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Almost all research fields in geosciences use numerical models and observations and
combine these using data-assimilation techniques. With ever-increasing resolution
and complexity, the numerical models tend to be highly nonlinear and also
observations become more complicated and their relation to the models more
nonlinear. Standard data-assimilation techniques like (ensemble) Kalman filters
and variational methods like 4D-Var rely on linearizations and are likely to fail
in one way or another. Nonlinear data-assimilation techniques are available, but
are only efficient for small-dimensional problems, hampered by the so-called
‘curse of dimensionality’. Here we present a fully nonlinear particle filter that
can be applied to higher dimensional problems by exploiting the freedom of the
proposal density inherent in particle filtering. The method is illustrated for the
three-dimensional Lorenz model using three particles and the much more complex
40-dimensional Lorenz model using 20 particles. By also applying the method to
the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate
the strong scale-invariance of the method, leading to the optimistic conjecture that
the method is applicable to realistic geophysical problems. Copyright c© 2010 Royal
Meteorological Society
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1. Introduction

The solution to the full nonlinear data-assimilation problem
is well known (Jazwinki, 1970; Van Leeuwen and Evensen,
1996) and based on Bayes’ theorem. That theorem tells us
how to update the probability density (pdf) of the model,
the so-called prior pdf, with new observations to obtain the
so-called posterior pdf, which is the full solution to the data-
assimilation problem. Because these probability densities
can be far from standard densities like the Gaussian, their
representation on a computer is problematic, especially for
large-dimensional systems. Hence approximations have to
be made, and present-day data-assimilation methods in
high-dimensional systems are all based on linearizations.

Examples are the ensemble Kalman filter (EnKF) and its
variants (Evensen, 1994, 2006; Burgers et al., 1998), in which
the evolution of the system between observations is fully
nonlinear. However, when confronted with observations
the prior pdf and the observation pdf are assumed to be
Gaussian, so the analysis is linear.

Other extremely popular methods search for the
maximum of the posterior pdf by assuming Gaussian-
distributed observations, model initial conditions and model
errors, and minimizing a so-called cost function, which is
the negative of the logarithm of the posterior pdf. Examples
are 4D-Var (Talagrant and Courtier, 1987), the representer
method (Bennett, 1992) and PSAS (Courtier, 1997). Iterative
methods are used to find this minimum, but no guarantee
exists to ensure convergence to the global minimum.

Copyright c© 2010 Royal Meteorological Society
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Furthermore, these methods search for the maximum of
the pdf and not the pdf itself, e.g. they provide no error
estimate. Several methods have been developed to bring
more nonlinearity into the methods mentioned above (e.g.
combining 4D-Var and the EnKF (Zhang et al., 2009) and
Gaussian mixture models (Anderson and Anderson, 1999;
Bengtson et al., 2003)), but the extensions are to some extent
ad hoc and do not solve the full nonlinear problem.

Particle filters are fully nonlinear in both model evolution
and analysis steps (Metropolis and Ulam, 1944; Gordon et
al., 1993; Doucet et al., 2001). They have a fundamental
problem, the so-called ‘curse of dimensionality’, which is
related to the fact that it is very unlikely that a swarm of
model runs, called particles, shooting at random through
state space will end up close to a large set of observations in
a large-dimensional system (Snyder et al., 2008). The result
is that the majority of the particles will end up far away from
the observations and have no statistical significance for the
estimate of the posterior pdf.

More complicated particle filters have been proposed
that do have potential, but little experience in geoscience
applications exists (Van Leeuwen, 2009). Here the so-called
proposal density is explored, which allows the particles
to know where the observations are, and simple choices
lead to extremely encouraging results. In this article we
demonstrate this for the highly nonlinear three-dimensional
Lorenz (1963) model and the 40-dimensional Lorenz (1995)
models. Using traditional particle filters, hundreds to tens
of thousands of model runs are needed for these models,
while only of the order of 20 particles are used here. We
also managed to show that the method works satisfactorily
in a 1000-dimensional Lorenz (1995) model using only 20
particles, showing extremely promising scaling behaviour.
This shows that the ‘curse of dimensionality’ may have a
cure.

In Chorin and Tu (2009) a procedure is depicted that
is similar to our almost equal-weight scheme. That article
concentrates on an application, and the scheme is not easy
to extract. An article that has full details is in preparation
(Xuemin Tu, private communication).

