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Abstract 

 

This paper considers the finite sample properties of model selection by information criteria in 

conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are 

consistent in that they will select asymptotically the true model with probability one. To examine the 

empirical relevance of this property, Monte Carlo simulations are conducted for a set of non-nested 

data generating processes (DGPs) with the set of candidate models consisting of all types of model 

used as DGPs. In addition, not only is the best model considered but also those with similar values of 

the information criterion, called close competitors, thus forming a portfolio of eligible models. To 

supplement the simulations, the criteria are applied to a set of economic and financial series. In the 

simulations, the criteria are largely ineffective at identifying the correct model, either as best or a 

close competitor, the parsimonious GARCH(1,1) model being preferred for most DGPs. In contrast, 

asymmetric models are generally selected to represent actual data. This leads to the conjecture that the 

properties of parameterisations of processes commonly used to model heteroscedastic data are more 

similar than may be imagined and that more attention needs to be paid to the behaviour of the 

standardised disturbances of such models, both in simulation exercises and empirical modelling. 
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1. Introduction 

 Since their introduction by Engle (1982), the autoregressive conditionally 

heteroscedastic (ARCH) class of models has spawned a large number of applications. In 

contrast to traditional time series models, ARCH models allow evolution of both the 

conditional mean and the conditional variance. 

 Consider a process x t , t=0,1,2,..., having a conditional mean  t  depending on past 

values of x and current and past values of other variables, such that  

  xt t t   ,         (1) 

where the disturbances  t  are conditionally normally distributed with zero mean and time 

varying variance  t
2

, i.e.  2,0~ tt N  . When  t
2

 is allowed to depend on its own past 

values, past values of the disturbances and current and past values of other explanatory 

variables (including those which enter the conditional mean), the process is said to be 

conditionally heteroscedastic and  t
2

 is called the conditional variance. 

 A model of this type thus consists of equations for both conditional mean and 

variance, the specification of each of which is an empirical issue, of importance in, for 

example, forecasting volatility (see, for example, Akgiray, 1989 or Brooks, 1998), forecast 

confidence intervals (Baillie and Bollerslev, 1992), and pricing financial options (e.g. Day 

and Lewis, 1992). Many extensions and variants have been proposed to allow for differences 

in the smoothness of the conditional variance, how quickly it responds to shocks, whether 

such responses are asymmetric, or whether it is dependent on exogenous factors (see below 

and Bollerslev, Chou and Kroner, 1992, for references to many examples). The standard 

GARCH(1,1) model is, however, still the most pervasive in the literature, and most of the 

models estimated correspond to the weak GARCH concept of Drost and Nijman (1993). 

Hentschel (1995) proposes a new model that nests many of the popular GARCH 

formulations.  
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 This paper focuses largely on the conditional variance equation, imposing throughout 

the simplest conditional mean consistent with the model concerned. Attempts at capturing 

different stylised features of the data, together with the problem of restricting the (estimated) 

conditional variance to be non-negative, has led to a wide range of models being suggested, 

many of which are non-nested with respect to one another (although see Ding, Granger and 

Engle, 1993, for an over-arching nesting structure). Table 1 provides a summary of the 

models considered here and their distinguishing characteristics. Although this list is by no 

means exhaustive, it includes most of the GARCH-type models that are in common usage by 

empirical researchers in economics and finance. 

 A practical matter of some importance is the selection from amongst this set of 

models that which best characterizes an observed set of data. In the case where one structure 

is nested within another (see table 1), it is possible to construct tests of the implied 

restrictions, often by means of the Lagrange multiplier principle (Bollerslev and Wooldridge, 

1992, Bollerslev, Engle and Nelson, 1995, Wooldridge, 1990). Such an approach is not 

available when the models are non-nested. In particular, if the models in the choice set are 

not sequentially nested (so that the smallest model is a restricted version of the next largest 

and so on up to the largest model under consideration), pairwise comparisons employed by 

statistical tests do not generate an exhaustive search path through the models. 

 The use of an information criterion to discriminate between models consists of a 

ranking, the favoured model being that having the smallest value of the criterion. A 

potentially valuable extension of this narrow procedure is provided for ARMA models by 

Poskitt and Tremayne (1983, 1987). The idea is that models with larger but similar values of 

the information criterion should not be disregarded, but retained in a portfolio of models. 

This approach is in the spirit of Jeffrey’s (1961) ‘grades of evidence’ based on the posterior 

odds of competing models. 

 A situation which provides a large portfolio is one in which the data are 

uninformative as to structure if the models within the portfolio necessarily have different 
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implications for the underlying data generating process (DGP). In such circumstances, it 

would be careless to assume that the model generating the minimum value of the criterion 

was manifestly the best. In such situations, it may be possible to improve the accuracy of 

conditional variance forecasts by combining either the models in a more general 

specification, or by combining the forecasts themselves. For example, Granger and 

Ramanathan (1984) show how forecasts can be combined with optimal weights being the 

parameter estimates of an ordinary least squares regression of the ex post volatility measures 

on all of the forecasts. Such combined forecasts could be employed for the construction of 

forecast confidence intervals or for use as inputs to option pricing models.  

Conversely, if the portfolio contains only models with similar characteristics (e.g. 

asymmetries), then it is clear that this characteristic of the data is important. Finally, if the 

portfolio contains only one member, namely that with the smallest value of the criterion, then 

it is evident that this model provides a relatively sharp characterization of the data in a 

manner that others cannot. Any feature unique to such a model is likely to be of substantial 

relevance. 

 The remainder of the paper is organized as follows. Section 2 describes the 

information criteria used and provides more detail about portfolio formation. Section 3 

discusses an application of the criteria to a number of actual economic and financial time 

series. Section 4 describes the structure of a set of Monte Carlo experiments designed to 

explore the performance of the procedure and the results. Section 5 concludes. 

 

2. Information Criteria and Portfolio Selection 

Information Criteria 

 The information criteria are based on those due to Akaike (1974), Hannan (1980) and 

Hannan and Quinn (1979) , and Schwarz (1978), denoted AIC, HQ, and SIC respectively. 

They are adjusted to allow for the defining heteroscedasticity of the models as well as the 

additional number of parameters introduced through the conditional variance equation. The 
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conditions for consistent model selection presented by Sin and White (1996) are satisfied by 

HQ and SIC, but not by AIC. Sin and White also discuss concepts relating to the model 

selected when the DGP is not included in the choice set. Additional criteria for use in small 

samples, based on those of Hurvich and Tsai (1989) and Hurvich, Shumway and Tsai (1990) 

may also be defined but are not considered here. 

