The copyright of each Working Paper remains with the author. 
If you wish to quote from or cite any Paper please contact the appropriate author. 
In some cases a more recent version of the paper may have been published elsewhere.
14th Annual European Real Estate Society Conference
27-30 June 2007

Data Dilemmas in Forecasting European Office Market Rents
Kennedy, P., Lee, S. and McAllister, P.

* Contact author

Patrick McAllister
Dept of Real Estate and Planning
The University of Reading
PO Box 219
Whiteknights
Reading
RG6 6AW
UK
Tel : + 44 (0) 118 931 6657
Fax : + 44 (0) 118 931 8172
email: p.m.mcallister@rdg.ac.uk

Paul Kennedy
INVESCO Real Estate
10 Mount Row
London
W1K 3SD
UK

Stephen Lee
Faculty of Finance
Cass Business School
City University
106 Bunhill Row
London
EC1Y 8TZ
UK
Abstract

This paper uses data provided by three major real estate advisory firms to investigate the level and pattern of variation in the measurement of historic real estate rental values for the main European office centres. The paper assesses the extent to which the data providing organizations agree on historic market performance in terms of returns, risk and timing and examines the relationship between market maturity and agreement. The analysis suggests that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. The paper also assesses whether the different data sets produce different explanatory models and market forecast. It is concluded that, although disagreement on the direction of market change is high for many market, the different data sets often produce similar explanatory models and predict similar relative performance.
1. Introduction

Possibly uniquely, real estate forecasting organisations disagree about historic, current and future market levels and returns. Clearly, given the fundamental methodological linkage between past trends and future extrapolations\(^1\), variations in recording historic time series are likely to result in forecast variation as well. This problem seems to be fairly distinctive to real estate forecasting. Although the preliminary nature of and subsequent revisions to estimates of real output provide a source of data uncertainty to macro-economic forecasters, many macro-economic data (e.g. exchange rates, interest rates and commodity prices) are easily available and not subject to measurement error. In contrast, real estate forecasters are faced with substantial hindsight uncertainty. Whilst Hendry and Clements (2003, 303) state that “all econometric models are mis-specified”, this paper focuses on the potential contribution of data uncertainty to model mis-specification and consequent forecast uncertainty in real estate markets. Using data provided by three major real estate advisory firms, we investigate the level and pattern of variation in the measurement of historic real estate values and market indicators for the main European office centres.

The remainder of the paper is organized as follows. Section 2 reviews the literature on sources of disagreement in forecasting with particular reference to the role of data and discusses the nature of data production in European real estate markets. This is followed in Section 3 by a discussion of the research data and objectives. Section 4 discusses the findings focussing on the extent and effects of disagreement among the data collection organisations on the forecasting process. Finally, conclusions are drawn.

2. Literature Review

Research suggests that the dominant approach to real estate market forecasting in the UK and US is based upon a combination of econometric and financial modelling techniques (see Gallimore and McAllister, 2004 and Guilkey, 1999).\(^2\) For econometric models, it is axiomatic

\(^1\) An underlying assumption of econometric forecasting is that past patterns will continue into the future - or, to paraphrase Guilkey’s (1999) more vivid image: better econometric modelling only forecasts the past with greater precision.

\(^2\) Although undocumented, the authors are confident that the vast majority of global property advisory firms and major investing organisations use econometric techniques to produce rental growth forecasts for most major real estate markets. However, approaches to forecasting shifts in capitalisation rates tend to be more diverse.
Exhibit 1

Schematic Representation of Forecasting Process

- Selection of variable to be forecasted
- Identification, collection and evaluation of data required for modelling
- Formulation of predictive model
- Acquisition of market intelligence from market participants
- Production of preliminary forecasts
- Consultation with market participants and users
- Review and amendment of preliminary forecasts
- Production and distribution of final forecasts
- Implementation of forecasts
- Evaluation of forecasts
that a purely objective forecast is unattainable. Previous research within and outside real estate indicates that subjectivity is intrinsic to economic and property forecast formation and is likely to generate disagreement among forecasters. It has been recognised that differences in property forecasts occur due to differences in the structure of the econometric models, statistical procedures and data used (Mitchell and McNamara, 1997). As highlighted by the following discussion, judgement also explains some variations between forecasts.

In terms of the specification, “mathematical models involve smoothing constants, coefficients and other parameters that must be decided by the forecaster” (Walonick, 2004, 2). The forecaster will also have to make decisions about forecast horizon, forecast interval, choice of computational model, as well as data selection and treatment. Quality of data also has implications for model development in the forecasting process. There will be a trade-off between the benefits of improving the explanatory power of a model in the context uncertainty about the data inputs. In terms of model formation, Pascual, Stiber and Sunderland (2003) explore the interaction of uncertainty about whether the model incorporates complete knowledge of the factors that control the behaviour of the system (specification uncertainty) and uncertainty due to measurement errors and limited sample sizes (data uncertainty). Their central point is that there is an inherent trade-off between specification and data uncertainty and, therefore, optimal level of complexity for every model. Exhibit 2 illustrates how the level of data uncertainty can place limits on the benefits of additional model complexity.