2. Bayes theorem

Data assimilation describes the flow of information from
observations of the real system at hand (i.e. the atmosphere)
to the numerical model of that system. This model is based
on previous experience, and is available in terms of equations
that describe how the system evolves with time. The most
general form in which information about a system can be
represented is through a probability density function (pdf).
A probability density function describes what the probability
of a certain event is, compared with all other possible events
in a system.

We can formulate the data-assimilation problem as trying
to find the new so-called posterior probability density of the
model of a system when new observations are incorporated,
i.e. the pdf of the model given the new observations.
Obviously, this is related to the pdf of the model before
the new observations are taken into account, and the pdf of
the observations. This can be formalized in Bayes’ theorem.
It is based on conditional probability densities, and given by

pm(ψ |d) = pd(d|ψ)pm(ψ)∫
pd(d|ψ)pm(ψ)dψ

. (1)

It states that the pdf of the model with state vector ψ given the
observations d is found by the multiplication of the pdf of the
observations given this model state, the so-called likelihood,
and the pdf of the model before observations are taken into
account. The denominator is just a normalization to ensure
that the probability density integrates to 1. Actually, the
likelihood does not have to be a pdf, but in the following we
assume it is for ease of presentation. It is important to realize
that data assimilation in its purest form is a multiplication
problem and not an inverse problem. When applying Bayes
theorem, the probability density of the observations pd is
assumed to be known from standard calibration procedures.
The difficulty in applying Bayes theorem is the probability
density of the model. In large-scale geophysical applications
it is a density over a million (or more) dimensional space,
which is impossible to store, let alone calculate the evolution
of. Even though the actual dimension of the subspace in
which the model tends to reside can be much smaller, very
little is known regarding this actual dimension, but its size
is still considered to be substantial.

3. Particle filtering

The idea used in particle filtering is to try to represent the
model pdf by a number of random draws, called ensemble
members, or particles. The model is represented by a sum
of delta functions positioned at the model states chosen as
the particles:

p(ψ) = 1

N

N∑
i=1

δ(ψ − ψi). (2)

The expected value of any function of the model state f (ψ)
can be approximated as

f (ψ) =
∫

f (ψ)p(ψ) dψ ≈ IN (f ) = 1

N

∑
i

f (ψi). (3)

Common examples for f (ψ) are ψ itself, giving the mean
of the pdf, and the squared deviation from the mean, giving
the covariance.

The technique is depicted in Figure 1. After (or during) a
previous data-assimilation step a new ensemble of particles
is generated. This is stage 1 in Figure 1, in which the
length of the bar representing each particle gives its relative
importance or weight in the ensemble of particles. Initially,
all particles have equal weight. Each particle (model state)
is propagated forward in time with the full nonlinear
model. This part of the data assimilation represents the
forward evolution of the model pdf. Formally the evolution
equation of this pdf is given by the Kolmogorov equation
(Jazwinsky, 1970). This equation is solved approximately
by solving an ensemble of stochastic partial differential
equations. The stochastic terms in these equations represent
unknown external and internal terms (or factors) in the
model equations. Unknown terms in external forcing and in
the model equations are incorporated by adding random
numbers, drawn from a known error density, to the
deterministic model equations:

ψn = f (ψn−1) + βn, (4)

in which f (..) denotes the deterministic part of the model,
βn is the stochastic part and n is the time index. (It is

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1991–1999 (2010)
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Figure 1. The standard particle filter. The prior (blue in the online article) pdf is sampled by a number of particles (10 in this case), indicated by the
vertical bars (dark blue in the online article). These particles are all propagated forward in time using the full nonlinear equations, indicated by the lines
(brown in the online article). When observations are present we see the prior particles as vertical bars (blue in the online article) again. The pdf of the
observations is given by the curve (green in the online article). In this example a large percentage of particles ends up far from the observations and has
negligible weight. The new weights are indicated by the bars (red in the online article). After the resampling step we ensure that we can continue the
model integrations with 10 particles again. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

also possible to multiply parts of the model equations by
unknown factors, sometimes called multiplicative errors.
The latter approach is usually related to unknown model
parameters. We concentrate on additive random forcing
here.) All particle methods have this forward propagation
in common, and differ mainly in the analysis step, i.e. in the
way in which model and observations are combined.