 Each of the criteria is of the form 

     gTfIC
T

t t

t
T

t

t ,~

~
~log

1
2

2

1

2  
 


 ,                                (2) 

where  f T g,  is the dimensionality penalty term, T being the sample size, g the total 

number of estimated parameters and 
~ t

2
 the maximum likelihood estimator of  t

2
, the 

conditional variance at time t. The three criteria are: 

    gAIC
T

t t

t
T

t

t 2~

~
~log

1
2

2

1

2  
 


                (3) 

      TgHQ
T

t t

t
T

t

t loglog2~

~
~log

1
2

2

1

2  
 


                 (4) 

     TgSIC
T

t t

t
T

t

t log~

~
~log

1
2

2

1

2  
 


               (5)  

 The dimensionality penalty term does not grow quickly enough with T for consistent 

model selection by AIC, but does for SIC. Strictly speaking, consistent selection by HQ 

requires the substitution of 2 by a constant, c>2, in the dimensionality term, but (4) 

represents the conventional formulation of this criterion.1 

 

 

 

                                                 
1 For homoscedastic models, Lutkepohl (1991, proposition 4.3) shows that, for T>16, the size of the 

dimensionality penalty terms is such that the model selected by SIC minimization cannot have more 

parameters than that selected by minimizing HQ, which in turn cannot be bigger than that obtained 

using the AIC. It is not clear that this goes through in the heteroscedastic case as the unconditional 

(constant) disturbance variance has been replaced by a time varying variance. 
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Posterior Odds 

 The ratio of the posterior probabilities of two models, the posterior odds ratio, 

provides a measure of the extent to which one model is preferred to another. Let  p M Xi T|  

denote the posterior probability of model i ( M i ) , given the data XT . The posterior odds 

ratio of two models i and j, R i j( , ) , is given by 

  
 

 
R i j

p M X

p M X

i T

j T

( , )
|

|
 .                   (6) 

Model i is preferred to model j if R i j( , ) 1. 

 Poskitt and Tremayne (1983) develop the relationship between the values of 

information criteria and the posterior odds ratio for a wide class of linear and non-linear 

models. This is applied to ARMA model selection by Poskitt and Tremayne (1987). The class 

of models is defined by 

   h ut t   

where  u NIIDt ~ ,0 2 , ht  is non-linear function of observations, and   is the parameter 

vector.2 The conditional variance models considered in this paper clearly fall into this class 

since, in general, these models are of the form, 

  xt t t    

    t tNID~ ,0 2
. 

This can be rewritten 

   
x

NIIDt t

t

t

t











~ ,01 , 

which satisfies the required conditions with   1, and  h
x

t
t t

t








. The fixing of the 

variance at 1 simplifies the analysis presented in Poskitt and Tremayne (1983) since it is no 

                                                 
2 Poskitt and Tremayne (1983) deal with the case where the function is vector valued. 
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longer necessary to integrate out the variance parameter. Bayes theorem indicates the 

calculations necessary to obtain the posterior odds ratio, since it states 

       p M X p X M p M p XT T T| | ( )  

where  p M  is the prior probability of the model. The term  p XT  is the same for all 

models so will cancel in the formation of the posterior odds ratio. The prior probability of the 

model is implicit in the choice of information criterion, as described by Poskitt and Tremayne 

(1983), and will vary with the model. The remaining term,  p X MT | , is the marginal 

likelihood of the model. This is obtained by integrating out   from the likelihood 

    L X MT t
t

T

t t
t

T

| , exp   








 













 
1

1

2 2

1

1 2 , 

where  t
t

T
















1

1

 can be regarded as the Jacobian of the transformation to the standard 

normal case. Following Poskitt and Tremayne (1983) and substituting into  p X M p MT | ( )  

gives 

       p M X p M TT t
t

T

t t
t

T
g g

| ~ exp ~ ~








 














    

1

1
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1

2 2
1 2 2 , 

where ~ t  and ~ t  are maximum likelihood estimates. Using subscripts as the model index, 

the posterior odds ratio can be written 

 

 

 
 

 
    

R i j
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T
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    1 2 22 2 2 2 2

 

With the appropriate choice of model priors,  p Mi ,  p M j , this can be written in terms 

of the difference between the values of the information criteria of the two models. For 

example, with 

       p M T g
g

 


2
2

 exp , 
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and using equation (3) as the definition of the AIC, the posterior odds ratio may be written 

   R i j AIC AICi j( , ) exp[ ]  
1

2
. 

In general, but with differing model priors, the posterior odds ratio may be written, 

   R i j IC ICi j( , ) exp[ ]  
1

2
,3      (7) 

where ICi and IC j  are values of the information criteria of the same type for models i and j 

(equations 2-5 above). See Poskitt and Tremayne, 1983, table 1, for the implicit model priors 

in the case of other information criteria, all of which go through in the GARCH case. 

Economic theory of accumulated evidence could also be used to tilt the prior odds in favour 

of particular models. 

 Equation (7) is intuitively appealing as a means of distinguishing between models, 

being based on the difference between criterion values. The extent to which R i j( , )  exceeds 

unity is a measure of the extent to which the data support model i rather than model j and 

may be used to ‘grade the decisiveness of evidence’ (Jeffreys, 1961, appendix B) in favour of 

model i. Jeffreys (1961) employs powers of 10  to define the limits of various classes of 

decisiveness, such that, if 1< R i j( , ) < 10 , the evidence distinguishing the models is 

regarded as ‘not worth more than a bare mention’ (Jeffreys, p432).4 To use Poskitt and 

Tremayne’s (1987) term, such models are ‘close competitors’. Intervals delimited by higher 

integer powers of 10 , for example 10  R i j( , ) <10, indicate increasingly decisive 

support for model i rather than model j, so that the models compete less and less. 5 

 

                                                 
3 Equation (2.1) of Poskitt and Tremayne (1987) defines the posterior odds ratio with an additional 

factor of T in the exponent because their definition of the criteria has an additional divisor of T relative 

to the definitions of equations (2) to (5) given in this paper. 
4 The choice of powers of root 10 to define the limits of the intervals is the choice of Jeffreys, p432, 

and is followed by Poskitt and Tremayne. A researcher is entitled to substitute alternative limits. 

However, the choice should be distinguished from the choice of prior probabilities. 
5 Note that Jeffreys (1961) defines the posterior odds ratio as the inverse of R(i,j) and thus works in 

negative powers of root 10 when defining grades of evidence. 



 8 

Model Portfolio 

 An additional role is now given to model i of equation (7): it is the model from the 

choice set that minimises the information criterion concerned. It is thus always the best 

model, ensuring R i j( , )  1 . Let IC * be the minimised information criterion value and 

redefine R(j), with a single argument, to be 

   R j IC IC j( ) exp[ * ]  
1

2
,                 (8) 

for j=1,2,...,N. Thus R j( )  measures the distance from the best model to model and can be 

used to define a portfolio of competing structures: the best model plus those for which R(j) 

lies below some upper limit, in this case 10 . 