Guilkey (1999) investigated the practice of US property market forecasters in terms of their parameters, methodology and output, and identified significant differences in the variables used, model specifications and the exogenous variables obtained from macro-economic forecast providers. He found disagreement amongst forecasters, concluding that property forecasters “get to their conclusions using very different methodologies and obtain very different MSA rankings” (Guilkey, 1999, 40). Similarly, in the UK, Gallimore and McAllister (2005) found that judgement was pervasive in the real estate forecast formation process occurring in (econometric) model formation, due to variations in choice of causal variables, data selection and treatment, and constant and parameter specification. It is the effect of the data selection that is the focus of this paper.
It is clear that there are multiple sources of forecast disagreement. In explaining forecast disagreement, some commentators have focused on differences in data in terms of availability and processing. Linden (2003, 5) emphasises the importance of data availability and physical and economic constraints on its collection arguing that “forecasters have both different types and different amounts of information to form their beliefs”. Williams (2003) draws upon theories of rational heterogeneity of beliefs which assume that agents have at their disposal a range of forecasting models, but are uncertain as to which model or models to use. Consequently, they adaptively update their model choice or priors over the various models based on forecasting performance. In essence, it is argued that idiosyncratic differences in agents’ characteristics (e.g. different initial conditions in model priors and costs to learning new models) implies that a range of models will be in use at any point in time. The result is forecast disagreement. Essentially variations in data are inherent and forecasters will have different types and amounts of information with which to form their beliefs. For example, research by Mankiw and Reis (2002) places ‘sticky information’ due to the costs of collecting and processing data as being an important explanatory variable of economic forecast disagreement. However, disagreement about historic and current real estate market data means that data issues often require critical forecaster attention.
The fundamental reasons that forecasting organisations disagree about the past relate to the nature of real estate markets. Estimates of market levels (of rents) are produced by professionals who must interpret ‘noisy’ market pricing signals. In essence, these estimates are real estate appraisals and there is a substantial body of research literature analysing the nature, causes and extent of appraisal uncertainty (see Quan and Quigley, 1991; Webb, 1994; Newell and Kishore, 1998; RICS, 2006 for examples of theoretical analysis and empirical investigation of appraisal uncertainty)\(^3\). In addition, rental appraisers are faced with the problem of interpreting pricing signals from actual buildings when applying them to hypothetical assets. As a result, most researchers would agree that some disagreement between the organisations recording market levels is, therefore, largely unavoidable. Given this inevitability of uncertainty and disagreement in real estate appraisals, the most interesting questions relate to the quantity and patterns of disagreement and uncertainty rather than their existence.

However, there are also institutional issues in the configuration of the real estate industry that tend to exacerbate the intrinsic data uncertainty associated with real estate market. Gallimore and McAllister (2005) found that for UK forecasters obtaining consistent and reliable time series for real estate rents was a recurring problem. In particular, forecasters emphasised the definitional problems with particular emphasis on disagreement about: What geographical area is being measured? How are centres/districts defined? What is the quality of building being measured? Do the data reflect prime or average quality stock? Are rents and capitalization rates reported net or gross? Are rental values effective or headline rents\(^4\)? How have effective rents been calculated? Has the rental estimate been observed or is it a pure estimate? Sources of data uncertainty due to these inconsistencies are avoidable. It can be eliminated by a combination of firm cooperation and harmonisation of standards.

Data on the European real estate market are collected by the main agency companies. Typically, basic data are used for marketing purposes (e.g., market reports) while more detailed data are reserved for clients to support transactions. Most data providers started out as with a predominantly domestic (UK) client base. As a result, data were seldom used to

\(^3\) Although probably more relevant here, there has been much less empirical research on appraisal disagreement.

\(^4\) The distinction between headline and effective rents concerns whether leasing incentives e.g. rent free periods, taking on tenants’ previous lease liabilities inter alia have been monetised to estimate an effective rent. There is no consensus on how leasing incentives should be monetised.
compare investment opportunities across borders. One consequence of this was the development of local conventions for measurement and definitions associated with key time series. As a result, approaches used to define rents, yields and other key time series often varied by country and, sometimes, by market, sector and data provider (see Kennedy et al., 2004; Sanderson and Farrelly, 2005; Haddock, 2005; and Arend et al 2005). In addition to variations due to definition, variations in levels of market access and judgement often led to data inconsistencies.

Recently, some data providers have started to allow access to detailed market data via subscription. This process has been driven by the growth of pan-European real estate investment and the associated demand for pan-European research and investment strategies. Perhaps more importantly this trend has led advisers to move towards definitions that are consistent across borders (Kennedy, 2006). In addition, some advisers are starting to consider sharing market data. Taken together these two changes may lead to a reduction in both definitional and market access based data variations.

