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A new modelling framework for statistical

cumulus dynamics

By Robert S. Plant

Department of Meteorology, University of Reading, PO Box 243, Reading,

Berkshire RG6 2BB, UK.

We propose a new modelling framework suitable for the description of atmospheric
convective systems as a collection of distinct plumes. The literature contains many
examples of models for collections of plumes in which strong simplifying assump-
tions are made, a diagnostic dependence of convection on the large-scale environ-
ment and the limit of many plumes often being imposed from the outset. Some
recent studies have sought to remove one or the other of those assumptions. The
proposed framework removes both, and is explicitly time-dependent and stochastic
in its basic character. The statistical dynamics of the plume collection are defined
through simple probabilistic rules applied at the level of individual plumes, and van
Kampen’s system size expansion is then used to construct the macroscopic limit
of the microscopic model. Through suitable choices of the microscopic rules, the
model is shown to encompass previous studies in the appropriate limits, and to
allow their natural extensions beyond those limits.

Keywords: statistical cumulus dynamics, convective plumes, macroscopic

limit, cumulus parameterization

1. Introduction

Any general-circulation model (GCM) of the Earth’s atmosphere will contain a
number of parameterizations of important processes that cannot be represented
explicitly with the given discretization. These will include unresolved dynamics,
such as boundary layer turbulence, and also physical processes, such as clouds and
radiation. Stensrud [40] provides an overview of the methods currently in use in
GCMs and weather forecast models. The problem of parameterization may ulti-
mately be considered as that of developing a statistical description for the subgrid-
scale processes, expressed in terms of their dependence on the known resolved-scale
state. Conceptually at least, the procedure is analogous to that taken for deriving
macroscopic thermodynamics from a microscopic description by means of statisti-
cal mechanics [19]. For this reason, there is a lot to learn about parameterization
from statistical mechanics, as well as statistical physics more generally, in order to
develop subgrid-scale parameterizations in as robust a manner as possible.

The purpose of the present article is to contribute to the development of such
a statistical approach for the parameterization of deep, precipitating convection.
Deep convection is a crucial aspect of the tropical climate and deficiencies in its
parameterization are implicated in some notoriously stubborn issues in climate
modelling: some examples are equatorial waves [20], the Madden-Julian oscillation
[21], the spatial distribution of tropical rainfall [22] and the diurnal cycle [15].
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2 R. S. Plant

Almost all current parameterizations for GCMs are based on an idealization of
atmospheric convective systems as a collection of convective “plumes” [2]. Each
plume is embedded within and interacts with a horizontally–homogeneous medium
called the environment. Thus the problem becomes how to construct a statistical
cumulus dynamics (SCD) for the collection of plumes.

Some rather brutal simplifying assumptions are made in translating even this
idealized picture into practical parameterizations [1, 32, 40]. We do not seek to
review all the issues here, but rather focus upon two of the usual simplifications:
first, the convection is assumed to be in equilibrium with a slowly-varying large-
scale forcing; and, second, there are assumed to be very many plumes within a grid
box of the parent GCM, such that an ensemble average is sufficient to represent
the convective state. Some non-equilibrium models have been proposed in the lit-
erature which may describe aspects of the time evolution of convection [29, 46, 51].
There have also been explorations of stochastic effects related to uncertainties in the
triggering process [18, 25], instrinsic flucuations at equilibrium arising from finite
cloud number [6, 7, 33] and transitions in cloud morphology [17]. Other treatments
of stochastic effects have been introuduced for more heuristic reasons, as attempts
to account for generic parameterization uncertainty [5, 28, 42].

Here, we propose a simple modelling framework suitable for the study of the
statistical dynamics of cumulus clouds, which does not assume equilibrium and
which treats stochastic effects due to finite cloud number. The framework has been
sucessfully used for chemical and biological applications [26, 27, 30], but to the
best of our knowledge, has not previously been exploited in atmospheric science.
We will show that, in the appropriate limits, it agrees with previous studies of
both stochastic and time-varying aspects of convection. Moreover the model could
easily be extended to permit future investigations of SCD with other assumptions
removed: for example, a spatially-explicit form could be used to study structures
arising from interactions of clouds with their local environment [35].

The article is organized as follows. In Sec. 2 we discuss the idealization of con-
vective systems used as the basis of many current parameterizations, and some
recent attempts to incorporate stochastic and time-varying aspects. The proposed
modelling framework will be introduced in Sec. 3 and its relationship to the meth-
ods of Sec. 2 will be analysed in some detail. Some examples of numerical results
from the introduced models are presented in Sec. 4 and conclusions can be found
in Sec. 5.

2. Idealized picture for convection

(a) The collection of plumes

Following the usual idealization of convection in parameterization schemes [1, 2,
14, 16, 32, 33, 43, 46], we consider a system of distinct cumulus clouds. Each cloud
is described as a “plume” which is characterized by its mass flux, Mi(z), defined by

Mi(z) = ρσiwi (2.1)

where the subscript labels the plume, ρ is the density, σi the fractional area occu-
pied and wi the in-cloud vertical velocity. The mass flux is an important variable
because it is assumed to dominate the sub-grid scale fluxes [50]. Denoting by χ some
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A new modelling framework for statistical cumulus dynamics 3

intensive variable of interest, its sub-grid flux due to convection is approximated by

ρχ′w′ ≈
∑

i

Mi(χi − χenv) (2.2)

the sum extending over all plumes present, the subscript env denoting the environ-
mental value and the overbar and prime denoting respectively a horizontal average
and a departure from that average. The approximation does require the fractional
area occupied by cumulus clouds to be small, but typically this is not much larger
than a few percent.However, it should be noted that in some recent numerical
weather prediction models, where the grid size approaches that of a convective
element, then such an approximation becomes problematic [e.g. 13].