 The portfolio of models need not be the same for all criteria as both the best model 

and the posterior odds may differ. Poskitt and Tremayne (1983) show that the posterior odds 

ratio of the true model to any other tends to infinity with the sample size for SIC and HQ (if 2 

is replaced by c>2), ensuring that the true model will eventually be selected as best and that 

there will be no close competitors. Sin and White (1996) also show that the information 

criteria applied here have similar consistency properties. Inconsistency of AIC would be 

likely to result in over-parameterization, but the impact in the non-nested environment 

explored here is difficult to predict. 

 The use of R j( ) < 10  to define a close competitor implies odds of around 3:1 or 

better, so that if the best model had a posterior probability of 0.9, a competing specification 

having a posterior probability of at least 0.35 would be regarded as a close competitor. The 

Monte Carlo results of Poskitt and Tremayne (1987, table 2) indicate that this definition of a 

close competitor works satisfactorily for ARMA models, and so it is retained here.6 To make 

assessments of the closeness of any model to the optimal one clearer, R(j) (equation 8) is 

transformed to 

                                                 
6 Some evidence on the sensitivity to the choice of this gradation is provided in tables 5 below. 
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  r j
R j

( )
ln( ( ))

ln( )


2

10
.                    (9) 

Thus a close competitor has r j( ) 1, and Jeffreys’ gradings in terms of the r(j) are intervals 

of unit length with integer limits. Root 10 close competitors are thus defined by (0 r(j) <1) 

and are denoted by CC1, and any model which falls into the next lowest Jeffreys’ class is 

defined by (1 r(j) <2) and denoted by CC2. 

 In these realistic circumstances, there is no guarantee that the choice set includes the 

true model. It is also possible that a better, though still mis-specified model lies outside the 

choice set. The selection procedure simply seeks the best approximating model from the 

candidates offered.7 

 

3. Empirical Applications 

 In order to investigate the discriminatory power and close competitor selection of the 

criteria, they are applied to 31 economic and financial time series observed at quarterly, 

monthly, or daily frequency. The model choice set is that of table 1 with all orders set to 1, 

with the exception of ARCH, the candidate model from this family being of order 4. The 

series under consideration are given in table 2, and are for the UK unless otherwise stated. 

All the series were obtained from Datastream International, and were transformed to 100 

times the first difference of the logs. Before the conditional variance models were estimated, 

the data were filtered by an estimated autoregressive model of order 10. 

 Table 3 reports the criteria-minimising models for each series, together with the 

grade 1 and grade 2 close competitors, as defined above. The main features of the results are: 

i) Model selection is broadly consistent across criteria (the same best model is selected by all 

three criteria for 20 out of 31 series). 

ii) The GARCH(1,1) model does not dominate (selected 10, 9, and 4 times by SIC, HQ, AIC 

respectively). When GARCH(1,1) is selected by a particular criterion, it is also selected by a 
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more parsimonious criterion (one with a larger penalty term), and thus is chosen by all 

criteria to represent just four of the series investigated.  

iii) The most commonly jointly selected model is GJR (7 out of 20), this model also being 

selected most frequently by each criterion individually. 

iv) CC1 close competitors increase in frequency as the penalty term becomes less severe (2, 4, 

and 7 for SIC, HQ, AIC respectively), and are rare when the sample size is large (1, 0, 3 for 

SIC, HQ, AIC respectively, out of 19 series of length 2444). CC2 close competitors occur 

with greater frequency than CC1’s for SIC and HQ, and to a similar extent for each criterion. 

They too decrease in frequency with sample size, suggesting that the criteria home in on a 

particular model as the sample size increases. 

 Two other features of the results are that asymmetric models (EGARCH, GJR, and 

TGARCH) are favoured as the type of approximation to the DGP8, and that the parsimonious 

criteria (SIC and HQ) do not seem to be discriminating strongly against large models. To 

illustrate, for M4, EC, FTSE, and DAX, all criteria select the TGARCH model despite the 

fact that this is one of the larger models available with 5 estimated parameters. The ARCH 

model features only for one series, RPI, where, oddly, it is chosen by all criteria without any 

close competitors. Of the 20 cases where all criteria select the same model, 15 are of 

selection of an asymmetric model. 

 A typical example of the operation of portfolio selection is provided by the GDP 

series. In this case, SIC selects GARCH(1,1) with no CC1 competitors, but with GJR as a CC2 

competitor. HQ, a more profligate criterion, selects GJR outright, with GARCH becoming a 

CC1 competitor, and ARCH entering as a CC2 competitor. Finally, AIC dispenses with 

GARCH completely, selecting GJR with ARCH as a CC1 competitor. Similar behaviour can 

be observed amongst all the shorter series. This evidence suggests that one of the main 

differences in the operation of the criteria in relatively small samples is the importance given 

                                                                                                                                            
7 The optimal model has r(j)=0. 



 11 

to the parameterization of irregularities in the data. In this exercise such parameterization is 

through either asymmetries or long ARCH structure. 

 None of the selected models is being suggested as the best available for the data: the 

choice set is limited. It is likely that even in the case of the best model there remains further 

structure to be exploited. The spirit of the exercise is one of initial data exploration and from 

this it is apparent that almost all these series exhibit features that are better captured by 

models allowing for asymmetries than by those that do not. 

 This result is consistent with much recent research in finance which suggests that a 

negative shock to returns will generate higher volatility than a positive shock of the same 

magnitude (see Nelson, 1991; Pagan and Schwert, 1990; Engle and Ng, 1993; Henry, 1998). 

Such asymmetries are also observed in many of the economic series considered here. 

 

4.  Monte Carlo Structure and Results 

 The previous section suggested that the criteria have discriminatory power for 

selection of an appropriate heteroscedastic model. In order to assess the properties of model 

selection in a controlled setting, a Monte Carlo study is conducted. There are six candidate 

models, given in table 1 above (GARCH, ARCH, GARCH-M, EGARCH, GJR, TGARCH). 

Each of these models is also used as a data generating process.  The values of the three 

information criteria, together with those of r(j), are calculated for each model and for each 

DGP. The values of the parameters in the DGPs are taken from various models estimated in 

the literature using real economic or financial data as follows. 

ARCH(4): Engle (1982, table 3). 

r Nt t t t

t t t t t



     

   

  

    

, ~ ( , )

. . . .