Data and Research Questions

Market rental data on 13 European cities (Vienna, Lisbon, Amsterdam, Athens, Berlin, Paris Centre West, Milan, Madrid, London West End, Stockholm, Dublin, Copenhagen and Brussels) has been provided by three leading pan-European real estate advisers. All data are either quarterly or annual € headline rents from 1990. As noted above, the use of headline rents means that there is almost certainly a systematic upward bias in the estimates of rental values. In particular, downside variance is likely to under-estimated due to the fact that leasing incentives tend to be more prevalent in market downturns. As a result the relative performance of markets that have not experienced significant downturns is likely to be underestimated compared to markets that have had.5

---

5 However, since the problem of different approaches to monetising to leasing incentives is avoided, a potential source of disagreement in the data is not present. It should also be noted that since the euro was introduced in 1999, two data collection organizations have used a synthetic euro series for the period 1990-1999. One organization did not convert non-Euro countries (UK, Denmark and Sweden) and we used a spliced euro exchange rate series.
There are a number of potential approaches to assessing the degree of disagreement. We focus on whether the recording organizations agree on market performance in terms of returns, risk and timing and also investigate whether there is any evidence to suggest that any organizations are systematically optimistic or pessimistic in their measurements. More specifically, this generates a number of questions:

- Is there agreement on the level of rental growth?
- Is there agreement on the level of volatility?
- Has the degree of agreement changed over time?
- Is there agreement on market direction?
- Is any single organization biased?

Summary statistics are presented in Appendix 1. In order to preserve the confidentiality of the data collection organizations, we have labelled them - A, B and C.

**Results**

It is clear that there have been significant differences in performance among the cities analysed. As we can see, all organizations agree that during this period, Dublin has been the best performing city in terms of rental performance with nominal growth of over 7% per annum. There seem to be three broad groups. London, Amsterdam and Brussels (with Dublin) seem to have had relatively strong performance. Notably, weak performers have been, Lisbon, Berlin and Vienna. For instance, all organizations agree that Lisbon has on average experienced rental falls during the sample period. The third group consists of Milan, Madrid, Athens, Stockholm and Paris – all seem to have experienced positive nominal rental growth which has, however, typically below the rate of consumer price inflation in the Euro-zone. Copenhagen is one of the few markets where there is a major disagreement between the data collection organizations.

It is clear from Appendix 1 that there is substantial agreement about rental growth at the aggregate level. The un-weighted mean rental growth of the 13 European cities is used to estimate mean rental growth for Europe. All data collection organizations produce similar figures. However, at the city level, there are wide variations in terms of the level of agreement about historic rental performance. At one end of the scale are Dublin and London.
where there is little variation amongst the three organizations. Whilst at the other end are Berlin, Stockholm and Copenhagen. In a number of cases, the organizations disagree about whether the average rate of rental value growth has been negative or positive (Vienna, Milan and Vienna). Prima facie, this suggests that the effects of data uncertainty may vary between markets.

In order to assess whether correlations between markets were changing over time, Appendix 2 shows the average Pan-European rental growth correlations using the approach of Solnik and Roulet (2000) which provides estimates of correlations at each point in time for the three data providing organizations over the period 1991 to 2006 and for the two sub-period 1991 to 1998 and 1999 to 2006. As Solnik and Roulet (2000) make plain cross-sectional dispersion is inversely related to cross-sectional correlation, i.e. higher dispersion implies low cross-sectional correlation and low dispersion implies high correlation. Hence Appendix 2 shows a general increase in European rental growth correlation over the period corresponding to the general decline in dispersion. Rising from a low of about 0.4 in 1991 to about 0.8 in 1998 and then falling back to a low of 0.4 again before rising to about 0.8 in 2006.

In order to assess the degree of dispersion among data collection organisations, we calculated the Mean Absolute Percentage Error (MAPE) for each organization. The ‘true’ observation was taken as the simple mean of the three rental observations. In Appendix 3, the thick black line represents the trend in the average MAPE for Europe. At the aggregate level, from the data users’ perspective the results seem to be positive in that the trend in rental dispersion is downwards. However, a large proportion of the high level of dispersion at the beginning of the period is due to three outliers (Milan, Madrid and Copenhagen). Within a few years of 1990, there was convergence in MAPE of the rental estimates to the average for all three. When the first 2-3 years are excluded, there is little evidence of change in the aggregate MAPE. When we examine the period 1996 to 2006 only, there seems to be a relatively stable approximately 4% MAPE in the estimates of rental growth at the aggregate level. However, when focussing on individual cities, no clear pattern emerges. Over the last 10 years, there are three cities, where the MAPE is consistently below average – Paris, Lisbon and Brussels. Five cities are close to the average – Amsterdam, Milan, Madrid, Dublin and London and five are well above the average – Vienna, Berlin, Copenhagen, Athens and Stockholm. Below, we investigate whether there is a link between market transparency and the level of agreement between organizations.
Appendix 1 also shows that there are similar patterns when data providers’ estimates of market volatility are examined. At the aggregate level (Europe), the standard deviation of rental growth rates are similar for the three organizations. However, it is clear that there are marked differences among the individual cities. All firms record similar levels of volatility for London, Madrid and Stockholm but disagree substantially about Berlin, Paris and Copenhagen. It is not possible to explain differences in volatility by differences in rental growth levels. For instance, Stockholm had high levels of disagreement in rents but little disagreement on the level of market volatility. On the other hand, there were low levels of disagreement about rental levels in Paris but high levels of disagreement on market volatility.

