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Abstract 

Internal Risk Management models of the kind popularised by J.P. Morgan are now used 

widely by the world's most sophisticated financial institutions as a means of measuring risk. 

Using the returns on three of LIFFE’s most popular futures contracts, in this paper we 

investigate the possibility of using multivariate GARCH models for the calculation of 

Minimum Capital Risk Requirements (MCRRs).  We propose a method for the estimation of 

the value at risk of a portfolio based on a multivariate GARCH model. We find that the 

consideration of the correlation between the contracts can lead to more accurate, and therefore 

more appropriate, MCRRs when compared with the values obtained from a univariate 

approach to the problem.  
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1.  Introduction 

Following the Second Capital Adequacy Directive (known as CAD II), European investment 

firms and banks are now permitted to determine their own levels of capital to cover position 

risk using internal risk management models (IRMMs).  Financial institutions from other 

regulatory jurisdictions have been using these models for some time.  The models generally 

involve the assessment of an institution’s value at risk (VaR), inherent in its trading book.  For 

each position, the VaR is an estimate of the probability of likely losses which might occur 

from changes in market prices; the MCRR is defined as the minimum amount of capital 

required to absorb all but a pre-specified percentage of these possible losses (usually 5% or 

1%).  These models are permitted as long as they have been adequately back and stress tested.  

It is likely that the value at risk approach will become even more widely adopted over time, 

since it is thought that such models lead to a reduction in capital charges (see Clifford Chance 

(1998)).  It is thus essential that the various techniques which are available for calculating 

capital risk requirements are subjected to a complete evaluation and comparison.  Here we 

explore the possibility of using multivariate GARCH models to calculate MCRRs. 

 

We extend recent research in this area (see, for example, Hsieh, 1993), to calculate capital risk 

requirements for three popular financial futures contracts traded on the London International 

Financial Futures Exchange (LIFFE) using multivariate GARCH models (MGARCH).  These 

models are designed to capture volatility linkages and spillovers between markets, which 

could be important if the volatilities move together over time.  In its pioneering VaR software, 

RiskMetrics™, J.P. Morgan calculates correlations based upon equally and exponentially 

weighted moving averages (see Brooks and Persand, 2000 for a discussion of this and 

alternative methodologies). Recent research by Engle and Manganelli (1999) has also 

considered the question of whether aggregated multivariate risk measures are superior to 
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univariate measures defined directly on the portfolio1.  

 

The remainder of this paper is organised as follows. In Section 2, we describe the data 

employed in this study and outline the econometric procedure, which we use to estimate the 

models. In Section 3, we present the various methodologies used to determine the appropriate 

capital risk requirements, while the associated results which are generated are described in 

Section 4. Section 5 discusses the use of our approach for assessment of value at risk for 

portfolios and finally, Section 6 concludes the paper with suggestions for future research in 

this area. 

 

2. Data and GARCH modelling  

2.1.  Data 

We calculate MCRRs for three LIFFE futures contracts - the FTSE-100 Index Futures 

Contract, the Long Gilt Futures Contract and the Short Sterling Interest Rate Futures Contract 

- based upon their daily settlement prices2.  We thus investigate the possibility of taking a 

combined approach to the calculation of MCRRs for a netted portfolio of equity, cash, and 

bonds.  The data was collected from Datastream International, and spans the period 24
th

 May 

1991 to 16
th

 September 1996.  We have chosen this sample length in order to make 

meaningful comparisons with the results of Hsieh (1993), who uses a similar sample size in 

calculating MCRRs based upon univariate models for a number of US derivatives contracts.  

The sample period includes sterling’s exit from the European Exchange Rate Mechanism in 

September 1992. Observations corresponding to UK public holidays (i.e., when LIFFE was 

                                                           
1
 See also Engle (2000) and Berkowitz (2000) on the issue of univariate versus multivariate models. 

2
 Because these contracts expire four times per year - March, June, September and December - to obtain a 

continuous time series, we use the closest to maturity contract unless the next closest has greater volume, in 

which case we switch to this contract. 
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closed) were deleted from the data set to avoid the incorporation of spurious zero returns, 

leaving 1344 trading days in the sample.  In the empirical work below, we use the daily log 

return of the original price series. Table 1 presents the summary statistics for the three series.  