0

14 10 0 382 0 286 0191 0 096

2

2 6

1

2

2

2

3

2

4

2
 

GARCH(1,1): Bollerslev (1986, equation (3.1)): 

                                                                                                                                            
8 Asymmetric models represent only half the models in the choice set, but are selected approximately 

two thirds of the time by each criterion individually. 
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GARCH(1,1)-M: Sentana (1995, table 3, column 2) 
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EGARCH: Hsieh (1993, table 5, column 1) 
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GJR: Glosten et al. (1993, table 3, model 2, excluding the GARCH-in-mean term) 
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TGARCH: Zakoian (1994, table 4, column 4) 
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2

833.0192.0111.0049.0

),0(~,









 



tttt
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 The simulations are for sample sizes 250, 500, 1000 and 2000, and consist of 5000 

replications. The results are given in tables 4 and 5. Table 4 presents the percentage of times 

each model is selected by each of the criteria, and the number of times each model is a close 

competitor for each DGP. There are four entries per cell, one for each sample size. Even 

numbered columns (2, 4, 6, 8, 10, 12, 14, labelled ‘best’) give the proportion of times that 

each of the six models is selected as optimal by the criteria, and odd numbered columns (3, 5, 

7, 9, 11, 13, 15, labelled CC) give the proportion of times a model is selected as a close 

competitor. Thus the numbers on the leading diagonal represent the percentage of times the 

correct model is either chosen outright or as a close competitor. Defining the portfolio of 

candidate models to be the set of those that are optimal or close competitors, the proportion 

of times a model is in the portfolio is given by summing the ‘best’ and ‘CC’ numbers. 
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 The median and ninetieth percentile of the distributions of the r(j) are computed for 

the SIC for each DGP and presented in table 5. A model that tends to be a close competitor 

for a given DGP will have the bulk of the distribution to the left of 1. The more skewed above 

1 is the distribution, the less satisfactory an approximation that model provides, compared 

with that which is best. 

GARCH Model Selection 

 Consider first the frequency with which the GARCH(1,1) model is selected across 

the range of DGPs. In contrast to the results for real data, the GARCH model is frequently 

selected as the best model for most of the data generating processes. At smaller sample sizes, 

GARCH is the dominant SIC and HQ selection, almost irrespective of the DGP. As sample 

size increases, the rate of correct GARCH selection increases, but it is selected less 

frequently as the best model for other DGPs (table 4a, b). Most notably, it is selected very 

infrequently by SIC when GJR is the DGP and the sample size 2000 (2.61%). When the DGP 

is GARCH-M or TGARCH, erroneous selection by SIC of the GARCH model occurs at 

around 65% for T=2000, considerably reduced from the values at smaller sample sizes and 

indicating an asymptotic increase in correct model selection in these cases. Erroneous 

GARCH selection rates reduce much more slowly when the DGP is ARCH or EGARCH (still 

around 92% for SIC, but better for HQ, table 4b). 

 Table 4c presents the results for AIC. They are similar, but selection rates for 

GARCH are reduced in all cases (including when it is the DGP). In particular, incorrect 

GARCH selection occurs for T=2000 at a rate much above 50% only when the DGP is 

ARCH (62.02%). All incorrect GARCH selection rates decrease with sample size, and 

correct selection improves. These rates of change are still slow in some cases however, 

indicating that even larger sample sizes are required for the reduction of incorrect GARCH 

selection to reasonable levels. 

 Selection of close competitors using the SIC (table 4a) is uncommon, but more 

common with HQ, and most frequent when AIC is used. GARCH is chosen as a close 
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competitor most frequently when the DGP is TGARCH (around 10% at all sample sizes). For 

most DGPs, the frequency with which GARCH is chosen as a close competitor decreases 

with sample size, including when GARCH is the DGP. When GJR is the DGP, GARCH 

becomes a close competitor on very few occasions (0.88% for SIC, 0.25% for AIC, T=2000).  

Portfolio Selection 

 A model may not be chosen as best, but may still appear in the portfolio as a close 

competitor. However, the results indicate that even at T=2000, portfolio selection of the 

correct model is infrequent. At this sample size, the GARCH, ARCH, GARCH-M, 

EGARCH, GJR and TGARCH models are correctly selected by SIC as members of the 

portfolio with the following frequencies: 97.99, 0.04, 34.06, 0.49, 4.65, 0.40. The 

corresponding figures for AIC are: 91.11, 0.22, 33.18, 2.07, 2.52, 35.77 (the higher TGARCH 

selection rate being due to its selection as a close competitor). Clearly, GARCH is correctly 

identified very successfully (improving with sample size), ARCH, EGARCH and GJR rarely, 

and GARCH-M relatively well in the context of these experiments. TGARCH is a case where 

the use of the profligate criterion brings it into consideration as a close competitor, but its 

selection as the best model remains low even for AIC (4.62%). 

 The real data results indicated that the GJR model was a favoured representation. In 

the simulations, the selection of GJR as a portfolio member depends on which criterion is 

used. The more profligate criteria frequently admit it as a close competitor. It is a member of 

the AIC portfolio when T=2000 at the rates 92.22, 59.22, 65.18, 54.63, 2.52, 43.19 for the 

DGPs GARCH, ARCH, GARCH-M, EGARCH, GJR, and TGARCH respectively. Of the 

other models in the choice set, ARCH is virtually never selected for any DGP by any 

criterion (consistent with real data results). GARCH-M is selected by SIC only when it is the 

DGP, but is a strong close competitor for many DGPs when AIC is used. While EGARCH is 

not selected when it is the DGP, it is selected by SIC when the DGP is of an alternative 

asymmetric form, that is either GJR or TGARCH, both selection frequencies increasing with 
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sample size. TGARCH is the dominant selection under the GJR DGP for all criteria, once a 

reasonable sample size is obtained. 

 These results, and those for the real series, encourage the consideration that 

appropriate portfolio selection of asymmetric models may characterise the results. This is 

true to a limited extent, and best demonstrated when the criterion used is profligate, and the 

sample size large. Using the AIC at T=2000, asymmetric models are selected as best for the 

asymmeric DGPs, EGARCH, GJR, TGARCH, at the rates 35.28, 99.37, 70.46 respectively. 

The GJR DGP generally leads to selection of an TGARCH (portfolio selection rate 82.87%), 

or EGARCH (30.2%) model, and TGARCH is generally interpreted as EGARCH (92%). 

However, the EGARCH DGP still seems to be confused with a GARCH process (73.52%), 

GJR and TGARCH models being porfolio members less often (54.66% and 39.83%). 

Portfolio Selection and Sample Statistics of r(j) 

 Table 5a provides an alternative measure of how competative a model is, showing the 

median of the distributions of the r(j). This is the upper limit on the value of r(j) necessary 

for 50% of replications to result in model j being a member of the portfolio. The higher the 

number in the table, the less likely it is that the fitted model concerned will be in the 

portfolio.9 Table 5b presents similar information, but for 90% of replications to generate 

portfolio membership.  