In order to compute Mi(z) and χi(z) a description of the vertical structure of
each plume is required, and various models have appeared in the literature [2, 10,
16]. As the plume ascends, the in-plume and environmental air may interact, with
mixing of some environmental air into the plume and of some in-plume air into the
environment. There are long-standing debates about these interactions [37], which
we do not revisit. Instead we will simply assume that some suitable plume model
is available. Thus our concern will not be with the vertical structure of the plumes,
but rather with the magnitude of the convection: i.e., how many plumes are to be
found within a given area for a given large-scale meteorological forcing?

Atmospheric convection is assumed to be forced by large-scale destabilization
processes, such as radiative or advective cooling or low-level moistening. When con-
vection occurs, it tends to restore stability, so that given enough time and a steady
enough forcing a state of equilibrium may be achieved in which the forcing and con-
vective tendencies are in balance. Convective quasi-equilibrium is the notion that
the atmosphere is maintained close to such an equilibrium state [2], and for systems
in quasi-equilibrium then the equilibrium level of convective activity can be imposed
in order to set a magnitude for the convection and so close a parameterization.

(b) Concerning bulk models

In actual parameterizations a common further simplification is the reduction of
the system from a collection of individual plumes to a single bulk plume [14, 16, 43].
Real cumulus clouds have a wide variety of properties, and may, for instance, extend
to different heights in the atmosphere. However, the equation sets typically used
to describe a single plume are almost linear. A sum over plumes therefore recovers
essentially the same form of equations as for the single plume [48], with the in-
plume values χi of intensive variables replaced by their mass-flux weighted, or
“bulk” values. This simplification does have some penalties [32], most notably the
fact that very simple treatments of cloud microphysics and radiative effects are
required for consistency.

In the model proposed here, a single type of convective plume is considered,
and accordingly we drop all plume subscripts in the following. However, it is im-
portant to recognize that this does not imply a bulk assumption. Rather it is done
for simplicity and economy of presentation, in order that the main ideas should
not be obscured. The extension of the model to multiple plume types is entirely
straightforward.
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4 R. S. Plant

(c) Concerning finite cloud number

Assuming for the moment that an equilibrium state has been reached, we con-
sider now the possibility of fluctuations about that state. Parameterizations usually
neglect any such fluctuations, thereby implicitly assuming the number of clouds in a
grid-box to be large. However, a simple scaling shows that fluctuations due to finite
cloud number are likely to be far from negligible. Cloud-resolving model (CRM)
studies give values for the mass flux at cloud base of ∼ 107 kg s−1 [6, 8] for a single
moist convective plume†. The mass flux per unit area that is required to balance
typical rates of forcing in the tropics can be estimated to be ∼ 10−2 kgm−2 s−1

[36, 51], so that for a GCM grid-box of size (50–100km)2 only a few clouds can
be expected to be present. Clearly the number density could be somewhat larger
in places where clouds cluster together. However, rather similar conclusions can be
reached from coarse-graining calculations with CRM simulations which do include
convective organization [39, 47] or simply from visual inspection of satellite im-
agery. Convective instability is released in discrete events, the number of which is
not sufficient on the scale of a GCM grid-box to produce a steady response to a
steady forcing.

Fluctuations about a state of equilibrium can be described if it is known how the
mass flux is partitioned amongst individual clouds and how the clouds are spatially
distributed. Craig and Cohen [7] argued that the partitioning can be determined
from the relevant equilibrium statistical mechanics, by considering a variable num-
ber of non-interacting convective clouds subject to externally-imposed constraints.
Their predicted pdf for the total mass flux within a finite area is a convolution of
a Boltzmann distribution for the mass flux per cloud and a Poisson distribution
for the number of clouds present. These predictions have proved to be remarkably
robust in CRM data [6, 8, 9, 39]. The theory has been translated into a param-
eterization scheme [33], with the fluctuations about equilibrium having practical
implications for the behaviour of the GCM [3].

Since this article considers a single plume type only, each cloud is assumed to
have the same mass flux, and the Craig and Cohen theory reduces to the prediction
of Poisson fluctuations at equilibrium.

(d) Concerning time-dependence and equilibrium

For relatively rapidly varying forcings, the equilibrium assumption may break
down, so that it becomes necessary to consider the time-dependence of convective
mass flux [8, 29]. However, even for steady forcing the evolution of a convective
ensemble is a question of real interest. It is certainly not obvious a priori that a
unique equilibrium state must be reached: the stationary state may be unstable, or
multiple equilibria may be possible.