At stage 2 in Figure 1, the particles arrive at the new
observations. At this point they still have equal weight. Using
the particle representation in Bayes’ theorem we obtain

p(ψ |d) =
N∑

i=1

wiδ(ψ − ψi), (5)

in which the weights wi are given by

wi = p(d|ψi)∑N
j=1 p(d|ψj)

. (6)

The density p(d|ψi) is the probability density of the
observations given the model state ψi, which is often taken
as a Gaussian:

p(d|ψi) = A exp

[
−{d − H(ψi)}2

2σ 2

]
, (7)

in which H(ψi) is the measurement operator, which
projects the model state on the observation d, and σ

is the standard deviation of the observation error. When
more measurements that might have correlated errors are
available, the above should be the joint pdf of all these
measurements.

Weighting the particles just means that their relative
importance in the probability density changes, as shown in
stage 3 in Figure 1. For instance, if we want to know the
mean of the function f (ψ) we now have

f (ψ) =
∫

f (ψ)p(ψ |d) dψ ≈
N∑

i=1

wif (ψi). (8)

A potential problem is that the weights tend to vary too
much: a large number of particles have very low weight

compared with the others. If the process of propagation
of the ensemble and assimilation of new observations is
repeated a few times (or with a large number of observations
only once), only one member with large weight will remain
and all others have negligible weight. This means that the
statistical information in the ensemble is lost; effectively
only one particle has all information available to us. A
way to avoid this is so-called resampling. This results in
ignoring the particles with low weight and duplicating ones
with high weight, such that we end up with an ensemble of
particles with equal weight again. Several ways to perform
the resampling exist, see e.g. Doucet et al. (2003) and Van
Leeuwen (2009) for a review.

The final stage 4 in Figure 1 is the resampling step that
gives all particles equal weight again by taking multiple
copies of particles with high weight and ignoring particles
with low weights. Universal resampling is used here, in which
all weights are put after each other in the interval [0, 1] and a
random number from the uniform density over [0, 1/N] is
chosen. That number is laid on to the unit interval, and the
weight it points to is the first resampled particle. Then 1/N
is added to the random number and the weight that points
to denotes the second resampled particle. This process is
repeated to generate N resampled particles, all with equal
weight. From there we start the model integrations forward
in time again.

The good thing about importance sampling is that the
particles are not modified, so that dynamical balances are not
destroyed by the analysis. The bad thing about importance
sampling is also that the particles are not modified, so that
when all particles move away from the observations they
are not pulled back to the observations because only their
relative weights are changed. This results in weights that
vary wildly, and only a few particles will have relatively high
weight and hence any statistical significance. This as called
filter degeneracy and is a very serious problem in particle
filtering (Snyder et al., 2008). Several methods have been
proposed to solve this problem (Doucet et al., 2001), but
none of these is directly applicable to the large-dimensional
geophysical problems (Van Leeuwen, 2009).

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1991–1999 (2010)
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4. A possible solution: the proposal density

We now discuss a very interesting property of particle
filters that has received little attention in the geophysical
community. It is related to the following. Suppose we want
to determine the expectation value of a function of the state
vector f (ψ),

f (ψn) =
∫

f (ψn)p(ψn|dn) dψn (9)

= 1

A

∫
f (ψn)p(dn|ψn)p(ψn) dψn,

in which we used Bayes’ theorem and A is a normalization
factor. The prior density p(ψn) can be obtained from
integration from the previous state p(ψn−1), giving

f (ψn)

= 1

A

∫
f (ψn)p(dn|ψn)p(ψn|ψn−1)p(ψn−1) dψn dψn−1.

(10)

We therefore start from the prior density at a previous time
step p(ψn−1) and generate p(ψn) using the transition density
p(ψn|ψn−1). This density is given by the pdf of the model
errors. If we write the model equation as

ψn = f (ψn−1) + βn, (11)

βn denotes the stochastic model error, with pdf given by
p(ψn|ψn−1).