 In the case of most DGPs, there is no evidence that model selection is converging by 

T=2000, either to the correct or an incorrect solution. For example, for a fitted GJR model to 

be in the portfolio on 50% of occasions when it also the DGP, a close competitor definition 

of r(j)<1.77 is required at T=250 , rising to r(j)<7.34 at T=2000 (table 5a). In the latter case, 

this would result in TGARCH also being in the portfolio on over 90% of occasions (the 90
th
 

percentile for fitted TGARCH when the DGP is GJR being only 4.37), and EGARCH on over 

50% (median 1.06).10 Exceptions are GARCH (correct selection) and GJR (selection of 

                                                 
9 A value of zero indicates that the model concerned is selected as best on at least 50% of occasions. 
10 Jeffrey’s (1961) argues that r(j)>4 indicates decisive evidence against the competing model. 
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TGARCH). A somewhat pathological case is GARCH-M, where rates of correct selection 

increase with sample size, but both median and 90
th
 percentile increase. 11 

 Reading the main diagonal blocks of table 5a, GARCH is best correctly identified at 

all sample sizes, the second best model always being asymmetric, but varying with sample 

size (GJR at smaller sample sizes, TGARCH at the largest). 

 

5. Conclusions 

 Conditional variance models have been applied widely in finance and to 

macroeconomic data (for example Engle, 1982 on inflation; Price, 1995 on investment; 

Cuthbertson and Gasparro, 1993, on output). In all cases the selection of the model is an 

important issue, that can, in theory, be addressed by the use of information criteria. While the 

SIC and HQ have been shown by Sin and White (1996) to be consistent in model selection, 

this empirical investigation has produced ambiguous evidence. Some of the models are likely 

to be much more difficult to estimate than the standard GARCH(1,1) formulation, which may 

go some way to explaining the difficulty in selecting the true data generating process in the 

simulations study. Moreover, given that the coefficient values employed in the simulations 

imply a process with a conditional variance close to the non-stationary boundary, larger 

sample sizes are likely to be required to achieve consistency of the selection procedure than 

would otherwise be the case. 

 In applications to real data series, where all models are necessarily mis-specified, the 

criteria discriminate quite widely, asymmetric models being favoured and the GJR being 

dominant. When the sample size is relatively small, close competitors exist, but are rare when 

it is large. Such findings are potentially useful. 

                                                 
11 The sample size is not large enough for the correct selection of GARCH-M to dominate. Although, 

as sample size increases, the GARCH-M has the lowest criterion value more often, when it is not 

chosen, the difference in criterion values between it and the best (overwhelmingly likely to be GARCH 

in this case) becomes greater. Evidence that discrimination is also becoming sharper when GARCH-M 

is selected is provided by table 5b which shows that the GARCH 90
th 

percentile is increasing (although 

the median has not shifted). 
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 In contrast, the simulated data results in the frequent selection of the parsimonious 

GARCH(1,1) model, the exception being when the DGP has certain asymmetric features. It is 

quite likely however, that the preferred parameterization of the asymmetry will not be that 

which generated the data.  

 There are two related implications of this. Firstly, the type of processes often 

supposed to satisfactorily approximate the DGPs of actual data do not provide sufficient 

information for the criteria to discriminate between them. Secondly, model selection in 

practice must be driven by features of the data that do not correspond very closely to the 

properties of the models considered, because in applications to real series, the criteria make 

quite tight distinctions, often discriminating against GARCH. 

 These points reinforce the message that the criteria do not identify the true model in 

either situation, but select the best approximating structure from those available. This 

interpretation is consistent with the asymptotic results. It also suggests that conclusions about 

economic or financial structure relying heavily on the details of the selected model may be 

mis-leading. This enhances the role of close competitors. Their existence indicates a lack of 

resolution in model selection, but may offer a guide as to which are important and which are 

spurious points of distinction. 
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Table 1 Format: Conditional Variance Models 

Model Main 

Reference 

Conditional Mean Conditional Variance12 Nested 

Models 

Main 

Characteristic 

1 

ARCH(m) 

 

Engle (1982) 

 

yt =  + t 
   t i t i

i

m
2

0

2

1

  



  

 

None 

 

Simplest model 

2 

GARCH(m,n) 

 

Bollerslev 

(1986) 

 

yt =  + t 

. 

   

 

t i t i

i

m

j t j

j

n

2

0

2

1

2

1

  










 

 

1 

Most 

commonly 

applied, 

standard model 

3 

GARCH-M 

 

Engle, Lilien 

& Robins 

(1987) 

 

yt =  + t

2 + t 
   

 

t i t i

i

m

j t j

j

n

2

0

2

1

2

1

  










 

 

1, 2 

 

Feedback term 

into mean eqn. 

4 

EGARCH 

 

Nelson (1991) 

 

yt =  + t 























p

k
kt

kt

k

n

i

ti

m

j
jt

jt

j

t

1
2

1

2

1
2

0

2

)log(

))/2((

)log(














 

 

None 

 

Logarithmic 

form for cond. 

var. + 

asymmetry 

term 

5 

GJR13 

 

Glosten, 

Jaganathan & 

Runkle (1993) 

 

yt =  + t 
   

  

t i t i

i

m

j t j

j

n

t tI

2

0

2

1

2

1

1

2

1

  











 




 

 

1,2 

 

Asymmetry 

term 

6 

TGARCH14 

 

Zakoian 

(1994) 

 

yt =  + t 

















 

n

j

jtj

m

i

itiitit

1

1

210





 

 

1,2 

 

Asymmetry 

term 

 

                                                 
12 The versions of the models used in this paper all have n=m=p=1. 
13 Where I if otherwiset t 1 0 0 , . 

14   t t tif otherwise   0 0, ;   t t tif otherwise   0 0, . 
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Table 2: Actual Data Series to Which the Criteria are Applied
+
 

Series Acronym Series Acronym 

Gross Domestic Product GDP  French CAC-40 Stock Index CAC 

Retail 

Prices Index 

RPI  Toronto Composite Stock Index TOR 

Narrow 

money  

M0  Australian All-Ordinaries Stock 

Index 

AAO 

Broad money M4  Japanese Yen JPY 

Halifax House Prices Index HHP US dollar USD 

Industrial Production IP German mark DEM 

Numbers of wholly unemployed U Italian lira ITL 

Average Earnings AE Swiss Franc CHF 

Housing Starts HS Austrian shilling ATS 

Energy Consumption EC Danish krone DKK 

Daily mid-day FTSE-100 Index  FTSE Nickel price NICK 

German DAX Share Index DAX Tin price TIN 

Dow Jones Industrial Average DJIA Zinc price ZINC 

 Korean Composite Stock Index KC Cocoa price COCO 

 Japansese Nikkei Dow Stock 

Index 

NIK Gold 

price 

GOLD 

 Hang Seng Stock Index HANG   
+
Series are for the UK unless otherwise stated. 
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Table 3: Selected Models and Close Competitors for  

Economic & Financial Series
$
 

 

Series No. of 

Observations 

(data frequency) 