The basic equations that have been used to consider the evolution of a convective
ensemble were originally introduced by Arakawa and Schubert [2], and describe the
energy cycle of the ensemble. Denoting by A the vertical integral of in-plume buoy-
ancy and by K the vertically-integrated convective kinetic energy, these equations

† The cited studies used cloud definitions that will have encompassed shallow, non-precipitating

clouds, and so are likely to give an underestimate for the deep, precipitating clouds which are the

focus here. That point reinforces the argument given in the main text.
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A new modelling framework for statistical cumulus dynamics 5

are
dA

dt
= F − γMB (2.3)

dK

dt
= AMB − K

τD
(2.4)

A is a measure of potential energy known as the cloud work function. Eq. 2.3
shows it to be generated through the action of large-scale forcing F and removed
through the presence of convection. The quantity γ gives the removal rate per unit
of cloud-base mass flux, MB ≡ M(z = zbase). Both F and γ are calculable for
any given plume model, and from such calculations it is known that the removal
of instability is usually dominated by warming due to compensating environmental
subsidence [2, 48]. The cloud work-function must be positive in order for convective
kinetic energy to be generated, as shown by the first term on the right-hand side of
Eq. 2.4. Kinetic energy is assumed to be removed through a dissipation term, for
which the value of the dissipation timescale τD is somewhat controversial. τD has
been variously estimated to be in the range 103 to 106 s.

Eqs. 2.3 and 2.4 could be integrated if there were some functional relationship
between K and MB. One relationship which has been postulated [29, 36] is that

K = αM2

B (2.5)

with α treated as a constant. This would not appear implausible at first sight, given
that K ∼ ρσw2 and MB ∼ ρσw. For a single plume type with steady forcing, the
postulate gives rise to a damped harmonic oscillator that approaches equilibrium
after a few τD [36]. Recently, Yano and Plant [51] have argued that Eq. 2.5 is
inconsistent with CRM results and theoretical scalings for the dependencies of the
equilibrium state [e.g. 11, 38], which better support their postulate of

K = βMB (2.6)

with β treated as a constant. This is effectively an assumption that the response
of deep convection to variations in the large-scale forcing occurs mainly through
variations in fractional area rather than through typical in-cloud velocities. For a
single plume type with steady forcing, the postulate gives rise to a periodic orbit,
with cycles of convective recharge and discharge. Note, however, that the orbit is
structurally unstable, such that small changes to the model typically produce a
slow spiral in AMB space towards the equilibrium state.

A third prognostic system based on Eqs. 2.3 and 2.4 has also been proposed [46],
and is analogous to the Lotka-Volterra equations of population dynamics, with the
clouds competing to consume convective instability.

A
dMB

dt
= FMB − γM2

B (2.7)

The form of this system is actually rather insensitive to the postulated relationship
between K and MB but it does require an additional assumption that Eq. 2.4
approaches equilibrium much more rapidly than does Eq. 2.3. Further discussion of
these points is given by Plant and Yano [34].
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6 R. S. Plant

The population dynamics system [46] provides a good illustration of how the
consideration of prognostic systems may prove instructive for GCM parameteriza-
tions, even those for which convective quasi-equilibrium is imposed. Shallow, non-
precipitating cumulus clouds are typically treated somewhat differently from deep,
precipitating clouds in a GCM, possibly through parameter differences within a pa-
rameterization, or possibly through the use of different parameterization schemes
entirely. Whether a given GCM considers convection to be shallow or deep rests
on physically-motivated but undeniably somewhat ad hoc criteria. However, should
convective ensembles prove to be well described by Lotka-Volterra equations it then
follows that, for two convective types, a globally–stable equilibrium state with co-
existing shallow and deep clouds exists if and only if the known coefficients A, F and
γ statisfy certain inequalities [41]. Otherwise, one of the convective types must be
driven to extinction. Thus, in an equilibrium-based parameterization, clear criteria
would dictate which scheme(s) to apply.

3. Individual-Level Model

The stochastic model discussed in Sec. 2c assumed convective equilibrium, whilst
the three prognostic systems discussed in Sec. 2d all assumed an infinite number of
clouds to be present (this is necessary in order for MB to be continuous and dMB/dt
well defined). We now propose a modelling framework for statistical cumulus dy-
namics which is both stochastic and prognostic. The basic system is formulated
in terms of an extremely simple set of probabilistic rules at the level of individ-
ual clouds, which are born, interact with their environment through changes to its
cloud work-function, and die. According to our choice of these rules, we can produce
models that are the microscopic analogues to any of the prognostic systems above.

Stochastic birth-death processes have previously been used to describe deep
convection [17, 18, 25], with some encouraging results when coupled to idealized
models of large-scale tropical dynamics [12, 24]. Here the aim and the context is
somewhat different. We will assume the large-scale tendencies to be externally pre-
scribed, in the tradition of idealized CRM and single-column model experiments
that have long been used to develop parameterizations for operational weather fore-
cast and climate models. We then seek to make direct links between the microscopic
model and the above prognostic systems in a suitable limit, establishing in partic-
ular which microscopic processes are required, are admissible, or are forbidden in
order to make contact with each of the prognostic systems. As discussed above,
stochastic and prognostic aspects of convective parameterization are attracting in-
creasing attention and may be starting to produce promising results [5, 29, 42, 46].
The objective here is to show how those aspects might be combined in a natural
way that is consistent with existing studies.

