previous principal components. For example, principal component one (PC1) is 

defined as the eigenvector with the highest eigenvalue. A higher eigenvalue means 

that more variance has been captured. As there is a trade off between dimensionality 

and information, we choose the eigenvectors having the highest eigenvalues, so as to 

lose as little information as possible in the mean-square sense. The PCA algorithm 

focuses on the idea of zero correlation and uses only up to the second order statistical 

information to identify the components.  

 
However, zero correlation does not mean independence for non-gaussian data, even 

though it is the case for Gaussian data. To deal with non-gaussian signals, as 

discussed earlier, we use ICA. In the model, we assume that the observed data 

variables are a linear mixture of some unknown non-gaussian latent variables with an 

unknown mixing system. We apply ICA to find the latent factors that are statistically 

independent - or as independent as possible. The latent variables are called 

independent components. Compared with PCA, ICA adds in the idea of independence 

and uses higher order statistical information to identify the underlying factors. It 

should thus be valuable in finance contexts characterised by non-normality. 

 
Appendix 2: Estimation Procedures 
 
1. We identify the underlying return generating factors by applying Independent 

Component Analysis. 

 
The algorithm iterates between orthogonalisation (enforcing zero correlation) 

followed by maximization of non-Gaussianity: in our case, maximization of 

kurtosis. We need to maximize kurtosis because the solution to ‘zero 

correlation’ is not unique (it is ‘rotationally invariant’). By maximizing 

kurtosis, we hope to find components which are as independent as possible.  
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2. We test whether kurtosis maximization indeed gives us independent 

components. By bootstrapping the variance of covariance, we test the null 

hypothesis that cov{g(Si),h(Sj)}=0, where g() and h() are nonlinear 

transformations of S. 

 
3. We reorder the independent components based on kurtosis and calculate what 

proportion of total kurtosis is explained by the first i independent components.  

 
In PCA we can take the eigenvalues of the eigenvalue decomposition (EVD or 

SVD) and see them as the common variance, i.e. the variance that this 

component has in common over all measurements. The first component will 

thus have a high variance in measurements. 
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