Next we follow previous studies in using a number of criteria to evaluate the relative importance of firm and city effects. First, we follow Rouwenhorst (1999) in using the mean absolute deviations (MADs) of the firm and city coefficients. Second, the relative importance of the distinct factors can be measured by the time-series volatility of the factor estimates (Heston and Rouwenhorst, 1995). So that if the variance of the city effects is greater than that of the firm effects, this is indicative of the greater importance of city factors in determining rental growth during that period. Finally, we follow Beckers et al (1996) and compare the explanatory power of the individual factors, as measured by their adjusted R² values relative to that of the full model including both factors.

The results are presented in Appendix 4. When we compare the absolute average of the firm coefficients (0.01) to that for the city coefficients (4.09), we find a ratio of 311:1. In other words, city effects are 300 time more important in determining rental growth than any factor due to difference in firm estimates. In a similar vein, when we compare the average variance of the firm factors (2.5) to the average variance of the sector effects (326.7), we find a ratio of 130:1, i.e. city effects are more than a hundred times more important in determining rental growth than any difference in firm estimates. Finally, the adjusted R² statistics show that the firm effects explain nothing, where the city factor explains about two thirds of the annual cross-sectional rental growth.

In terms of agreement about market direction, the correlation coefficients between the three organizations provide a measure of disagreement. The coefficients are presented in Appendix 1. Once again a similar pattern emerges. Whilst cut-offs are inevitably arbitrary in describing correlations as strong or weak, at the aggregate level mean correlations are marginally weak. Once again at the individual city level, there are marked differences. Although we need to be careful about statistical significance given the sample size, there is strong correlation (>0.8)
for only 16 of the 39 possible combinations. Generally for cities with low levels of disagreement about rental growth (in terms of MAPE) e.g. Paris, London and Dublin, there is strong correlation (Brussels is a notable exception here). Similarly for cities with high levels of disagreement, there tends to be weak correlation (again with Stockholm as a notable exception). In a small number of cases, correlation coefficients were not significantly different from zero. These findings suggest that there is a substantial amount of disagreement among data collection organizations about the direction of market movement.

In terms of modelling past relationships with explanatory variables, agreement on the direction of change seems fundamental. In order to investigate further, we simply examined whether there was consensus among the three data collection organizations on the direction of market movement in a given period. Three possible outcomes were stipulated – market rise, market fall and no change. Where at least one organisation differed from the other two, disagreement was recorded. One-year and three-year horizons were examined. The results are displayed in Appendices 5 and 6. Over the sample period, in 32% of total observations, there was disagreement. There are notable variations over time. In 1996 for over 60% of the cities, at least one data collection organization disagreed on the direction of market change in that year. In contrast, in 1998, 1999 and 2000 there was disagreement on the direction of change for only one city (Lisbon, Stockholm and Copenhagen respectively). Even over the three year horizon, there is still substantial disagreement. For instance, in the period 2004-2006, there was disagreement about the direction of market change for over half the cities. As ever, there are notable variations between cities. For Paris and London, there was disagreement about the direction of rental growth change over one year in 13% and 19% of years. In contrast, the figure for Milan and Copenhagen was 44%. For some periods and for some cities, the extent of disagreement about the direction of market rental change seems to be providing inconsistent and/or incorrect signals of market conditions and the effects of causal variables on rental levels.

In order to examine whether the nature of the market has any effect on disagreement, we plot the average rental growth correlation across firms, for each city, against the transparency of each market as measured by the Global Real Estate Transparency (GRET) index produced by Jones Lang LaSalle (JLL). The GRET index is based on a structured survey conducted within LaSalle Investment Managers (LIM) of their global network of researchers and covers the following five key attributes of real estate transparency: (1) legal factors; (2) regulatory burden; (3) availability of information on market fundamentals; (4) listed vehicle financial disclosure and governance; and (5) availability of investment performance indexes.
Questions were developed for each attribute and countries assigned a score of 1 to 5, with “1” representing the highest level of transparency and “5” the lowest level of transparency. A composite index was then calculated by using a neutral weighting scheme. The composite scores range between 1 and 5. A country with a perfect 1.00 would be the country with the highest level of transparency. A country with a total of 5.00 would be a country with total opacity, i.e. the lower the GRET score the higher the transparency within a country’s real estate market. We use the JLL GRET Index for 2006 in the following analysis (JLL, 2006).