All three security returns series show strong evidence of leptokurtosis.  They are also highly 

skewed – the FTSE-100 and Short Sterling contract returns are skewed to the right while the 

returns on the Long Gilt contract are skewed to the left. The Bera-Jarque test statistic 

consequently rejects normality for all three derivative return series. Table 1 also includes the 

autocorrelation functions at lags 1 to 5 for each of the component return series and for the 

portfolio, together with the Ljung-Box joint statistic for testing the null hypothesis that all of 

the first ten lags are not related to the current value of the return. The statistics in Table 1 

clearly show that none of the returns series are linearly related to their previous values, and in 

fact, only the short sterling has a significant autocorrelation coefficient at lag 3. 

 

Figures 1 to 3 plot the FTSE, Long Gilt and Short Sterling index returns respectively over the 

sample period. The FTSE returns are clearly the most volatile, while Short Sterling 

movements are almost always small except for a small number of very large outlying 

observations associated with the ERM Sterling crisis.  

 

2.2.  GARCH modelling 

We use a Multivariate GARCH (1,1) (MGARCH) model for the determination of values at 

risk.  These models are now widely used in the finance literature.3  For the purposes of 

comparison, we also calculate MCRRs based upon a univariate GARCH(1,1) model for an 

equally weighted portfolio of the returns on the three LIFFE contracts.  

                                                           

 
3
 See for example, Bollerslev et al. (1988), Schwert and Seguin (1990), Bollerslev (1990), or Ng (1991).  
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It is clearly an empirical question as to whether a multivariate approach, or a univariate 

approach applied directly to the portfolio is preferable. It is intuitive to expect that the 

univariate approach would dominate, since in this case the final object of interest (the 

portfolio return) is modelled directly. Such an approach also does not encounter difficulties 

with an assumed form for the relationships between the series in the portfolio, as the 

multivariate approach would. The estimation of multivariate models can quickly become 

infeasible as the number of assets in the portfolio is increased. On the other hand, the 

multivariate approach has several advantages. First, under a multivariate approach, if the 

weights of the assets in the portfolio change, the model does not have to be re-estimated. 

Second, and more importantly, estimating multivariate models provides the user with useful 

additional information concerning the relationships between the series and permits the easy 

use of scenario analysis. 

 

In a univariate context, the GARCH(1,1) model has been found to describe adequately the 

conditional second moments of the futures contract returns which we employ in this study (see 

Brooks et al., 2000).  The univariate GARCH(1,1) model which we estimate is written as: 

ttt hx  21  

1

2

1   ttt hh                   (1) 

where: )(log 1 ttt PPx  and where Pt is the price of the portfolio; 21ˆˆ
ttt h  , )1,0(~ Nt ; 

and where, , ,  and   are coefficients to be estimated.  In Table 2 we present estimates of 

expression (1) for this futures contract portfolio.  The key parameters of this model are all 

significant at the 99% level of confidence or higher.  Hence, if current regulations would 

allow firms to treat their book as a portfolio rather than comprising of individual positions, 

one could conceivably use the model in Table 2 as the basis for VaR-type calculations (as we 
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do below).  However, the implicit assumption which one would be making if one were to 

calculate separate MCRRs for the individual contracts based upon a univariate model of the 

kind given in expression (1) is that the correlations between the contracts are zero.  However, 

the underlying markets, and hence these contracts, may well be affected by common factors; it 

is not unreasonable then to expect them to be related. An alternative to the univariate, 

portfolio approach represented in expression 1 and in Table 2 is to use an MGARCH model. 