Specifically, we will use van Kampen’s expansion [45] to recover the ordinary
differential equations of Sec. 2d as the macroscopic, large system-size limits of
individual-level models. The leading correction for a non-infinite system is a Fokker-
Planck equation describing the fluctuations in N and A. A detailed analysis of those
fluctuations is beyond the scope of the present article, but clearly offers promise for
extending the validity of stochastic convective parameterizations and possibly also
for developing theoretical interpretations of observational data [31, 49].

Article submitted to Royal Society



A new modelling framework for statistical cumulus dynamics 7

(a) Definition of modelling framework

The microscopic model is described through the probability distribution func-
tion P (N, A, τ) for the number of clouds N and the cloud work function A at time
τ . The domain of interest contains Ω elements, each element being defined as the
minimum area necessary to support a single cumulus cloud. It is not necessary to
specify a numerical value for the area, but we could consider ∼(1–5km)2 to be
reasonable. The area elements are not labelled and all elements are considered to
have an equal chance of interacting with each other. In other words, no account is
taken of whether interacting elements are nearest neighbours or well separated. The
model could be generalized to include spatial dependence, with the van Kampen
expansion used to derive corresponding macroscopic partial differential equations.
However, since such spatial aspects are not treated in the comparison studies of
Secs. 2c,2d they will similarly be regarded as out of scope here.

The model evolves according to state transition probabilities that represent
births and deaths, and environmental destabilization and stabilization. This evolu-
tion is governed by a master equation,

∂P (N, A, τ)

∂τ
=

∫

dA′
∑

T (N, A|N ′, A′)P (N ′, A′, τ) − T (N ′, A′|N, A)P (N, A, τ)

(3.1)
The transition matrix elements T (f |i) denote the probability per unit time of mak-
ing a transition from an initial state i to a final state f . The master equation is
therefore simply a statement of balance for the probability of state (N, A): the first
term on the right-hand side of Eq. 3.1 represents a gain in probability due to tran-
sitions to the state of interest, while the second term represents a loss of probability
due to transitions from the state of interest.

We now define the processes that can lead to transitions in the state of the
system. In considering a possible transition, we may choose to look at either one or
two elements, with probabilities 1 − µ and µ respectively. Let us suppose that we
look at one element. The total number of elements is designated by Ω, of which N
elements are occupied by clouds and E = Ω − N elements are empty. Simple com-
binatorics dictates that the chance of the single element being currently occupied
is N/Ω while the chance that it is currently empty is E/Ω.

Let us now suppose that the single element chosen is currently empty. The
element may become occupied through the formation of a cloud and we denote the
probability of this happening as a. We might anticipate a dependence of a on the
cloud work function A, with cloud formation being more likely for larger A, but let
us reserve judgement for the moment on any such dependence. On the other hand,
if no cloud is formed then the maintenance of an empty element will contribute to
destabilization of the atmosphere by large-scale forcing, which may be represented
through an increment of s in the cloud work function. From these considerations,
and combining the relevant probabilistic factors, we can now write down elements
of the transition matrix as follows

T (N + 1, A|N, A′) = a(1 − µ)
E

Ω
δ(A − A′) + . . . (3.2)

T (N, A|N, A′) = (1 − a)(1 − µ)
E

Ω
δ(A − A′ − s) + . . . (3.3)
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8 R. S. Plant

Table 1. Processes considered in the individual-level model. The second column indicates the
element(s) chosen for consideration, with O and U denoting an occupied and an unoccupied
element respectively. All other notation is specified in the main text.

Process name Element(s) Matrix element Value

spontaneous birth U N + 1, A|N, A′ a(1 − µ)EΩ−1δ(A − A′)

destablization U N, A|N, A′ (1 − a)(1 − µ)EΩ−1δ(A − A′ − s)

death O N − 1, A|N, A′ d(1 − µ)NΩ−1δ(A − A′)

stabilization O N, A|N, A′ (1 − d)(1 − µ)NΩ−1δ(A − A′ + r)

induced birth UO N + 1, A|N, A′ 2bµENΩ−1(Ω − 1)−1δ(A − A′)

modification UO N, A|N, A′ 2(1 − b)µENΩ−1(Ω − 1)−1×

×δ(A − A′ − s + r)

exclusion OO N − 1, A|N, A′ cµN(N − 1)Ω−1(Ω − 1)−1δ(A − A′)

strong stabilization OO N, A|N, A′ (1 − c)µN(N − 1)Ω−1(Ω − 1)−1×

×δ(A − A′ + 2r)

birth UU N + 1, A|N, A′ eµE(E − 1)Ω−1(Ω − 1)−1δ(A − A′)

strong destabilization UU N, A|N, A′ (1 − e)µE(E − 1)Ω−1(Ω − 1)−1×

×δ(A − A′ − 2s)

the dots indicating that there are additional contributions.
In Table 1 we specify all processes that will be considered as physically plausi-

ble in the individual-level model. The processes of cloud formation and large-scale
environmental forcing that were just discussed are listed in the first two lines. We
refer to this particular process of cloud formation as spontaneous birth in order
to distinguish it from other possible formation processes. All of the mathematical
expressions appearing in the Table are simply composed of the products of appro-
priate probabilistic factors, constructed analogously to those appearing in Eqs. 3.2
and 3.3.