At the heart of this article is the freedom in the transition
density. We can rewrite (10) as

f (ψn) = 1

A

∫
f (ψn)p(dn|ψn)

p(ψn|ψn−1)

q(ψn|ψn−1, dn)
(12)

×q(ψn|ψn−1, dn)p(ψn−1) dψn dψn−1,

in which we just multiplied and divided by the so-called
proposal transition density q. The important thing is that
we can make this proposal density dependent on the future
observations dn. In this article we choose

ψn = f (ψn−1) + β̂n + K[dn − H(ψn−1)], (13)

but many other more sophisticated possibilities are open. In
this case q(ψn|ψn−1, dn) is equal to the pdf of β̂n but with
mean K[dn − H(ψn−1)]. β̂n is a stochastic term that could
have equal pdf to βn, but can also be chosen differently.
The most important term is the new ‘nudging’ or relaxation
term K[dn − H(ψn−1)], which will ‘pull’ the particle towards
the future observations. By choosing matrix K wisely, one
can assure that all particles end up relatively close to the
observations. One of the main points in this article is that
we have an enormous freedom here: we can choose ‘any’
term that forces the model towards the future observations.
(Of course, practical implementations put restrictions on K
related to e.g. dynamical balances. We come back to this
later.)

If we now use a particle representation of the pdf at
time n − 1 and choose random realizations for the proposal

transition density, we find that the integral in (10) is again a
weighted sum over the particles, but now with weights

wi = 1

A
p(dn|ψn

i )
p(ψn

i |ψn−1
i )

q(ψn
i |ψn−1

i , dn)
. (14)

To evaluate these weights we have to make choices for the
pdf of the new stochastic forcing β̂n and the matrix K.

Suppose that the actual model error is Gaussian with
mean zero and covariance Q, and suppose that we take
the stochastic part of the proposal transition density from
a Gaussian with zero mean and error covariance Q̂.
Also, assume that the observational errors are Guassian-
distributed with mean zero and covariance R. The weights
can now be written as

wi ∝ exp

[
−1

2

(
ψn − f (ψn−1)

)
Q−1

(
ψn − f (ψn−1)

)

+1

2
β̂nQ̂−1β̂n

− 1

2
(dn − H(ψn))R−1(dn − H(ψn))

]
, (15)

where we can recognize the contributions from the original
transition density p(ψn

i |ψn−1
i ), the proposed transition

density q(ψn
i |ψn−1

i , dn) and the likelihood p(dn|ψn
i ),

respectively. The actual calculation of this term is as follows:
one first chooses a realization for the proposed transition
pdf for each particle in equation (13), i.e. a random value
for β̂n for each particle. We thus know ψn−1 and ψn for
each particle and use these to evaluate p(ψn

i |ψn−1
i ) in the

equation for the weights. Finally, we evaluate the likelihood.
In geophysics we usually have observations only every

L time steps, where L can easily be 100 or more. This is
an advantage since it allows us to keep the nudging term
relatively small while still bringing the model towards the
observations. In that case the weights become simply

wi = 1

A
p(dn|ψn

i )
L∏

j=1

p(ψ
j
i |ψ j−1

i )

q(ψ
j
i |ψ j−1

i , dn)
, (16)

which for our example boils down to

wi ∝ exp

{ L∑
j=1

[

−1

2

(
ψ j − f (ψ j−1)

)
Q−1

(
ψ j − f (ψ j−1)

)

+1

2
β̂ jQ̂−1β̂ j

]

−1

2
(dn − H(ψn))R−1(dn − H(ψn))

}
. (17)

The way we use this expression is as follows. We integrate
the new model equations (13). This allows us to find
ψn

i from ψn−1
i for each particle i. These state vectors are

then used in the expression for the weights above to find
the new weights of the particles when we arrive at the
observations. This is followed by a resampling step, and the
same process is repeated. Figure 2 shows how this particle
filter with a ‘nudging’ term as proposal density works.

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1991–1999 (2010)



Nonlinear Data Assimilation 1995

The particles are ‘drawn towards the observations’, and all
particles have a comparable weight (shaded bars, red in the
online article). The improved efficiency compared with the
standard particle filter depicted in Figure 1 is clearly visible.
The main difference from Figure 1 is that the particles end
up much closer to the observations in stage 2, so that the
statistical representation of the posterior pdf is much better
than before due to the fact that none of the particles is
ignored.

The idea presented above is a major advantage in particle
filtering for geoscience applications. The reason why it
has not been explored in the particle filter community in
statistics before is that the models used in the geosciences
usually need a substantial number of model steps to
propagate the model forward to the next observation set.
Only in such a situation can the ‘nudging term’ be effective.
Instead of running the model randomly forward in time, we
force it towards the observations. The error that we make
is completely compensated for by adjusting the relative
weights of the particles. We note that there is an enormous
freedom in choosing the proposal density, i.e. the ‘nudging’
part, which can be explored fully in the future to find more
efficient schemes.