The unconditional correlations are presented in Table 3, are reasonably high, suggesting that 

any movement in one of the financial contracts will on average be closely related to 

movements in the other two. Although a finding of large unconditional correlations does not 

imply conditional correlation, the use of a multivariate GARCH system to model the co-

movement between the three contracts, and to capture the conditional heteroscedasticity in the 

data, would seem appropriate. Here we use a MGARCH(1,1) model with time-varying 

conditional covariances and correlations.  The conditional mean equations are given as:  

t1

21

t110)1(t1 hx    , 21

t11t1t1 ĥ̂   and )1,0(~1 Nt   (2) 

t2

21

t220)2(t2 hx   , 21

t22t2t2 ĥ̂  and )1,0(~2 Nt   (3) 

t3

21

t330)3(t3 hx   , 21

t33t3t3 ĥ̂   and )1,0(~3 Nt   (4) 

where: t1x , t2x  and t3x  are the log price changes for the FTSE-100 Index, Long Gilt and 

Short Sterling contracts respectively.   The conditional variance equations are given as: 

1t111)1(

2

1t11)1(0)1(t11 hh                (5) 

1t221)2(

2

1t21)2(0)2(t22 hh                (6) 

1t331)3(

2

1t31)3(0)3(t33 hh                (7) 

while the conditional covariance equations are given as: 

1t122)12(1t221t111)12(0)12(t12 hh.hh               (8) 
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1t132)13(1t331t111)13(0)13(t13 hh.hh               (9) 

1t232)23(1t331t221)23(0)23(t23 hh.hh               (10) 

where, t12h  is the conditional covariance between the FTSE-100 Index and the Long Gilt 

contract, t13h  is the conditional covariance between the FTSE-100 Index and the Short 

Sterling contract and t23h  is the conditional covariance between the Long Gilt and Short 

Sterling contract, and where the  coefficients remain to be estimated.  The time-varying 

conditional covariances are proportional to the square root of the product of the corresponding 

two one-period lagged conditional variances, together with the previous day’s conditional 

covariances.  Under the assumption of conditional normality, the parameters in the conditional 

mean and variance equations can be estimated by maximising the log likelihood function:  

   



T

1t

t

1

ttt hhlog
2

1
2log

2

TN
              (11) 

where, N  is the number of assets and T  is the number of observations.   denotes all the 

unknown parameters in tx  and th .  

 

The results from estimating the multivariate model are presented in Table 4.  The persistence 

in shocks to volatility implied by the parameter estimates (i.e. the sum of 1 and 1) are very 

high.  The implication is that large innovations cause volatility to remain high for a protracted 

period, and consequently that the amount of capital required to cover this period of high 

volatility is also high.  For the estimated multivariate GARCH models, there is also strong 

evidence of linkages, or volatility spillovers, between the three series.  The coefficient for the 

link between the FTSE-100 and Long Gilt contracts, and between the FTSE-100 and Short-

Sterling contracts are significant, although those between the Short Sterling and Long Gilt 

contracts are not.  For information, in Figure 4 we present h12, the estimated daily conditional 
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covariance between the FTSE-100 and Long gilt contracts, which demonstrates the time-

varying nature of the relationship between the two contracts. The estimated covariance is 

highly variable; for example, it trebles at the end of 1992 before falling back to its previous 

level at the start of 1993. 

 

3.  A methodology for estimating MCRRs 

3.1.  Calculating MCRRs 

We can use the models presented in Tables 2 and 4 to calculate minimum capital risk 

requirements for 1 day, 1 week, 1 month and 3 month investment horizons by simulating the 

conditional densities of price changes, using Efron’s (1982) bootstrapping methodology.  The 

st  (that is the , 1, 2 and 3 coefficients from expressions (1) and (2) to (4)) are drawn 

randomly with replacement from the standardised residuals of the univariate model shown in 

expression (1) for the futures contract portfolio and from the multivariate model given in 

expressions (2) to (10).  This enables us to generate a path of future xt’s, using the estimates of 

 ,  ,   and  giving multi-step ahead forecasts of the h
t
’s.  