Sample 

Period 

SIC
#
 

 

Best    CC1   CC2 

HQ
#
 

 

Best    CC1   CC2 

AIC
#
 

 

Best    CC1   CC2 

GDP 174 (Quarterly) Q1/55-Q2/98 GAR     -       GJR GJR    GAR  ARC GJR    ARC      -  

RPI 509 (Monthly) 1/65-5/98 ARC      -          - ARC       -         - ARC       -         - 

M0 348 (Monthly) 6/69-5/98 GJR       -          -  GJR         -         - GJR         -         - 

M4 192 (Monthly) 6/82-5/98 TGA     -      GAR TGA       -         - TGA        -        - 

HHP 186 (Monthly) 1/83-6/98 GAR     -       GJR GAR     -       GJR GAR   GJR  GAM 

IP 331 (Monthly) 1/71-7/98 GAR     -       GJR GAR   GJR   EGA GJR    GAR  EGA 

U 331 (Monthly) 1/71-7/98 EGA      -          - EGA       -          - EGA      -          - 

AE 331 (Monthly) 1/71-7/98 GJR    TGA  GAR TGA   GJR   GAR TGA    -        GJR 

HS 331 (Monthly) 1/71-7/98 GAR     -      EGA GAR   EGA GAM EGA  GAR  GAM 

EC 331 (Monthly) 1/71-7/98 TGA      -         - TGA       -         - TGA       -         - 

FTSE 1440 (Daily) 4/1/93-10/7/98 TGA      -         - TGA       -         - TGA       -         - 

DAX 1440 (Daily) 4/1/93-10/7/98 TGA     -      GAR      TGA       -         -       TGA       -         -       

DJIA 2444 (Daily) 1/6/89-13/10/98 EGA      -          - EGA       -         - EGA       -         - 

KC 2444 (Daily) 1/6/89-13/10/98 GJR        -          - GJR         -         - GJR    TGA       - 

NIK 2444 (Daily) 1/6/89-13/10/98 GJR        -          - TGA       -         - TGA       -          - 

HANG 2444 (Daily) 1/6/89-13/10/98 GJR        -          - GJR         -          - GJR    TGA       - 

CAC 2444 (Daily) 1/6/89-13/10/98 GJR        -          -       GJR         -          -       GJR        -           -       

TOR 2444 (Daily) 1/6/89-13/10/98 EGA       -          -       EGA       -          -       EGA       -          -       

AAO 2444 (Daily) 1/6/89-13/10/98 GJR         -          - GJR         -          - GJR         -          - 

JPY 2444 (Daily) 1/6/89-13/10/98 GAR       -          - GAR       -          - GAM      -          - 

USD 2444 (Daily) 1/6/89-13/10/98 GAR       -          - GAR       -          - GAR       -          - 

DEM 2444 (Daily) 1/6/89-13/10/98 GJR         -          - GJR         -          - GJR         -          - 

ITL 2444 (Daily) 1/6/89-13/10/98 GAR      -          - GAR       -          - GJR       -     TGA 

CHF 2444 (Daily) 1/6/89-13/10/98 GAR       -          - GAR       -          - GAR        -         - 

ATS 2444 (Daily) 1/6/89-13/10/98 GJR         -          -       GJR         -          -       EGA        -         -       

DKK 2444 (Daily) 1/6/89-13/10/98 GAR        -         -  GAR       -          -  GJR          -         - 

NICK 2444 (Daily) 1/6/89-13/10/98 GAR    GAM     - GAR      -     TGA GAR    GJR GAM 

TIN 2444 (Daily) 1/6/89-13/10/98 GJR         -          - GAM     -     GAR TGA       -          - 

ZINC 2444 (Daily) 1/6/89-13/10/98 EGA       -          - GJR         -          - GAM      -          - 

COCO 2444 (Daily) 1/6/89-13/10/98 GJR        -           - GJR         -          - GJR         -          - 

GOLD 2444 (Daily) 1/6/89-13/10/98 EGA       -          - EGA       -          - EGA        -          - 

$
 Best: r(j)=0; CC1: 0 r(j<1; CC2: 1 r(j<2. 

#
Model acronyms abbreviated to first three letters, aside from GARCH-M, which is shorted to GAM 
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Table 4a: Simulation Results: SIC Relative Frequencies(%) of Selection as Best 

Model and Root 10 Close Competitor 

DGP GARCH ARCH GARCH-M EGARCH GJR TGARCH 

Fitted 

Model 

Best CC Best CC Best CC Best CC Best CC Best CC 

 

GARCH 

84.52 

90.81 

95.29 

96.91 

5.72 

2.76 

1.48 

1.08 

94.26 

94.66 

93.55 

92.21 

3.28 

1.78 

1.82 

1.78 

85.46 

84.77 

77.66 

66.07 

7.11 

11.5 

4.82 

1.56 

95.91 

96.89 

96.42 

93.48 

2.58 

1.74 

1.94 

4.02 

65.43 

39.71 

13.44 

2.61 

15.73 

16.87 

7.74 

0.88 

77.01 

78.98 

76.56 

66.44 

10.60 

9.78 

9.96 

10.76 

 

ARCH 

0.00 

0.02 

0.02 

0.00 

0.06 

0.08 

0.00 

0.00 

0.00 

0.00 

0.00 

0.04 

0.02 

0.00 

0.00 

0.00 

0.02 

0.06 

0.00 

0.02 

0.02 

0.08 

0.04 

0.00 

0.00 

0.00 

0.02 

0.00 

0.03 

0.04 

0.02 

0.02 

0.02 

0.0 

0.02 

0.00 

0.02 

0.02 

0.04 

0.00 

0.00 

0.00 

0.00 

0.02 

0.00 

0.02 

0.00 

0.10 

 

GARCH-

M 

4.85 

3.25 

2.01 

1.14 

6.91 

4.80 

2.81 

2.03 

2.80 

2.66 

3.88 

5.06 

5.73 

4.28 

4.16 

3.90 

6.95 

11.22 

20.17 

33.56 

7.05 

6.00 

3.73 

0.50 

0.19 

0.02 

0.28 

1.94 

0.36 

0.86 

1.50 

6.14 

0.02 

0.04 

0.63 

0.33 

0.45 

1.77 

2.10 

0.50 

0.86 

0.28 

0.06 

0.04 

1.56 

0.46 

0.78 

2.08 

 

EGARCH 

6.83 

2.90 

0.48 

0.08 

9.46 

4.44 

1.20 

0.24 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.00 

0.00 

3.84 

1.75 

0.51 

0.37 

6.63 

4.05 

1.42 

0.43 

0.18 

0.27 

0.25 

0.29 

0.74 

0.37 

0.27 

0.20 

17.43 

29.26 

40.48 

39.84 

9.53 

39.79 

7.67 

7.59 

19.71 

18.60 

21.16 

31.22 

19.79 

17.45 

15.94 

11.86 

 