5. Application to the Lorenz-63 model

As an illustration of the efficiency of the proposal transition
density, we apply it to the Lorenz (1963) model (hereafter
Lorenz-63). The parameters for the Lorenz-63 model are
given by dt = 0.01, σ = 10, ρ = 28, β = 8/3, σobs = √

2,
σmodel = √

2�t, σinitial = √
2, in which σmodel is the standard

deviation of the model error pdf.
The starting point was (x0, y0, z0) =

(1.508870, −1.531271, 25.46091). The truth was gen-
erated by solving the stochastic model with the above
parameters. Observations from this truth were sampled
from the x-variable of the truth run every 40 time
steps. Random noise was added chosen from a Gaussian
distribution with error variance as indicated above, and a
correlation matrix with 1 on the diagonal, 0.5 on the first
sub- and superdiagonals and 0.25 on the second sub- and
superdiagonals.

With these parameters, the solutions of the Lorenz
equation show chaotic behaviour and the data-assimilation
problem is a difficult one. To make the problem even harder
(and more realistic) we provide only measurements on the
x variable of the system every 40 time steps.

Given that the Lorenz-63 model has only three
dimensions, the standard particle filter with resampling
performs very poorly: even 20 particles cannot trace the true
solution. One tends to need a few hundred particles to solve
this problem with the standard particle filter (Nakano et al.,
2007).

In the application of the new particle filter we chose
the K matrix in the nudging term as 25 times the model
correlation matrix described above. It does depend on time
by multiplied it by a linear function that is zero to half way
the two updates and growing exponentially to 1 at the new
observation time. The random forcing was multiplied by
1 minus that function. This allows the ensemble to spread
out due to the random forcing initially, and to pull harder
and harder towards the new observation the closer to the
new update time it is. The results are not very sensitive to
these choices. It is stressed again that an enormous freedom

exists in choosing the form of this nudging term, or, more
generally, the proposal density. Whatever we do is always
compensated for by using the correct corresponding relative
weights from (16).

Figure 3 shows the same set up of the Lorenz-63 model,
but not using the new particle filter using only 3(!) particles.
This small number of particles is chosen to emphasis the
strength of the proposal transition density idea, and the
result does rely heavily on the nudging term. Obviously, to
represent the full pdf more particles would be needed. The
truth is followed very closely for the measured x variable,
but also the non-measured y variable is traced very well, see
Figure 4. The figures show that the new procedure is much
more efficient than the standard one.

6. Almost equal weights

There is more, however. When a large number of
observations is present, the weights still tend to differ
considerably and filter divergence is still possible. To avoid
this we can make all weights almost equal in the last step
towards the observations by changing the proposal density
in this last step. Assuming Gaussian errors in the model
equations for the target transition densities and ignoring the
proposal contribution for the moment, the weights can be
written as

wi ∝ wrest
i exp

[
−1

2

(
ψn − f (ψn−1)

)
Q−1

× (
ψn − f (ψn−1)

)

− 1

2
(dn − H(ψn))R−1(dn − H(ψn))

]
, (18)

in which wrest
i denotes the weights due to all time steps up

to the last. We can now force the last time step of the model
such that the weights are equal. The weights are the same for
each particle i when − log wi are constant, say equal to C, so

Ci = − log wrest
i (19)

+1

2

(
ψn − f (ψn−1)

)
Q−1

(
ψn − f (ψn−1)

)

+1

2
(dn − H(ψn))R−1(dn − H(ψn)) = C.