 

To calculate the appropriate capital risk requirement from this bootstrapping procedure, we 

need to estimate the maximum loss that the position might experience over the proposed 

holding period4.  For example, by tracking the daily value of a long futures position (or a long 

position in the portfolio) and recording its lowest value over the sample period, we can report 

the maximum loss per contract for this particular simulated path of futures prices.  Repeating 

this procedure for 20,000 simulated paths generates an empirical distribution of the maximum 

loss.  This maximum loss (Q) is given by: 

                                                           
4
 The current BIS rules state that the MCRR should be the higher of the (i) average MCRR over the previous 60 

days or (ii) the previous trading days’ MCRR, multiplied by a factor of 3. In this paper, we do not use the scaling 
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ContractsxxQ  )( 10      (12) 

where 0x  is the price at which the contract is initially bought or sold; and x1 is the lowest 

simulated price for a long position, or the highest simulated price for a short position over the 

holding period.  Assuming (without loss of generality) that the number of contracts held is 1, 

we can write the following: 













0

1

0

1
x

x

x

Q
       (13) 

In this case, since 0x  is a constant, the distribution of Q  will depend on the distribution of 1x .  

In his work, Hsieh (1993) assumed that prices are lognormally distributed, i.e. that the log of 

the ratios of the prices, Ln(x1/x0), are normally distributed.  However, in this paper, we do not 

impose this restriction, but instead Ln(x1/x0) is transformed into a standard normal distribution 

by matching the moments of Ln(x1/x0)’

 

s distribution to one of a set of possible distributions 

known as the Johnson (1949) distribution.  Matching moments to the family of Johnson 

distributions (Normal, Lognormal, Bounded and Unbounded) requires a specification of the 

transformation from the Ln(x1/x0) distribution to a standard normal distribution.  In this case, 

matching moments means finding a distribution, whose first four moments are known, i.e. one 

that has the same mean, standard deviation, skewness and kurtosis as the Ln(x1/x0) 

distribution.  For all three contracts, the Ln(x1/x0) distributions were found to match the 

Unbounded distribution. The 5
th

 percentile of Ln(x1/x0) is given by: 














Sd

m
x

x
Ln

0

1

                 (14) 

                                                                                                                                                                                     

factor. 
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where   is the 5
th

 percentile from the Johnson Distribution, m  is the mean of Ln(x1/x0) and 

Sd is the Standard Deviation of Ln(x1/x0).  Cross-multiplying and taking the exponential, and 

using expression (13), we can write: 

  mSdlExponentia
x

Q
 1

0

    (15) 

With this expression we can calculate the expected loss as a proportion of the initial value of 

the position.  We estimate confidence intervals for these MCRRs by using the jackknife-after-

bootstrap methodology to construct the standard error of Ln(x1/x0) see Efron and Tibshirani 

(1993)).  These confidence intervals are estimated to give an idea of the likely sampling 

variation in the MCRR point estimates and help determine whether the differences in the 

MCRRs for the various models are significantly different. The confidence interval of 

 %50











x

Q
is then given by  

    


















































%50

1

%50

1 *1
x

x
LnSE

x

x
LnExp     (16) 

The jackknife-after-bootstrap provides a method of estimating the standard error of the 5
th

 

percentile of Ln(x1/x0) using only information in the 20,000 bootstrap samples. 

 

3.2.  Testing the accuracy of the MCRRs 

To verify the accuracy of this methodology, we compared the actual daily profits and losses 

incurred by holding an equal amount of each futures security using either the daily MCRR 

forecast based upon the portfolio of securities, or upon the equally weighted MCRRs from the 

multivariate daily MCRR forecasts.  Our measure of model performance is a count of the 

number of times the MCRR forecast “underpredicts” losses in both an in-sample test of the 

last trading year, and an out-of-sample test (a “back test” in the terminology of the Basle 
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Committee) period for the 250 trading days.  Such tests represent the preferred method by 

which the Basle Committee believes VaR models should be assessed.  The nominal 

probability that the observed loss exceeds the MCRR forecasts is by definition 5%, and hence 

if the observed loss exceeds the MCRR more than 5% of the time, we can reject the 

underlying model on the grounds that the capital charge would be too low to cover 95% of 

foreseeable losses.  On the other hand, a model which generates a proportion of exceedences 

considerably below 5% should also be rejected on the grounds that too high a capital charge 

would have been applied. We also construct a likelihood ratio test for the proportion of 

failures that tests the null hypothesis that the actual and nominal coverage rates are 

unconditionally equal. The probability of observing x failures in an actual sample of 

independent observations of size K will be distributed binomially, leading to the following test 

statistic distributed 
2
(1) under the null 

 UCF K x p p p
x

K

x

K
K x x K x

x

( , , *) log[( *) ( *) ] log[( ) ]    




















 2 1 2 1  (17) 

where p* is the nominal probability of exceedence under the null hypothesis (0.05).  