From a casual inspection of Appendix 7 it is easy to see that the lower the level of transparency the lower the correlation between rental growth figures for each city from the different firms. For instance, Athens with the lowest transparency score of 3.13 shows the lowest mean cross-firm correlation, which indicates that investors looking for information as to what rental growth was actually achieved in Athens have received widely different views from firm to firm. In contrast, in the West End of London which shows the highest level of transparency (1.25) firms will be providing almost identical rental growth figures over time. In other words, transparency matters when interpreting and using information about the rental performance in each city (Brounen et al., 2001).

Finally, we investigate whether any single data collection is systematically biased in terms of its measurement of rental levels. It has already been noted that there were minor differences between the three organizations in terms of their aggregate mean level of rental growth for Europe (see Appendix 1). Although Company A records the highest rate of growth - this is attributable to one major outlier (Berlin 1990-1) at the beginning of the sample period. This level of agreement at the aggregate level would suggest that it is at the level of individual cities that differences may be significant. For instance, it was clear from Appendix 1 that in some cases the estimates were very similar, whilst for other cities there was notable divergence.

Appendix 8 shows the results of a simple ranking of the rental estimates of each data collection company. However, the results are potentially misleading. For a number of cities, it seems that Company B is consistently optimistic. For Milan, Lisbon and Amsterdam they are ranked top in terms of rental estimates for 82%, 82% and 76% of the 17 years. However, perhaps surprisingly, this does not necessarily mean that they have the highest average level of rental growth. For instance, for Milan and Lisbon, their mean rental growth rate for the
whole sample period is the lowest of the three companies. Given these issues, it is difficult to state that any organisation is consistently biased in their estimates.

Clearly, some of the specific examples of hindsight uncertainty identified above could undermine user’s confidence in the value of historic data as a basis for econometric modelling and also in the forecast outputs. In order to assess the extent to which the different data sets select the same explanatory variables, generate similar explanatory power and produce similar forecasts, the different data sets are used in a relatively simple explanatory model. The change in rent of the different datasets are regressed against changes in each countries contemporaneous national GDP, inflation and the unemployment rate, variables which previous studies have shown to explain office rents6.

\[
\Delta \text{Rent}_{i,j} = \alpha + \beta \Delta \text{GDP}_j + \beta \Delta \text{Inf}_j + \beta \Delta \text{Unem}_j + \epsilon_j
\]

where: \(\Delta \text{Rent}_{i,j}\), the change in rent of dataset i in country j, \(\Delta \text{GDP}_j\) is the change in national GDP of country j, \(\Delta \text{Inf}_j\) is the inflation rate of country j, \(\Delta \text{Unem}_j\) is the unemployment rate of country j and \(\epsilon_j\) is the error term. We assess the extent to which the different data sets ‘select’ the same explanatory variables, have similar explanatory power and produce similar forecasts. Using forecasts of the independent variables obtained from Experian, we also generate three-year forecasts for the individual markets. The results are summarised in Appendix 9.

Although simple, the model has reasonable explanatory power for a number of the cities. Overall, the average \(R^2\) for all cities and all data providers is just over 50%. The model has no significant explanatory power at the 5% level in only seven of the 39 possibilities (13 cities x three data sets). An \(R^2\) of over 60% was generated in at least one instance for seven of the 13 cities. However, not unexpectedly, there are notable differences among cities and the data sets. For Madrid, all data produce high levels of explanatory power, whilst for Athens none of the data set generates strong explanatory power. The results confirm that GDP is typically the key driver of office rents. It was significant in 29 of the 39 models tested. The figures for inflation and unemployment are four and six out of 39 respectively. As a result, all three data sets have GDP as the sole significant explanatory variable for all cities except Vienna, Brussels, Athens and Milan. Given the similarity of the model selected in many cases, differences in the forecast outputs will tend to be produced by differences in the coefficients.
Research on the use of forecasts (see Gallimore and McAllister, 2005) indicates that many forecasters consider that their ability to add value in the investment process does not lie in the absolute accuracy of their outputs (ability to predict absolute performance) but in their ability to identify ‘winners’ (ability to predict relative performance). However, it is also clear that forecasts are used both in the pricing of individual assets and in decisions about where and when to invest. At the asset level, the absolute accuracy of forecasts is important, whilst at the tactical or strategic level identify the best relative performance is much more important. An unequivocal finding is that using an identical model for the three data sets produces substantial degree of agreement about the relative performance of individual cities. Both A and B ‘pick’ Milan, London (WE), Stockholm and Paris and numbers 1,2,3 and 4 respectively whilst C ‘picks’ the same cities but reverses the rankings of Stockholm and Paris. The only cities about which there is notable disagreement on relative performance are Dublin and Athens. This disagreement is also reflected in the marked differences in the actual rental growth forecasts. Apart from the stark disagreements in absolute performance for Athens, Dublin and possibly Copenhagen, it is difficult to assign much significance to the relatively small differences in the forecasted absolute performance. As discussed earlier, an element of forecast uncertainty is accepted and, in addition, ‘raw’ numbers produced by models are likely to be amended within forecasting organizations compared to predictions of relative performance.