GJR 

4.22 

3.49 

2.51 

2.12 

8.20 

5.78 

3.57 

1.88 

2.96 

2.72 

2.82 

2.74 

6.42 

4.38 

5.02 

4.58 

3.80 

2.36 

1.70 

1.08 

7.63 

4.64 

2.86 

1.70 

3.27 

2.41 

2.50 

3.26 

6.23 

5.31 

4.29 

6.14 

10.72 

13.56 

9.18 

3.09 

17.06 

13.71 

8.09 

1.56 

2.24 

1.95 

2.10 

2.24 

7.39 

6.37 

6.18 

6.02 

 

TGARCH 

0.18 

0.08 

0.00 

0.00 

0.30 

0.10 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.12 

0.04 

0.02 

0.00 

0.06 

0.00 

0.00 

0.00 

0.44 

0.52 

0.60 

1.06 

1.35 

1.29 

1.10 

1.12 

6.39 

17.38 

36.26 

54.14 

9.84 

12.50 

12.80 

9.71 

0.37 

0.24 

0.12 

0.04 

0.71 

0.65 

0.36 

0.36 

Note: Four entries per cell are for sample sizes T = 250, 500, 1000, 2000 respectively. 
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Table 4b: Simulation Results: HQ Relative Frequencies(%) of Selection as Best 

Model and Root 10 Close Competitor 

DGP GARCH ARCH GARCH-M EGARCH GJR TGARCH 

Fitted 

Model 

Best CC Best CC Best CC Best CC Best CC Best CC 

 

GARCH 

73.32 

80.48 

87.50 

90.13 

11.87 

9.78 

6.82 

5.68 

85.32 

86.83 

84.05 

82.67 

9.38 

7.42 

8.06 

7.88 

72.91 

72.20 

67.82 

61.17 

13.46 

5.93 

8.02 

3.86 

87.66 

87.29 

84.91 

74.20 

7.68 

8.01 

8.74 

13.82 

40.00 

16.00 

4.74 

0.81 

20.83 

14.76 

3.44 

0.63 

58.22 

58.26 

54.90 

47.82 

19.53 

19.04 

16.48 

13.42 

 

ARCH 

0.08 

0.10 

0.06 

0.00 

0.18 

0.18 

0.04 

0.00 

0.02 

0.00 

0.06 

0.08 

0.00 

0.00 

0.00 

0.10 

0.06 

0.26 

0.16 

0.04 

0.06 

0.20 

0.14 

0.04 

0.08 

0.18 

0.20 

0.10 

0.30 

0.30 

0.18 

0.22 

0.10 

0.08 

0.04 

0.02 

0.44 

0.50 

0.15 

0.02 

0.02 

0.14 

0.22 

0.30 

0.34 

0.76 

0.66 

0.88 

 

GARCH-

M 

8.25 

6.99 

4.92 

3.69 

18.08 

14.84 

13.41 

11.90 

6.89 

6.70 

8.72 

10.52 

20.69 

18.94 

18.12 

18.08 

12.35 

17.11 

24.68 

33.18 

11.43 

6.85 

2.01 

0.00 

0.17 

0.46 

2.18 

8.98 

5.63 

7.82 

11.01 

13.46 

0.08 

0.42 

0.65 

0.19 

4.74 

3.84 

1.53 

0.23 

1.78 

0.62 

0.06 

0.16 

4.12 

2.94 

4.56 

8.44 

 

EGARCH 

10.92 

5.31 

1.56 

0.42 

20.62 

11.10 

4.24 

0.76 

0.00 

0.00 

0.00 

0.00 

0.09 

0.02 

0.00 

0.00 

7.22 

4.58 

2.04 

0.91 

18.69 

10.01 

4.06 

1.24 

0.71 

0.60 

0.48 

0.66 

1.98 

1.15 

1.00 

0.73 

21.63 

31.03 

32.24 

27.81 

11.44 

9.93 

9.79 

8.44 

34.04 

35.19 

38.90 

46.28 

34.02 

30.44 

64.78 

24.18 

 

GJR 

7.48 

7.47 

6.24 

6.01 

22.91 

19.21 

16.43 

15.05 

7.78 

6.48 

7.20 

6.72 

22.71 

21.14 

18.82 

17.10 

7.47 

6.08 

5.40 

4.82 

22.71 

17.56 

13.30 

10.30 

7.71 

7.45 

7.81 

11.35 

22.01 

20.37 

20.46 

20.96 

16.00 

14.02 

6.52 

2.27 

24.99 

14.95 

6.64 

0.86 

4.75 

4.44 

4.84 

4.58 

20.84 

18.60 

17.95 

18.76 

 

TGARCH 

0.63 

0.18 

0.02 

0.00 

1.02 

0.50 

0.04 

0.02 

0.02 

0.00 

0.02 

0.06 

0.08 

0.06 

0.28 

0.52 

0.24 

0.04 

0.02 

0.00 

0.58 

0.04 

0.00 

0.00 

3.67 

4.21 

4.45 

4.77 

7.50 

7.04 

5.64 

6.01 

22.30 

38.45 

55.81 

68.91 

19.93 

18.83 

13.15 

8.02 

1.51 

1.45 

1.08 

0.86 

4.99 

5.04 

4.31 

4.22 

Note: Four entries per cell are for sample sizes T = 250, 500, 1000, 2000 respectively. 
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Table 4c: Simulation Results: AIC Relative Frequencies(%) of Selection as Best 

Model and Root 10 Close Competitor 

DGP GARCH ARCH GARCH-M EGARCH GJR TGARCH 

Fitted 

Model 

Best CC Best CC Best CC Best CC Best CC Best CC 

 

GARCH 

56.19 

62.10 

69.34 

71.32 

22.64 

22.25 

20.08 

19.79 

69.65 

68.95 

64.82 

62.02 

20.66 

21.17 

21.63 

22.01 

56.89 

58.11 

56.42 

52.29 

22.17 

18.04 

13.18 

9.22 

71.90 

68.88 

63.29 

51.20 

17.44 

18.96 

22.11 

22.32 

21.13 

6.70 

2.13 

0.42 

20.62 

8.97 

2.19 

0.25 

39.26 

38.62 

36.68 

27.80 

26.97 

25.42 

21.46 

21.22 

 

ARCH 

0.20 

0.38 

0.12 

0.00 

0.52 

0.36 

0.02 

0.00 

0.02 

0.00 

0.06 

0.10 

0.00 

0.02 

0.02 

0.12 

0.14 

0.50 

0.46 

0.12 

0.22 

0.60 

0.52 

0.18 

0.61 

0.78 

0.46 

0.40 

3.23 

2.08 

1.14 

0.60 

0.44 

0.40 

0.17 

0.04 

4.32 

1.55 

0.38 

0.08 

0.32 

0.90 

1.14 

1.30 

3.12 

4.00 

3.66 

3.30 

 