 

Christoffersen (1998) and Diebold and Christoffersen (2000) argue that it is important to 

examine the conditional coverage of a value at risk model as well as its unconditional 

coverage. A model with correct conditional coverage would have a proportion of exceedences 

that was not statistically significantly different from the nominal proportion of exceedences, 

together with a time series of exceedences that was iid. In other words, correct conditional 

coverage implies correct unconditional coverage plus independent exceedences. Tests for 

independence in the exceedences can be conducted in a number of ways, but an obvious 

approach is to take the time series of exceedences (i.e. the series of 0’s and 1’s, where 0 = no 

exceedence at that point in time and 1 implies a violation at that point in time). This indicator 
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variable is then regressed on a constant and the past conditional variances for the model. 

Correct conditional coverage should imply that the intercept is not significantly different from 

0.05, and the slope coefficient should be not significantly different from zero. Terming the 

intercept parameter in such a regression , and the slope parameter , the hypotheses are 

respectively H0:  = 0.05 and H0:  = 0. 

 

4. Results  

We calculate the Minimum Capital Risk Requirement using the semi-parametric approach 

outlined in Section 3 based upon the bootstrap, for 1 day, 1 week, 1 month and 3 month 

investment horizons.  We begin by using the equally-weighted return on the portfolio of long 

futures contract positions, where the portfolio consists of the three LIFFE futures contracts.  

The MCRR is then determined by using the resulting series as if it were a set of returns on an 

individual asset.  In this fashion, the correlations between contract returns are automatically 

accounted for in the return calculation.  We shall refer to this method as the ‘full valuation 

approach’ since the full value of the portfolio is determined at each point in time. Risk 

managers have a statutory requirement to monitor the correlations between security returns 

which comprise their portfolios, but this information is not used in the full valuation method. 

However, we present results relating to this portfolio to serve as a benchmark, by which we 

can gauge the performance of the MCRRs based upon the MGARCH model. 

 

With these drawbacks relating to the full valuation approach in mind, the MGARCH approach 

which models both volatilities and correlations would appear to be better suited to the 

calculation of MCRRs in a portfolio context.  Using the MGARCH model we calculate 

MCRRs for each security and aggregate these to a portfolio MCRR using the JP Morgan 

RiskMetrics
TM

 approach.  For an equally weighted, three-asset portfolio we can write: 
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CBBC

CAAC

BAAB

CBA

P

MCRRMCRRbc

MCRRMCRRac

MCRRMCRRab

MCRRcMCRRbMCRRa

MCRR







2

2

2

222222









    (18) 

where A, B, and C denote the FTSE, Long Gilt and Short Sterling contracts respectively; 

a=b=c=1/3; and where AB, AC and BC are the correlations derived from the conditional 

covariance equations from the MGARCH model. 

 

The MCRRs and their respective 95% confidence intervals are presented in Panels A and B of 

Table 5.  The table entries are averages, and each MCRR is calculated using a window of 

length 1344, rolled through the sample one observation at a time and computing the value at 

risk for the required horizon. It can be seen that MCRRs calculated using the portfolio of 

returns, which endogenises the estimation of the correlations, are considerably larger than 

those based on the MGARCH model.  For example, for a one-month investment horizon, for a 

long position, the MCRR based on the portfolio of returns is 14.13%, but only 11.91% based 

on the MGARCH model.  The difference between the two approaches is further emphasised 

by the fact that the confidence intervals for the two methods never overlap. This indicates that 

there is a statistically significant difference between the estimated VaRs under the two 

methodologies.    

 

Tests of model adequacy are presented in Panels C and D of Table 5. The results show the 

percentage of violations of the nominal VaR over in-sample and out-of-sample periods for 

250 days (the horizon required by the Basle Committee rules).  We can now see that the 

multivariate approach appears to be generally more accurate than the full valuation method, 

since in the case of both long and short positions, the percentage of violations is usually closer 
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to the chosen value of 5%.  For example, with regard to the in-sample test for short positions, 

losses were incurred 3.4% of the time with the full valuation method, but 4.8% of the time 

using the MGARCH model.  For the out-of sample test, the full valuation approach leads to 

uncovered losses for 4.0% of the time, but for 4.8% of the time using the MGARCH model. 