**Conclusion**

Whilst the quality, range, depth and consistency of European real estate market data has improved dramatically over the last decade, real estate forecasters and analysts are faced with a large degree of hindsight uncertainty compared to many other categories of economic forecaster. Given the intrinsic linkage between analysing historic relationships and forecasting future market outcomes, uncertainty about the past will contribute to forecast uncertainty. The issue has practical consequences for forecast production. In an environment where there is a great deal of data uncertainty, there will be limited benefits in increasing model complexity. However, it is important to bear in mind that there are other sources of ex post uncertainty in real estate forecasts e.g. forecasts of explanatory variables.
For estimates of rental levels, there are both preventable and inescapable sources of data uncertainty. The former are caused by differences in market and corporate practices and can be reduced by a combination of co-operation and harmonisation. The latter are due to intrinsic attributes of real estate markets which tend to provide ‘noisy’ signals of market prices *inter alia*. In addition, there is unavoidable subjectivity in applying these ‘noisy’ signals from actual buildings to hypothetical buildings.

The data suggest that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. Probably the most concerning finding is that the extent of disagreement on the direction of market change is high for many markets. This suggests that econometric models could produce much different specifications and forecast outcomes dependent upon choice of data. Despite the notable levels of disagreement on the direction of market change, the findings suggest that there are no strong effects on the explanatory model and forecast outputs. In the majority of cases, the different data sets ‘picked’ GDP as the key driver of the office market. Whilst it is possible to point to a small number of exceptions, the data sets generated similar expectations of relative and absolute performance. Clearly there is scope for more in-depth analysis of data set. In addition, given the data set similar analyses can be performed for take-up/absorption, vacancy and capitalisation rates. It would also be interesting to explore the potential benefits to be gained from data pooling in the context of such disagreement.
Bibliography


Jones Lang LaSalle (2006) Global Real Estate Transparency Index


## Appendix 1

### Summary Statistics: Disagreement in European Rental Trends 1990-2006

<table>
<thead>
<tr>
<th></th>
<th>Dispersion</th>
<th>Rental performance</th>
<th>Volatility</th>
<th>Market timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean MAPE</td>
<td>Mean Rental Growth p.a.</td>
<td>SD of Rental Growth</td>
<td>Correlation coefficients</td>
</tr>
<tr>
<td>Vienna</td>
<td>6.3%</td>
<td>5.3%</td>
<td>-1.35%</td>
<td>0.60%</td>
</tr>
<tr>
<td>Brussels</td>
<td>2.8%</td>
<td>2.6%</td>
<td>2.68%</td>
<td>2.39%</td>
</tr>
<tr>
<td>Milan</td>
<td>7.9%</td>
<td>4.0%</td>
<td>1.79%</td>
<td>1.81%</td>
</tr>
<tr>
<td>Madrid</td>
<td>5.6%</td>
<td>3.8%</td>
<td>1.36%</td>
<td>0.29%</td>
</tr>
<tr>
<td>Berlin</td>
<td>5.1%</td>
<td>5.0%</td>
<td>0.66%</td>
<td>-1.22%</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>8.3%</td>
<td>5.1%</td>
<td>0.91%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Athens</td>
<td>6.5%</td>
<td>6.1%</td>
<td>0.90%</td>
<td>1.72%</td>
</tr>
<tr>
<td>Dublin</td>
<td>4.3%</td>
<td>3.1%</td>
<td>7.19%</td>
<td>7.12%</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>3.5%</td>
<td>3.4%</td>
<td>3.01%</td>
<td>3.60%</td>
</tr>
<tr>
<td>Lisbon</td>
<td>2.5%</td>
<td>1.9%</td>
<td>-2.13%</td>
<td>-2.80%</td>
</tr>
<tr>
<td>Stockholm</td>
<td>6.8%</td>
<td>7.2%</td>
<td>2.13%</td>
<td>1.54%</td>
</tr>
<tr>
<td>London</td>
<td>4.6%</td>
<td>4.6%</td>
<td>4.19%</td>
<td>4.26%</td>
</tr>
<tr>
<td>Paris</td>
<td>2.4%</td>
<td>2.5%</td>
<td>0.80%</td>
<td>0.60%</td>
</tr>
<tr>
<td>Europe</td>
<td>5.1%</td>
<td>4.2%</td>
<td>1.70%</td>
<td>1.57%</td>
</tr>
</tbody>
</table>

* Not significantly different from zero at the 95% significance test
### Cross-sectional Correlation in Rental Growth for European Office Markets

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Average</th>
<th>Average</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.658</td>
<td>0.621</td>
<td>0.695</td>
</tr>
<tr>
<td>B</td>
<td>0.673</td>
<td>0.641</td>
<td>0.705</td>
</tr>
<tr>
<td>C</td>
<td>0.616</td>
<td>0.569</td>
<td>0.662</td>
</tr>
</tbody>
</table>
Appendix 3