Suppose that a single element is selected and is found to be occupied. The cloud
might die (with probability d), but otherwise its continued existence will stabilize
the atmosphere through a reduction of r in the cloud work function. Supposing
that two elements are sampled then they could be both unoccupied, both occupied,
or else one is occupied and the other is not. If two unoccupied elements are chosen
then we allow for the possible birth of a cloud (with probability e); if two occupied
elements are chosen then we allow for the possible death of a cloud through com-
petitive exclusion (with probability c); while if one occupied and one unoccupied
element is chosen then we allow that the pre-existing cloud may induce the birth of
a new cloud (with probability b). The last of these processes could correspond phys-
ically to triggering at the edge of a cold pool produced by pre-existing convection
[44]. Should two elements be sampled but the number of clouds not change through
one of the above processes then an appropriate change is made to the cloud work
function. Analogously to the changes in cloud work function for the case of a single
sampled site, the maintenance of each unoccupied element destabilizes the atmo-
sphere through an increment s whereas the maintenance of each occupied element
stabilizes the atmosphere through a reduction r.

Natural boundary conditions to impose upon the transition matrix elements
are the requirements that T (−1, A|0, A′) = 0 and T (Ω + 1, A|Ω, A′) = 0 so that
by starting the system in a physical configuration with 0 ≤ N ≤ Ω it will not
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A new modelling framework for statistical cumulus dynamics 9

be able to reach an unphysical configuration. Those conditions are satisfied by the
expressions presented in Table 1.

(b) System Size Expansion

In order to make contact between the individual-level, probabilistic model and
the deterministic ordinary differential equations of Sec. 2d we perform the system
size expansion of van Kampen [45]. Detailed demonstrations of the method are
available elsewhere [26, 27, 30, 45] but as it may be unfamiliar to atmospheric
scientists, an outline will be presented here. For illustrative purposes, we will focus
our attention on the spontaneous birth and environmental destabilization processes
of Eqs. 3.2 and 3.3, but the manipulations for the other processes in Table 1 follow
along very similar lines.

For a large-enough, horizontally-homogenous domain we would expect the cloud
work function to be almost independent of the system size Ω, albeit with some
small fluctuations. The central limit theorem suggests that such fluctuations would
be of order 1/

√
Ω. Our simulations of the individual-based models presented here

also support such a scaling. The essence of the system-size expansion is to assume
this scaling and so decompose the cloud work function into a macroscopic, size-
independent, determinstic part ϕ and a fluctuating, stochastic part λ. Thus,

A(τ) = ϕ(τ) + Ω−1/2λ(τ) (3.4)

Similar considerations apply to the number of clouds present, although we would
expect this to scale with the system size in the macroscopic limit. Thus, the de-
composition takes the form

N(τ) = Ωσ(τ) + Ω1/2η(τ) (3.5)

To apply the above decomposition to the master equation, we introduce in
place of P (N, A, τ) a function Π(η, λ, τ) which will describe the probabilities for
the fluctuating variables. Considering the left-hand side of Eq. 3.1, the chain rule
immediately gives

∂P

∂τ
=

∂Π

∂τ
+

∂Π

∂η

dη

dτ
+

∂Π

∂λ

dλ

dτ
(3.6)

and since the time derivatives of the fluctuating variables are to be taken with
N and A held constant, Eqs. 3.4 and 3.5 can be used to relate them to the time
derivatives of the macroscopic variables. The result is that

∂P

∂τ
=

∂Π

∂τ
− Ω1/2

dσ

dτ

∂Π

∂η
− Ω1/2

dϕ

dτ

∂Π

∂λ
(3.7)

The state transitions in the master equation can be expressed in terms of ladder
operators for changes in cloud number and cloud work function. For some arbitrary
function f(N, A) these are defined by

Υ±f(N, A) = f(N ± 1, A) (3.8)

Γqf(N, A) = f(N, A + q) (3.9)
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10 R. S. Plant

These operators can be expanded in powers of Ω, reflecting the fact that a single
transition in a large system will induce only a small change in the fluctuating
variables. Specifically,

Υ± = 1 ± Ω−1/2
∂

∂η
+

1

2
Ω−1

∂2

∂η2
± . . . (3.10)

Γq = 1 + Ω−1/2q
∂

∂λ
+

1

2
Ω−1q2

∂2

∂λ2
+ . . . (3.11)

Table 1 describes processes associated with just one or two elements of the
microscopic model. The macroscopic model is assumed to be much larger and the
intensive variables ϕ and σ describing it will evolve more slowly, in response to
changes that have affected the full set of elements. It is therefore convenient to
introduce a macroscopic time t through a rescaling of the microscopic time, setting

t = Ω−1τ (3.12)

Similarly the quantities describing a change to the cloud work function from one
or two elements of the microscopic model are also rescaled,

r̃ = rΩ ; s̃ = sΩ (3.13)

so that r̃ and s̃ are quantities of order Ω0.
Let us now substitute Eqs. 3.4-3.7, 3.13 and 3.12 into the master equation, and

also make use of the ladder operator expansions of Eq. 3.10 and 3.11. This leads to
the following contributions for the example processes

Ω−1

[

∂Π

∂t
− Ω1/2

dσ

dt

∂Π

∂η
− Ω1/2

dϕ

dt

∂Π

∂λ

]

= . . .