These violations compare favourably with those presented in Brooks et al (2000), who 

estimate separate MCRRs for these contracts using univariate GARCH(1,1) models for each 

contract (i.e. using the same model and procedure as used here in the full valuation approach). 

It would thus be concluded that the multivariate approach has been proved preferable in this 

instance, since, given that the required coverage has been achieved, the multivariate model has 

done so at a lower capital charge, which implies for the firm a smaller amount of capital tied 

up in a liquid form.  However, both methodologies produce MCRRs that are on average 

slightly greater than were required for our chosen tests of model adequacy. This is shown by 

the results of the unconditional coverage test, also presented in Table 5, where none of the test 

statistics are significant, even at the 10% level. This suggests that the null hypothesis that the 

actual and nominal coverage rates are equal cannot be rejected, even for the univariate models 

which were excessively conservative. In fact, the percentage of exceedences would have had 

to have been as small as 1.2% or as big as 9.6%, in order to be able to reject the null 

hypothesis at the 5% level for a sample of this size, suggesting that the test is not very 

powerful. 

 

Finally, Panels C and D of Table 5 present the conditional coverage tests for the null 

hypotheses of H0:  = 0.05 and H0:  = 0 respectively in square brackets. The test statistics are 

all not significantly different from zero, indicating that correct conditional and unconditional 

coverage cannot be rejected for any of the models, either for the in-sample or the out-of-

sample periods. 



 14 

 

4.   Conclusions 

This paper has investigated the possible use of multivariate GARCH models in calculating 

MCRRs for portfolios of assets.  The model that we have applied here appears to have been 

relatively accurate, at least compared with equivalent calculations based on univariate models 

(see Brooks et al, 2000).  Perhaps the most important result to be drawn from this paper is that 

more accurate MCRR estimates might be achievable if we can consider the VaR problem in a 

multivariate context, acknowledging explicitly that both variances and covariances may time-

vary.  Given the importance of this technology and the consequences for the real economy if 

these models are not accurate, we hope that our results will make a valuable contribution to 

the debate about the VaR methodology. 
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Table 1 

Summary Statistics of Derivative Returns 
 

Returns series FTSE-100 Long Gilt Short Sterling Portfolio 

Mean 0.00034 0.00013 0.000042 0.00017 

Variance 8.3E-05 2.7E-05 1.680E-06 1.9068E-05 

Skewness 0.30** -0.091* 8.55** 0.28** 

Kurtosis 2.7** 3.4** 199** 3.5** 

Normality † 480** 640** 2223267** 83** 

ACF(1) -0.0093 -0.026 -0.029 -0.014 

ACF(2) -0.011  0.00025 -0.048 -0.0035 

ACF(3) -0.025  0.036    0.097* 0.011 

ACF(4)  0.011 -0.039 -0.0044 -0.023 

ACF(5) -0.016  0.038  0.029 0.026 

LB-Q(10) 18.54 16.69 17.72 14.27 

     Notes: * and ** represent significance at the 5% and 1% levels respectively; † Bera and Jarque test; ACF(j) 

denotes the autocorrelation coefficient at lag j; LB-Q(10) denotes the Ljung-Box Q statistic estimated using 10 

lags, and which is asymptotically distributed as a 
2
(10) under the null hypothesis. 

 

Table 2 

Coefficient Estimates of GARCH(1,1) Model for the futures portfolio  

Mean & Variance Parameters 

 
 


     

Portfolio 1.2E-05 

(1.1E-04) 

0.093** 

(0.0038) 

9.6E-02** 

(8.7E-08) 

0.86** 

(0.0037) 

    Notes: Standard errors are in parentheses; ** indicates significance at the 1% level. 