Disagreement in Rental Value Estimates

Mean Absolute Percentage Error of Rental Value

Mean MAPE - Linear (Mean MAPE)
### Appendix 4: The Relative Importance of Firm and City Effects in Determining Rental Growth: Annual Data 1991 to 2006

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>1.59</td>
<td>79.6</td>
</tr>
<tr>
<td>A</td>
<td>-0.01</td>
<td>2.9</td>
</tr>
<tr>
<td>B</td>
<td>-0.01</td>
<td>1.8</td>
</tr>
<tr>
<td>C</td>
<td>0.02</td>
<td>2.8</td>
</tr>
<tr>
<td>Absolute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>Vienna</td>
<td>2.00</td>
<td>53.6</td>
</tr>
<tr>
<td>Brussels</td>
<td>4.78</td>
<td>111.4</td>
</tr>
<tr>
<td>Milan</td>
<td>3.62</td>
<td>338.1</td>
</tr>
<tr>
<td>Madrid</td>
<td>2.98</td>
<td>572.3</td>
</tr>
<tr>
<td>Berlin</td>
<td>2.07</td>
<td>374.8</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>4.50</td>
<td>184.2</td>
</tr>
<tr>
<td>Athens</td>
<td>3.63</td>
<td>309.4</td>
</tr>
<tr>
<td>Dublin</td>
<td>9.54</td>
<td>354.6</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>5.99</td>
<td>119.4</td>
</tr>
<tr>
<td>Lisbon</td>
<td>-0.26</td>
<td>135.5</td>
</tr>
<tr>
<td>Stockholm</td>
<td>3.89</td>
<td>577.3</td>
</tr>
<tr>
<td>WE</td>
<td>6.59</td>
<td>680.6</td>
</tr>
<tr>
<td>Paris (CW)</td>
<td>3.27</td>
<td>436.6</td>
</tr>
<tr>
<td>Absolute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.09</td>
<td>326.7</td>
</tr>
</tbody>
</table>

R-sq Firms: 0.04  
R-sq Cities: 0.65
## Appendix 5: Direction of Market Change

Proportion of Years in which Disagreement Occurred

<table>
<thead>
<tr>
<th>City</th>
<th>1 year</th>
<th>3 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vienna</td>
<td>38%</td>
<td>29%</td>
</tr>
<tr>
<td>Brussels</td>
<td>31%</td>
<td>29%</td>
</tr>
<tr>
<td>Milan</td>
<td>44%</td>
<td>29%</td>
</tr>
<tr>
<td>Madrid</td>
<td>31%</td>
<td>7%</td>
</tr>
<tr>
<td>Berlin</td>
<td>31%</td>
<td>29%</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>44%</td>
<td>21%</td>
</tr>
<tr>
<td>Athens</td>
<td>31%</td>
<td>21%</td>
</tr>
<tr>
<td>Dublin</td>
<td>31%</td>
<td>21%</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>38%</td>
<td>36%</td>
</tr>
<tr>
<td>Lisbon</td>
<td>31%</td>
<td>7%</td>
</tr>
<tr>
<td>Stockholm</td>
<td>31%</td>
<td>29%</td>
</tr>
<tr>
<td>WE</td>
<td>19%</td>
<td>14%</td>
</tr>
<tr>
<td>Paris (CW)</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td>32%</td>
<td>21%</td>
</tr>
</tbody>
</table>
Disagreement in Market Direction