If the observation operator H is linear, this is a quadratic
equation for the new model states ψn

i with, in a space with
dimension larger than 1, an infinite number of solutions. To
proceed we first calculate the minimum theoretical value of
Ci for each member i, as

Cmin
i = − log wrest

i (20)

+ 1

2
{dn − H(f (ψn−1))}Q̃−1{dn − H(f (ψn−1))},

in which Q̃ = HQHT + R. This is the lowest value for Ci

for each member. The problem we just solved is similar to
that solved in the Kalman filter and in 3D-Var, with Q now
having a different meaning (model error covariance instead
of model state covariance). For nonlinear observation
operators in particular, the 3D-Var methodology might
be useful to find the minimum. However, it is stressed that
this minimum is only an intermediate result as explained

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1991–1999 (2010)
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Figure 2. The new particle filter. Same as Figure 1, but now the particles are drawn towards the observation using the proposal density. Note that many
more particles end up close to the observations in stage 2, resulting in a much better resolved posterior density in stage 3 and 4. Also note the different
weights of the particles in stage 2 and 3 due to the proposal transition density, which changes the relative weights of the particles during the forward
integration. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 3. The new particle filter for the Lorenz-63 model: x-variable. The
shaded crosses (red in the online article) denote the observations, the black
line is the true solution and the shaded line (green in the online article) is the
mean of the three-particle ensemble. Note that this three-member particle
filter is able to follow the truth quite well, much better than traditional
methods which typically need hundreds of particles. This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

below, and the minimum value does not have to be known
with extreme accuracy.

To make all Ci equal they have to be equal to the largest
Ci, so C = maxi(Ci). However, we do not want all weights
equal to that of the worst particle. We have chosen C such
that 80% of the particles can achieve that weight. The last
20% are too far from the observations to take into account.
These numbers are a compromise between being close to all
observations and keeping enough particles in the ensemble.
With this choice, we typically keep 80% of the particles in
the ensemble, while 20% will have very low weight and will
re-enter only through resampling later on. Still, we are left
with a quadratic equation (if H is linear) in the state at
time n for each particle, again with an infinite number of
solutions. We now choose solutions

ψn
i = f (ψn−1

i ) + αiK(dn − H(f (ψn−1
i )), (21)

in which K = QHT(HQHT + R)−1 and αi is a scalar. Other
choices might be equally valid. We thus reduce the problem

0 200 400 600 800 1000 1200 1400 1600 1800 2000
–30

–20

–10

0

10

20

30
xtue–Y
pf–Y

Figure 4. The new particle filter for the Lorenz-63 model: y-variable. The
black line is the true solution, and the shaded line (green in the online
article) is the mean of the three-particle ensemble. Note the closeness
of the estimated solution to the truth for this non-observed variable,
showing information flow from the observed variable to this variable
through the model equations. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

to a quadratic equation in a scalar, which is easily solved as

α = 1 −
√

1 − bi/ai, (22)

in which ai = 0.5xT
i R−1HKxi and bi = 0.5xT

i R−1xi − C −
log wrest

i . Here x = dn − H(f (ψn−1
i ).

From Eq. (16) we observe that taking the proposal
deterministically would lead to division by zero, since the
proposal would just be a delta function centred around the
deterministic value. To avoid that we introduce an extra
random step from a pdf with small amplitude to make only
small changes to the particles, and with large width to ensure
that the weights will not change much. In our example with
the Lorenz-95 model we used a Cauchy distribution with
a width of γ σ , in which σ is the standard deviation of the
model error and γ is a small dimensionless number. We
calculate the new weights using the new ψn

i as before, and

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1991–1999 (2010)



Nonlinear Data Assimilation 1997

divide by the new proposal density

1

1 + (
ψn − f (ψn−1))

)
Q̂−1

(
ψn − f (ψn−1))

) , (23)

in which Q̂ = γ 2Q, with γ small, e.g. 10−10. A final step
now is a resampling to ensure that all particles have equal
weight again.

Finally, it is stressed that by construction the particles are
independent, and the particles form a random sample from
the posterior pdf.

To conclude, we present a short flow diagram of the
computations needed.

(1) Generate the initial ensemble of model states, e.g. by
perturbing the best initial guess using the pdf of the
initial state. This is not trivial in large-dimensional
systems, but we recall that this ensemble is only used
to start the process. When model error is present it
is soon ‘forgotten’, hence some freedom regarding
accuracy exists.

(2) Propagate each model state i, or particle i from now
on, forward using random samples from the proposal
transition density q(ψn

i |ψn−1
i dn), i.e. choose β̂n

i and
the nudging term in Eq. (13). (Note that other choices
for this proposal transition density can be made, e.g. a
4D-Var on each particle.) At each time step j calculate

log w
j
i = log w

j−1
i (24)

+ log p(ψ
j
i |ψ j−1

i ) − log q(ψ
j
i |ψ j−1

i , dn).