GARCH-

M 

13.85 

13.60 

12.29 

11.38 

55.61 

61.56 

68.88 

70.43 

14.22 

15.06 

18.08 

21.74 

70.30 

65.56 

57.94 

50.52 

16.84 

20.83 

26.03 

33.18 

17.63 

6.99 

1.26 

0.00 

0.75 

1.88 

6.12 

13.29 

52.49 

44.09 

36.38 

31.53 

0.34 

0.66 

0.34 

0.17 

15.17 

5.27 

1.75 

0.27 

2.66 

0.98 

0.20 

0.44 

35.00 

31.30 

26.50 

23.08 

 

EGARCH 

15.72 

9.11 

3.42 

0.90 

32.78 

18.61 

6.84 

1.74 

0.00 

0.00 

0.00 

0.00 

0.17 

0.05 

0.00 

0.00 

12.03 

8.01 

3.90 

1.67 

29.11 

17.88 

7.20 

2.03 

1.37 

1.08 

0.91 

1.00 

2.83 

2.04 

1.27 

1.07 

21.83 

26.95 

25.16 

21.04 

11.93 

11.46 

10.41 

7.68 

46.00 

48.00 

50.00 

57.10 

44.57 

42.71 

41.28 

35.38 

 

GJR 

13.41 

14.73 

15.03 

16.61 

63.42 

69.84 

75.22 

75.61 

16.09 

15.92 

16.66 

15.08 

71.85 

66.57 

56.16 

44.14 

13.76 

12.79 

13.36 

12.88 

66.10 

64.35 

58.90 

52.30 

13.48 

14.85 

16.88 

20.30 

61.81 

54.99 

45.01 

34.33 

17.07 

11.17 

4.78 

1.97 

29.92 

14.91 

4.94 

0.55 

7.75 

7.35 

7.68 

8.74 

48.84 

45.94 

43.42 

34.45 

 

TGARCH 

1.21 

0.56 

0.10 

0.04 

19.06 

18.48 

17.99 

18.08 

0.06 

0.10 

0.42 

1.10 

19.24 

18.30 

18.01 

17.92 

0.68 

0.10 

0.02 

0.00 

17.39 

15.96 

15.56 

13.84 

11.90 

12.90 

12.54 

13.98 

25.60 

24.71 

26.29 

25.85 

39.18 

54.11 

67.42 

76.36 

26.98 

19.62 

11.06 

6.23 

4.67 

4.31 

4.31 

4.62 

22.68 

27.30 

28.93 

31.15 

Note: Four entries per cell are for sample sizes T = 250, 500, 1000, 2000 respectively. 
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Table 5a: Simulation Results Median of Distribution of r(j) for SIC. 
DGP GARCH ARCH GARCH-M EGARCH GJR TGARCH 

Fitted Model       

GARCH 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.48 

3.56 

10.68 

0 

0 

0 

0 

ARCH 13.38 

19.00 

27.26 

42.09 

45.95 

51.45 

56.22 

56.07 

14.16 

16.06 

18.58 

23.88 

5.93 

8.06 

10.02 

11.94 

4.73 

6.23 

9.93 

18.71 

5.31 

6.12 

7.35 

9.34 

GARCH-M 2.30 

2.57 

2.87 

3.16 

2.23 

2.49 

2.74 

3.01 

3.96 

8.64 

18.06 

34.87 

2.42 

2.76 

3.12 

3.36 

2.62 

3.81 

6.88 

14.36 

2.43 

2.77 

3.15 

3.62 

EGARCH 2.38 

3.49 

5.53 

9.23 

* 

* 

* 

* 

2.60 

3.69 

5.75 

10.36 

* 

* 

* 

* 

53.13 

2.46 

0.93 

1.06 

1.37 

1.55 

1.73 

1.49 

GJR 2.21 

2.48 

2.79 

3.08 

2.18 

2.48 

2.77 

3.17 

2.19 

2.52 

2.88 

3.25 

2.22 

2.49 

2.80 

2.98 

1.77 

2.03 

3.44 

7.34 

2.25 

2.54 

2.79 

3.03 

TGARCH 4.55 

5.17 

5.80 

6.39 

4.57 

5.15 

5.72 

6.37 

4.58 

5.22 

5.89 

6.55 

4.28 

4.89 

5.41 

5.85 

2.67 

1.99 

0.89 

0 

4.15 

4.56 

5.10 

5.36 

* Indicates value in excess of 100. 

Note: Four entries per cell are for sample sizes T = 250, 500, 1000, 2000 respectively. 
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Table 5b: Simulation Results 90
th

 Percentile of Distribution of r(j) for SIC. 
DGP GARCH ARCH GARCH-M EGARCH GJR TGARCH 

Fitted Model       

GARCH 0.95 

0 

0 

0 

0 

0 

0 

0 

0.52 

0.83 

2.95 

8.78 

0 

0 

0 

0 

1.69 

3.90 

8.11 

17.04 

1.30 

1.18 

1.51 

2.61 

ARCH 29.69 

39.04 

50.65 

68.64 

* 

* 

* 

* 

28.98 

32.80 

37.05 

44.51 

8.20 

10.68 

13.40 

16.07 

6.92 

9.07 

14.89 

26.91 

7.67 

7.81 

9.64 

12.89 

GARCH-M 4.50 

3.30 

3.11 

3.42 

2.51 

2.91 

3.45 

4.43 

12.17 

21.99 

41.24 

76.19 

3.29 

4.43 

6.49 

10.75 

4.31 

6.76 

11.19 

20.50 

3.77 

4.16 

5.18 

6.82 

EGARCH 4.19 

6.26 

9.56 

15.34 

* 

* 

* 

* 

7.92 

15.70 

37.27 

76.02 

* 

* 

* 

* 

* 

* 

* 

* 

2.39 

2.68 

2.98 

3.23 

GJR 2.89 

2.70 

3.00 

3.29 

2.45 

2.85 

3.44 

4.37 

2.44 

2.82 

5.25 

11.43 

2.80 

3.38 

4.16 

5.36 

3.40 

4.96 

8.06 

14.45 

3.20 

3.68 

4.68 

6.84 

TGARCH 4.83 

5.40 

6.00 

6.61 

4.82 

5.50 

6.24 

7.28 

4.81 

5.50 

8.27 

14.80 

4.87 

5.66 

6.63 

7.84 

4.69 

4.66 

4.59 

4.37 

4.99 

5.53 

6.75 

9.41 

* Indicates value in excess of 100. 

Note: Four entries per cell are for sample sizes T = 250, 500, 1000, 2000 respectively. 

 

 

 

 

 