+

[

−Ω−1/2
∂

∂η
+ Ω−1

1

2

∂2

∂η2
+ . . .

]

a(1 − µ)
1

Ω
(Ω − Ωσ − Ω1/2η)Π

+

[

−Ω−1/2s̃
∂

∂λ
+ Ω−1

1

2
s̃2

∂2

∂λ2
+ . . .

]

(1 − a)(1 − µ)
1

Ω
(Ω − Ωσ − Ω1/2η)Π (3.14)

Collecting together the terms at the leading order in Ω this gives

−∂Π

∂η

dσ

dt
− ∂Π

∂λ

dϕ

dt
= − ∂

∂η
a(1−µ)(1−σ)Π− s̃

∂

∂λ
(1−a)(1−µ)(1−σ)Π+ . . . (3.15)

Consider now the action of the derivative operators on the right-hand side of the
above equation. Recall from Sec. 3a that we suggested that it may be appropriate for
the transition probability a to have some dependence on the cloud work function A.
From the chain rule, ∂a/∂λ = (∂A/∂λ)(da/dA) = Ω−1/2da/dA, the decomposition
of A from Eq. 3.4 having been used in the final equality. Thus, any dependence of
a on A is irrelevant at the leading-order level of Eq. 3.15 and the derivatives on the
right-hand side of that equation may be considered to act on Π only.

In order to satisfy the leading-order equation it is sufficient that the macroscopic
functions σ and ϕ should obey ordinary differential equations that can be obtained
by equating the respective coefficients of ∂Π/∂η and ∂Π/∂λ in Eq. 3.15. These are:

dσ

dt
= eµ + a(1 − µ) + σ [2(b − e)µ − (a + d)(1 − µ)] + σ2µ(e − 2b − c) (3.16)
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dϕ

dt
= s̃ [2(1 − e)µ + (1 − a)(1 − µ)]

+σ [2(s̃ − r̃)(1 − b)µ − 4s̃(1 − e)µ − s̃(1 − a)(1 − µ) − r̃(1 − d)(1 − µ)]

+2σ2µ [s̃(1 − e) − (s̃ − r̃)(1 − b) − r̃(1 − c)] (3.17)

where a, . . . e, µ, r̃ and s̃ could be considered as functions of σ and ϕ. Notice that
we have here stated explicitly the contributions from all of the processes listed in
Table 1.

The terms at next-to-leading order in Eq. 3.14 contain powers of O(Ω−1). In-
spection of Eq. 3.14 shows that they will take the form of a Fokker-Planck equation
for Π, which is easily derived but not stated here.

(c) Relation to time-dependent convection models

We now discuss the connections from the macroscopic equations derived in the
previous subsection with models that have been proposed for the prognostic de-
scription of atmospheric convection, as presented in Sec. 2d.

In order to establish such a connection, it is important to recall from Sec. 2a
that the mass-flux approximation for the description of convective plumes approxi-
mates the fractional area occupied by clouds as being small. To make an appropriate
comparison to the individual-level model, the equivalent approximation should also
be made there. This corresponds to setting E ≈ Ω in all of the transition ma-
trix elements and results in macroscopic equations that are then reduced to the
following.

dσ

dτ
= eµ + a(1 − µ) + σ [2bµ− d(1 − µ)] − cµσ2 (3.18)

dϕ

dτ
= s̃ [2(1 − e)µ + (1 − a)(1 − µ)] + σ [2(s̃ − r̃)(1 − b)µ − r̃(1 − d)(1 − µ)]

−2σ2µr̃(1 − c) (3.19)

First let us consider the population dynamics system of Wagner and Graf [46].
This system does not consider the evolution of the cloud work function so all pro-
cesses in Table 1 involving changes to A should be neglected. With only a single
plume type being considered, the macroscopic fractional cloud number is propor-
tional to cloud-base mass flux, and hence Eqs. 2.7 and 3.18 may be compared
directly. To reproduce the structure of Eq. 2.7 from the individual-based model one
simply includes the induced birth and competitive exclusion processes from Table 1.
Values for all parameters of the microscopic model could then be set immediately
from the known coefficients of Eq. 2.7. This would constitute a minimal microscopic
model fully consistent with the macroscopic population dynamics system. Indeed,
exactly such a population model has been considered in other contexts, including
spatial effects and interacting types [27]. Notice that inclusion of the death process
from Table 1 would produce a more complicated microscopic model that would
again be entirely consistent with macroscopic population dynamics, although the
character of the fluctuations would be rather different. However, the birth processes
from one or two empty elements may not be included.

We turn now to the prognostic convective system defined by Eqs. 2.3 and 2.4
with the Pan and Randall postulate [29, 36] of Eq. 2.5. To obtain this system
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Table 2. A list of processes from the individual-level model and their roles in producing
three macroscopic convective systems. Pop dyn refers to the population dynamics system of
Wagner and Graf [46]; PR refers to the system of Pan and Randall [29, 36] with K ∼ M2;
and, YP refers to the system of Yano and Plant [51] with K ∼ M .