Use the log to avoid under- or overflow. Obviously,
any constants in the pdfs do not matter. For Gaussian
pdfs one obtains

log w
j
i = log w

j−1
i

− 1

2

(
ψ

j
i − f (ψ

j−1
i )

)
Q−1

(
ψ

j
i − f (ψ

j−1
i )

)

+ 1

2
β̂

j
i Q̂

−1β̂
j
i . (25)

Obviously, w−1 = 1. Do this until the last time step
before the new observations. Note that when the
random forcing vector is large, the last term in this
equation is close to the size of the random forcing
vector for each particle, so that term can be ignored
(Andrew Lorenc, private communication).

(3) Use the almost equal-weight procedure by first
calculating the minimum value for the weights for
each particle Cmin

i , e.g. using (21) for our example.
(4) Determine the 80% minimum (or another percentage

of particles retained).
(5) Determine the new state vectors for each of the

resulting particles, e.g. using (21) for our example.
(6) Perturb these state vectors to make this step random,

using a small-amplitude large-tail proposal pdf, e.g.
using (23) for our example. For large-dimensional
random forcing fields this step can be omitted again.

(7) Recalculate the full weights and resample to obtain a
full ensemble again.
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Figure 5. The new particle filter with almost equal weights for the Lorenz-
95 model. The chaotic 40-dimensional Lorenz-95 model in which every
other model variable is observed every 10 time steps is shown. The black
line is the true solution, the shaded crosses (red in the online article)
represent observations of this truth, and the shaded lines (green in the
online article) depict the evolution of the particles in time. Note that the
particles follow the truth remarkably well using only 20 particles, whereas
traditional methods need thousands of particles. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

7. Application to the Lorenz-95 model

A much more challenging example is the 40-variable Lorenz
(1995) model (hereafter Lorenz-95), in which just pulling
the particles towards the observations still results in wildly
varying weights. Also this model is used in the chaotic regime
and the data-assimilation problem is much more difficult
than before. For the Lorenz-95 model we use dt = 0.01
and F = 8, with 40 grid points. The model was initialized
by choosing F = 8.01 at grid point 20 and running the
model for 2000 time steps. The end point of that run
was used as the initial condition for the data-assimilation
experiment.

The truth run and the observations were generated as
described for the Lorenz-63 model, with observations every
other grid point, every 10 time steps. The observation error
was σobs = 1, the initial condition standard deviation was
σinitial = 2 and the model error covariance was chosen as
σmodel = 0.5 times a correlation matrix with 1 at the diagonal
and 05. at the first sub- and superdiagonals.

The nudging scheme explores a K matrix of 1 times the
correlation matrix described above. The random terms β̂

were chosen from a Gaussian with an error covariance twice
as large as that of the original model, to compensate for
reduction in ensemble spread due to the nudging term. This
modification was properly accounted for via the weights, as
explained in the previous sections. The last time step before
the new observations uses the ‘almost equal-weight’ scheme
explained in the previous section.

This problem has been studied before by Nakano et al.,
(2007), and we use similar model parameters. They showed
that tens of thousands of particles were needed with the
standard particle filter with resampling for the result that we
are able to achieve with 20 particles with the new method.
Figure 5 shows what the new particle filter generates for
an observed point: a swarm of particles that follows the
observations and the truth (black line) smoothly in time.
Figure 6 shows the ensemble for an unobserved variable.
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Figure 6. Same as Figure 5, but now for an unobserved variable. Although
the truth lies outside the ensemble cloud for about 10% of the time (it
should do so for 1/20th of the time), it is followed remarkably well. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 7. Rank histogram of how the truth ranks in the particle filter
ensemble for a 10 000 time-step run. The flatness of the histogram shows
that the truth is indistinguishable from any of the ensemble members. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

Again, the truth (black line) is followed faithfully. To study
the quality of the posterior ensemble we show the rank
histogram of point x = 20 in Figure 7, derived from a 10 000
time-step run. This rank histogram scores where the truth
ranks in the ensemble, and the flatness of the histogram in
Figure 7 shows that the truth run is indistinguishable from
any of the ensemble members.