Proportion of Cities with Disagreement on Direction of Rental Change

% of cities

### Appendix 7  Proportion of Periods in Given Ranking

<table>
<thead>
<tr>
<th>City</th>
<th>Ranking</th>
<th></th>
<th>City</th>
<th>Ranking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vienna</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Dublin</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>53%</td>
<td>47%</td>
<td>0%</td>
<td>A</td>
<td>47%</td>
</tr>
<tr>
<td>B</td>
<td>71%</td>
<td>18%</td>
<td>12%</td>
<td>B</td>
<td>24%</td>
</tr>
<tr>
<td>C</td>
<td>0%</td>
<td>12%</td>
<td>88%</td>
<td>C</td>
<td>29%</td>
</tr>
<tr>
<td>Brussels</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Amsterdam</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>53%</td>
<td>12%</td>
<td>35%</td>
<td>A</td>
<td>24%</td>
</tr>
<tr>
<td>B</td>
<td>18%</td>
<td>53%</td>
<td>29%</td>
<td>B</td>
<td>0%</td>
</tr>
<tr>
<td>C</td>
<td>53%</td>
<td>29%</td>
<td>18%</td>
<td>C</td>
<td>76%</td>
</tr>
<tr>
<td>Milan</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Lisbon</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>18%</td>
<td>41%</td>
<td>41%</td>
<td>A</td>
<td>29%</td>
</tr>
<tr>
<td>B</td>
<td>12%</td>
<td>41%</td>
<td>47%</td>
<td>B</td>
<td>18%</td>
</tr>
<tr>
<td>C</td>
<td>82%</td>
<td>12%</td>
<td>6%</td>
<td>C</td>
<td>82%</td>
</tr>
<tr>
<td>Madrid</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Stockholm</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>35%</td>
<td>47%</td>
<td>18%</td>
<td>A</td>
<td>6%</td>
</tr>
<tr>
<td>B</td>
<td>6%</td>
<td>24%</td>
<td>71%</td>
<td>B</td>
<td>88%</td>
</tr>
<tr>
<td>C</td>
<td>59%</td>
<td>29%</td>
<td>12%</td>
<td>C</td>
<td>12%</td>
</tr>
<tr>
<td>Berlin</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>WE</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>24%</td>
<td>53%</td>
<td>24%</td>
<td>A</td>
<td>71%</td>
</tr>
<tr>
<td>B</td>
<td>65%</td>
<td>24%</td>
<td>12%</td>
<td>B</td>
<td>35%</td>
</tr>
<tr>
<td>C</td>
<td>24%</td>
<td>18%</td>
<td>59%</td>
<td>C</td>
<td>12%</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Paris (CW)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>56%</td>
<td>44%</td>
<td>0%</td>
<td>A</td>
<td>41%</td>
</tr>
<tr>
<td>B</td>
<td>6%</td>
<td>38%</td>
<td>56%</td>
<td>B</td>
<td>24%</td>
</tr>
<tr>
<td>C</td>
<td>38%</td>
<td>19%</td>
<td>44%</td>
<td>C</td>
<td>41%</td>
</tr>
<tr>
<td>Athens</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Overall</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>15%</td>
<td>38%</td>
<td>38%</td>
<td>A</td>
<td>36%</td>
</tr>
<tr>
<td>B</td>
<td>69%</td>
<td>8%</td>
<td>15%</td>
<td>B</td>
<td>33%</td>
</tr>
<tr>
<td>C</td>
<td>8%</td>
<td>46%</td>
<td>38%</td>
<td>C</td>
<td>40%</td>
</tr>
</tbody>
</table>
Appendix 8: Average Cross Firm Rental Growth Correlation versus Market Transparency

\[ y = -0.1912x + 1.1112 \]

\[ R^2 = 0.3503 \]
## European office market forecasting: model specification, explanatory power and forecast output

### Variables selected* | Variables

<table>
<thead>
<tr>
<th>City</th>
<th>Variables selected</th>
<th>Variables selected</th>
<th>Variables selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vienna</td>
<td>62 - 47 - 46</td>
<td>1% - 5% - 5%</td>
<td>-0.64 - 0.65 - 0.21</td>
</tr>
<tr>
<td>Brussels</td>
<td>57 - 54 - 46</td>
<td>2% - 2% - 5%</td>
<td>5.14 - 3.84 - 4.04</td>
</tr>
<tr>
<td>Milan</td>
<td>55 - 59 - 48</td>
<td>2% - 1% - 4%</td>
<td>12.36 - 10.33 - 15.25</td>
</tr>
<tr>
<td>Madrid</td>
<td>75 - 68 - 86</td>
<td>0% - 0% - 0%</td>
<td>-7.31 - 5.81 - 11.85</td>
</tr>
<tr>
<td>Berlin</td>
<td>56 - 49 - 37</td>
<td>2% - 5% - 16%</td>
<td>-2.22 - 1.42 - 1.09</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>45 - 23 - 69</td>
<td>6% - 36% - 0%</td>
<td>1.79 - 4.31 - 4.68</td>
</tr>
<tr>
<td>Athens</td>
<td>22 - 47 - 7</td>
<td>42% - 6% - 85%</td>
<td>-0.69 - 5.93 - 4.31</td>
</tr>
<tr>
<td>Dublin</td>
<td>52 - 58 - 29</td>
<td>3% - 1% - 24%</td>
<td>5.22 - 0.55 - 4.97</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>65 - 43 - 35</td>
<td>0% - 7% - 15%</td>
<td>3.49 - 4.77 - 4.95</td>
</tr>
<tr>
<td>Lisbon</td>
<td>50 - 48 - 58</td>
<td>3% - 4% - 1%</td>
<td>-4.52 - 3.51 - 4.02</td>
</tr>
<tr>
<td>Stockholm</td>
<td>63 - 70 - 52</td>
<td>1% - 0% - 3%</td>
<td>7.85 - 7.24 - 6.15</td>
</tr>
<tr>
<td>WE</td>
<td>60 - 59 - 49</td>
<td>1% - 1% - 4%</td>
<td>10.68 - 9.35 - 10.74</td>
</tr>
<tr>
<td>Paris (CW)</td>
<td>49 - 48 - 67</td>
<td>4% - 4% - 0%</td>
<td>6.30 - 7.04 - 9.60</td>
</tr>
</tbody>
</table>

* The numbers represent:
  1- contemporaneous change in national GDP
  2- contemporaneous change in national inflation
  3- contemporaneous change in national unemployment