Process name Pop dyn PR YP

spontaneous birth neglect include neglect

destablization neglect include include

death optional include include

stabilization neglect include include

induced birth include optional include

modification neglect optional neglect

exclusion include neglect neglect

strong stabilization neglect neglect neglect

birth neglect optional neglect

strong destablization neglect optional optional

the quadratic terms in σ appearing in Eqs. 3.18 and 3.19 must be eliminated by
neglecting the microscopic model processes involving two occupied elements. All
other processes listed in Table 1 coud be retained if desired, but for a minimal
microscopic model it is necessary to retain only those processes for which a single
element is sampled. Notice that the probability for spontaneous birth must be
chosen to be proportional to the cloud work function.

The final prognostic system of interest is that defined by Eqs. 2.3 and 2.4 with
the Yano and Plant postulate [51] of Eq. 2.6. As for the previous system, micro-
scopic processes involving two occupied elements are neglected. It is also necessary,
however, to eliminate the constant term from Eq. 3.18 by neglecting the process
in Table 1 of spontaneous birth and also that of birth arising from two empty ele-
ments. Furthermore, to obtain the correct structure, in this case the probability b
for the induced birth process must be chosen to be proportional to the cloud work
function, a choice which then necessitates the neglect of the modification process
from Table 1. These decisions could also be supplemented by the optional neglect
of strong destabilization to arrive at the minimal microscopic model corresponding
to the prognostic system.

Table 2 summarizes the various forms of the individual-level model that are
required in order to produce the three macroscopic convective systems in the limit
of large system size.

4. Numerical Results

In this section we present some example results obtained from the three minimal
individual-level models that in the large system-size limit are equivalent to the three
prognostic models of convective systems described in Sec. 2d.

For each case we choose consistent macroscopic parameters, in the sense that
the systems have the same equilibrium state in the mass-flux limit of a vanishing
fractional cloud area. The values taken are consistent with the ranges found in
the cited literature: specifically we have set F = 10−2 m2 s−3, γ = 1m4 kg−1 s−2,
τD = 103 s, β = 5 × 104 m2 s−1 and α = 5 × 106 m4 kg−1. The proportionality
factor connecting MB and σ we have set to 0.1kg m−2 s−1. This particular choice
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is a somewhat small value that will perhaps overestimate the number of clouds
required in order to produce the equilibrium level of mass flux. However, it is
convenient in that it allows us easily to compare results from the individual-based
models with those from the macroscopic convective systems, without having to take
a very large system size or very many realizations of the probabilistic model. For
these illustrations Ω = 1000, and 100 realizations have been simulated.

The above macroscopic parameters are sufficient to determine all of the rele-
vant parameters for the equivalent minimal individual-based models of both the
population dynamics system [46] and the Pan and Randall system [29, 36]. For the
minimal equivalent to the Yano and Plant system [51], one microscopic parameter
remains undetermined. We have chosen this to be µ and have assigned it the arbi-
trary value of 0.1. It cannot be determined from macroscopic considerations alone,
but should properly be set from investigation of the fluctuations in those convective
systems that are well described by the model. Of course, the same remark holds for
all three models in respect of whether and how any non-minimal processes should
also be included in order to account more fully for convective fluctuations.
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Figure 1. Time series of cloud-base mass-flux for the population dynamics system [46]
(left), the Pan and Randall system [29, 36] (centre) and the Yano and Plant system
[51] (right). The dashed blue line is the solution of the appropriate ordinary differential
equation with initial condition A = 50 J kg−1, MB = 0.015 kgm−2 s−1 and parameters as
stated in the main text. The solid blue line is the solution to a slightly-modified ordinary
differential equation with small cloud fractional area no longer assumed. The solid green
line is a single example realization of the minimal equivalent individual-level model. The
solid red line is the ensemble mean from 100 realizations of the individual-level model.

Fig. 1 shows time series of cloud-base mass-flux from the three systems, including
both individual-level results and the results from the macroscopic equations. The
individual-level models do not reproduce the equilibrium state predicted by the
macroscopic systems of Sec. 2d since those macroscopic systems assume a vanish-
ing cloud fractional area. However, it is straightforward to modify those systems to
account for finite cloud fractional area. One can simply take the minimal individual-
level model necessary to produce the appropriate form of Eqs. 3.18 and 3.19 and
then apply the choices of processes and parameter settings to the complete macro-
scopic ordinary differential equations, as given by Eqs. 3.16 and 3.17. The results
from the ensemble-mean of the individual-level models agree very well with these
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modified macroscopic systems, as indeed they should for a large enough system.
This is despite the fact that there are very clear fluctuations in the timeseries from
individual realizations. The difference between the prognostic system of Sec. 2d and
a realization of the individual-based model is particularly apparent for the Yano
and Plant system [51]. As noted in Sec. 2d this system exhibits a periodic cycle
of convective recharge and discharge but we find here that it can be slowly driven
towards equilibrium through the effects of finite cloud fractional area. Nonetheless
the periodic cycle remains mainfest even in longer simulations with initial transients
removed, a power spectrum of the fluctuations showing a peak associated with the
orbital period of 2π

√

β/F [51] which is 4hr for the parameters used here.
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Figure 2. As in Fig. 1 but for a smaller domain of size Ω = 100.