Finally, the new method is compared with an EnKF with
perturbed observations, as explained in Burgers et al. (1998).
Figures 8 and 9 show the equivalents of Figures 5 and 6 for the
EnKF solutions. Clearly, the EnKF has difficulty following
the truth both in the observed and unobserved variables.
The normalized root-mean-square difference from the truth
over the whole time interval is 1.3 for the new particle filter
and 3.5 for the EnKF. Obviously, this does not mean that
the new particle filter is better than the EnKF in all cases.
For instance, increasing the random forcing is beneficial to
the EnKF compared with the new particle filter in that their
performance becomes more comparable.
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Figure 8. Same as Figure 5, but now for the EnKF with 20 particles, without
localization. Although the filter does reasonably well, it does miss the truth
for some period of time on several occasions. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj
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Figure 9. Same as Figure 7 but now for an unobserved variable. The filter
loses track of the truth quite often. This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

8. Conclusions and discussion

A new data-assimilation method is introduced that is fully
nonlinear and has enormous potential for large-dimensional
applications. We managed to track the true solution of the
chaotic Lorenz-63 model with only partial observations
of the state vector with only three particles. This has
never been shown before, and this method outperforms
all other existing data-assimilation methods in terms of
efficiency. Obviously, this example only shows that the
proposal transition density idea is a powerful one, not
that a three-sample particle filter has much statistical
value. We also presented an application to the much
more complex 40-dimensional Lorenz-95 model, where
we used 20 particles and found very encouraging results.
The method outperfomed the EnKF in the present settings.
The freedom in proposal density to ensure almost equal
weights for the particles allows for the development of
more efficient schemes than presented here. A new era of
nonlinear filtering/smoothing is opening. Our method has
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similarities with Chorin and Tu (2009), but is tailored to
large-dimensional problems.

The method is easily implemented for large-dimensional
(up to 1000 dimensions) problems, and work is now
being carried out to study its performance in much higher
dimensional systems. As Andrew Lorenc has pointed out,
the value of the proposal transition density q(ψn

i |ψn−1
i dn) =

p(β̂n) will be similar for each particle (equal to n, the
dimension of the state vector) when the state space is large
because it is a sum of a very large number of random
variables with mean equal to 1. Hence it can be ignored in
the evaluation of the weights, even for the almost equal-
weights step, strongly decreasing the computational load of
the method.

We have obtained similar results with a 1000-dimensional
Lorenz-95 model using also just 20 particles (not shown),
proving that the dimensionality problem can be attacked
very efficiently. Obviously, one cannot properly represent
the full pdf in a million-dimensional space by only 20
model states, but due to computer limitations one can never
represent the pdf faithfully. We have shown here that one can
solve the data-assimilation problem in large systems with a
small number of states that capture some essential features
of the full pdf, similar to the present-day practice with EnKFs
in these systems (but now including non-Gaussian features).

This new method will help us to concentrate on other
outstanding problems in data assimilation, not hindered by
linearity assumptions. Examples are the structure of model
errors and observation pdfs and finally the improvement of
models using data assimilation.

Finally, a word on the proposal transition density is
in order. We have employed a simple nudging term in
our experiments. Clearly, if the nudging is too weak the
solutions are too far away from the observations and the
equal-weighting scheme leads to ensembles with too wide
a spread, identifiable in e.g. rank histograms. When the
nudging is too strong, all particles tend to collapse on the
observations. The theory presented in this article shows that
with an ‘infinite-size’ ensemble the size of the details of the
nudging do not matter for the posterior pdf. However, for
small-size ensembles this will matter. The rank histogram
in Figure 7 shows that our choices for the Lorenz-95 model
were in the correct range.

Using a nudging term, as is done in the examples presented
here, might not work for systems where delicate balances
can easily be destroyed. We should keep in mind that we
have entered the era in data assimilation where errors in
the model equations cannot be ignored anymore, so small
random changes to the traditional deterministic equations
will be present. However, it is possible that the nudging
terms will become too large and destroy the balance. In that
case several solutions can be envisioned. One of them is to
control the size of the nudging term. Another is to use other

proposal transition densities than those explored here, such
as a full 4D-Var on each particle or an ensemble smoother.
Note that a stochastic term still has to be added to each
deterministic 4D-Var solution to avoid division by zero, or
the observations could be perturbed to obtain the random
element. On a practical note, in the latter case the proposal
density weights will be rather complicated, and this method
is expected to be specifically efficient when the dimension
of the system is large, so that the proposal weights for each
particle tend to be the same (see comment above). This is a
research area that needs further exploration.
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