 
 

Table 3 
Correlation Coefficients  

Contracts FTSE-100 Index Long Gilt Short Sterling 

 Correlation Coefficients 

FTSE-100 Index - - - 

Long Gilt 0.51 - - 

Short Sterling 0.33 0.34 - 
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Table 4 

Coefficient Estimates of MGARCH(1,1) Model with time-varying correlation  
 

 Mean & Variance Parameters 

 
0  0  1  1  

FTSE-100 

Index 

5.0E-04** 

(2.1E-04) 

5.0E-07 

(3.4E-07) 

2.7E-02** 

(6.5E-03) 

0.97** 

(7.8E-03) 

     

Long Gilt 2.7E-04** 

(1.1E-04) 

6.4E-07 

(3.4E-07) 

2.9E-02** 

(1.2E-02) 

0.95** 

(2.2E-02) 

     

Short Sterling 3.0E-05 

(3.1E-05) 

4.9E-07** 

(4.5E-08) 

0.30** 

(3.8E-02) 

0.34** 

(1.9E-02) 

Covariance Parameters 

 FTSE-100 Index Long Gilt 

 
0  1  2  0  1  2  

Long Gilt -3.0E-06 

(4.3-06) 

0.85** 

(7.3E-02) 

-0.52** 

(0.187) 

- - - 

       

Short Sterling 8.7E-07 

(5.2E-07) 

0.31** 

(0.129) 

-0.37 

(0.514) 

4.2E-06** 

(1.6E-07) 

3.0E-02 

(4.0E-02) 

-0.93** 

(1.7E-02) 

Notes: For model description - see text.  Standard errors are in parentheses. ** indicates significance at the 1% 

level. 
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Table 5 
 

Panel A: 

MCRRs for 95% coverage probability as a percentage  

of the initial value for equally weighted portfolios. 
 Long Positions Short Positions 

Full Valuation Univariate GARCH 

1 day 1.48 1.54 

1 week  3.52 3.74 

1 month 8.98 9.16 

3 months 14.13 18.74 

MGARCH  Model 

1 day 1.06 1.15 

1 week  3.06 3.24 

1 month 7.45 8.43 

3 months 11.91 16.94 

Panel B: 

 Confidence intervals for the MCRRs 
 Long Positions Short Positions 

Full Valuation Univariate GARCH 

1 day [1.37, 1.55] [1.45, 1.65] 

1 week  [3.28, 3.70] [3.52, 4.00] 

1 month [8.35, 9.42] [8.61, 9.80] 

3 months [13.14, 14.84] [17.62, 20.06] 

MGARCH Model 

1 day [1.04, 1.10] [1.13, 1.20] 

1 week  [3.00, 3.18] [3.17, 3.37] 

1 month [7.30, 7.74] [8.26, 8.76] 

3 months [11.74, 12.39] [16.60, 17.61] 

Panel C: 

 Model adequacy: in-sample tests 
 Long Positions Short Positions 

Full Valuation Univariate GARCH 4.8% (0.01) [0.43,0.76] 3.2% (0.84) [0.34,0.99] 

MGARCH Model 4.8% (0.01) [0.15,0.66] 4.8% (0.01) [0.23,0.68] 

Panel D: 

 Model adequacy: out-of-sample tests 
 Long Positions Short Positions 

Full Valuation Univariate GARCH 4.0% (0.24) [0.94,0.89] 4.0% (0.24) [0.83,0.72] 

MGARCH Model 4.8% (0.01) [0.24,0.98] 4.4% (0.09) [0.30,1.04] 

Note: Unconditional coverage test statistics are given in parentheses (.) in Panels C and D, and conditional 

coverage test statistics are given in square brackets [.,.] for  and  respectively. The unconditional coverage 

statistics are asymptotically distributed as 2
(1) variates under the null hypothesis that the actual and nominal 

coverage rates are equal. The conditional coverage statistics ar asymptotically distributed as a t248 under the null 

hypotheses. 
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Figure 1: FTSE Index Returns September 1991 – September 1996 

 

Figure 2: Long Gilt Index Returns September 1991 – September 1996 
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Figure 3: Short Sterling Index Returns September 1991 – September 1996 

 

 

 

Figure 4: Time varying Covariance between the LIFFE FTSE-100 and Long gilt 

contracts (h12) 
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