Results for a smaller system size of Ω = 100 are shown in Fig. 2. For this domain
the individual-level model for the population dynamics system does show some
departures from the macroscopic limit, which is however more closely respected by
the equivalent to the Pan and Randall system. For the individual-level equivalent
of the Yano and Plant system, convective activity dies off completely after a few
hours of the example realization, never to be resumed. Convection was extinguished
in all 100 realizations by 28 hr of simulation. For this domain size and with these
parameter settings, the fluctuations in the Yano and Plant equivalent are strong
enough to be able occasionally to remove all clouds present. This microscopic model
does not permit the convective cloud field to recover from such an eventuality since
cloud formation may only occur if induced by pre-existing clouds.

Returning now to the Ω = 1000 domain, probability distribution functions for
the number of clouds present are shown in Fig. 3. For the population dynamics [46]
and Pan and Randall systems [29, 36], the results are very well approximated by a
Poisson distribution, in accordance with the theoretical expectations of Craig and
Cohen [7] (Sec. 2c). In contrast, the distribution from the individual-level equivalent
of the Yano and Plant system [51] is much wider. This system was not designed
to produce a highly-stable equilibrium state but rather to demonstrate the cycles
of recharge and discharge that are characteristic of some convective systems. The
different distributions for cloud number can be understood in terms of the different
mechanisms for cloud formation in the equivalent individual-level models. For the
equivalent to the Pan and Randall system clouds are formed spontaneously at
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empty elements, and the number of such empty elements deviates only weakly from
E = Ω−N ≈ Ω. By contrast, in the equivalent to the population dynamics and Yano
and Plant systems, clouds are formed only in association with preexisting clouds:
N is much more susceptible to fluctuations, and the formation mechanism will itself
tend to amplify the fluctuations. The population dynamics system, however, has a
compensating mechanism because that the removal rate from competitive exclusion
also depends on the number of preexisting clouds.
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Figure 3. Probability distribution functions for the number of clouds in the minimal equiv-
alent microscopic mdels. Results are shown for the population dynamics system [46] (left),
the Pan and Randall system [29, 36] (centre) and the Yano and Plant system [51] (right).
The green line is constructed from a single example realization of the minimal equivalent
individual-level model, using data between 48 and 120 hours of simulation. The blue line
is a Poisson distribution for the same mean cloud number.

In reality, both primary and secondary mechanisms of cumulus cloud formation
do occur, the extent of each being rather sensitive to the prevailing meteorological
and topographical conditions [4]. One might therefore reasonably expect that each
of the macroscopic models investigated here could perform well in different limiting
cases, where different microscopic processes are more or less important. To capture
the full range of convective behaviours, a hybrid of the existing macroscopic models
would presumably be needed.

5. Conclusions

The description of atmospheric convection as a collection of distinct plumes has
a long history. It is an instructive basis from which to seek to understand many
features of convective systems, and still forms the underlying basis for most current
convective parameterizations. Some brutal simplifying assumptions have usually
been imposed in such studies, but there has been an increasing recognition in recent
years that some of those simplifications may be neither necessary nor desirable.
Satisfactory models for statistical cumulus dynamics remain to be developed, and
tools from statistical physics are likely to be required to do so.

In this article we have proposed a new modelling framework well-suited to the
description of collections of convective plumes. In doing so we have been mindful
of two common simplifications in particular: the assumptions of convective quasi-
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equilibrium and of large cloud numbers. However, we believe the framework to
be easily extendable [23, 27] to examine other important issues in atmospheric
convection: for example, the role of various (self-)organizational mechanisms in
developing spatial structure. Previous authors have developed models for the time
evolution of convection and for stochastic effects [7, 17, 18, 25, 29, 35, 36, 46, 51].
The present work attempts to marry some of those earlier models in a unified
description that is both stochastic and prognostic from the outset.

The modelling framework is developed from the individual level of single clouds.
Each cloud is treated identically and extremely simply here, and is formed, modi-
fies its environment and meets its demise according to straightfoward probabilistic
rules. Doubtless there is much scope for elaboration on each of these points. Thus,
we prefer to speak of a framework rather than a complete model for SCD. How-
ever, the simplest treatment is quite sufficient for the present aims. Great stress
has been placed throughout on the notion that the individual-level model should
reduce to the systems of some previous studies in the appropriate limits. By means
of van Kampen’s system-size expansion we can show that by making appropriate
choices of the processes included in the individual-level model, we can recover pre-
vious prognostic models in the limits of a large system size and a vanishing cloud
fractional area. Moreover, by making appropriate choices of the processes that form
clouds, we can also recover previous predictions for fluctuations in cloud number at
equilibrium.

As a result, we assert that the proposed framework has been well established as
a methodology that both encompasses and extends current attempts to develop a
theory of SCD. For instance, we have already been able to gain some insights into
previously-proposed prognostic systems by establishing and simulating their equiv-
alent individual-based models. It is certainly not obvious from the original articles
that the primary difference between the Pan and Randall [29, 36] and Yano and
Plant [51] systems is an implicit assumption about the dominant microscopic pro-
cess of convective cloud initiation. Intermediate models which admit both processes
would seem more physically reasonable, could very easily be built in the present
framework, and would be well worthy of further investigation.
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