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In this paper we investigate the commonly used autoregressive filter method of adjusting 

appraisal-based real estate returns to correct for the perceived biases induced in the appraisal 

process. Since the early work by Geltner (1989), many papers have been written on this topic but 

remarkably few have considered the relationship between smoothing at the individual property 

level and the amount of persistence in the aggregate appraised-based index. To investigate this 

issue in more detail we analyse a large sample of appraisal data at the individual-property level 

from Investment Property Databank (IPD). We find that commonly used unsmoothing estimates 

at the index level overstate the extent of smoothing that takes place at the individual property 

level. There is also strong support for an ARFIMA representation of appraisal returns at the 

index level and an ARMA model at the individual property level. 
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1.  Introduction 

The treatment of appraisal-based returns has received significant attention in real estate 

research. Evidence from a review of real estate articles suggests that research on this topic 

dominates the citation list in real estate journals (Domrow and Turnbull, 2004). While an 

emerging strand of research has focused on transaction-based returns series (see Fisher, Gletner 

and Pollakowski 2007), the use of appraisal-based returns remains common in the academic 

literature
4
 and is still widely present in commercial research applications. 

However, there is a widespread belief among academics that such appraisal-based returns 

do not accurately represent the underlying dynamics of commercial real estate returns because 

biases are introduced in the valuation process by appraisers. As explained in Geltner (1997) and 

Bowles et al. (2001), appraisers tend to review past estimates and embed that old information 

into their estimates, thereby dampening volatility in their price estimates. This view is based on 

the well known findings of Quan and Quigley (1991) and also confirmed empirically in Clayton, 

Geltner and Hamilton (2001). Other factors also induce econometric problems in appraisal-based 

indices, such as aggregation, and these issues have been discussed in Geltner (1993a) and in 

Bond and Hwang (2007). 

The general response to this problem has been, in most cases, the application of a 

statistical filter to the appraisal-based returns to remove all or part of the autocorrelation in the 

series. The corrected or ‘unsmoothed’ series is then believed to reflect the dynamics in the ‘true’ 

returns process more accurately. The most common statistical filtering procedures are based on 

Geltner (1991, 1993b) and Fisher, Geltner and Webb (1994). More recent work has been 

                                                 
4
 Particularly for research on countries outside of the US. 
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conducted by Cho, Kawaguchi and Shilling (2003), Booth and Marcato (2004a, 2004b), 

Edelstein and Quan (2006) and Bond and Hwang (2003, 2007), and a survey of the literature has 

been provided by Geltner, MacGregor and Schwann (2003). However, work on smoothed returns 

is not confined to real estate and is also discussed in other asset classes, such as hedge funds, by 

Getmansky, Lo and Makarov (2004). 

In contrast to the extensive volume of research on this topic and the many ‘unsmoothing’ 

procedures that have been suggested, there has been little research investigating the statistical 

characteristics of an aggregate performance index and its relationship to the underlying property 

return process. Exceptions to this include Giacotto and Clapp (1992) who provide Monte Carlo 

evidence on appraisal smoothing behavior, and Edelstein and Quan (2006) who compare 

appraisal returns with transaction information to assess the impact of smoothing. 

The contribution of the current paper is to investigate the effects of smoothing at the 

individual and index levels for appraisal-based return series, and to identify the nature and 

existence of econometric problems common to such series. To do this we utilize data on 

individual property returns from the Investment Property Databank (IPD) for UK commercial 

real estate. This dataset is very similar to the NCREIF data commonly used in US research. 

Because of the similarity of construction methods it is believed that conclusions derived from 

using UK data would shed light on future studies using NCREIF data or similar appraisal-based 

data in other countries.
5
 

Our methodology uses Monte Carlo simulations and bootstrapping techniques on a 

                                                 
5
 The IPD databank includes commercial real estate properties that cover approximately 50% of the overall 

investible market and is available with a monthly frequency.  On the other hand, the NCREIF data are available at 

the quarterly frequency and include residential properties. However, there is little difference in the valuation process 

between the two datasets. 
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sample of individual property returns to generate an aggregate index series. Knowing the 

individual property returns allows us to form and examine the ‘true’ underlying returns process 

for the index. This method is similar to those of Giacotto and Clapp (1992) and Edelstein and 

Quan (2006). The procedure clearly shows some intriguing issues that, to our knowledge, have 

not been well discussed in the literature. 

We find several interesting results. First, the smoothing level in an appraisal-based index 

is not as large as in previous studies. Using a monthly frequency, we find that, at the individual 

property level, the smoothing parameter is as low as 0.14 when only smoothing is allowed for, 

while it could be up to 0.43 when both smoothing and nonsynchronous appraisal are considered. 

Therefore, the usual smoothing coefficient (e.g. 0.8-0.9) estimated from an appraisal-based index 

is not supported by the smoothing level of individual properties. Second, we find evidence of 

nonsynchronous appraisal. The nonsynchronous appraisal problem arises when appraisers value 

properties (or use information for valuation) at irregular points of time. 

We propose three explanations for the large difference in the smoothing level between 

individual properties and an index constructed with these individual properties. One possibility is 

that the sample estimates are noisy because of the small number of observations for many 

individual properties. Using simulations we show that when the number of observations is small, 

e.g., 60, the estimated smoothing level of individual properties appears to be lower than the true 

level or even negative. A second possibility is that aggregation effects exist as suggested by 

Bond and Hwang (2007). When individual property returns are ‘smoothed’, the index 

constructed by cross-sectionally aggregating these individual properties shows a higher level of 

smoothing. Finally, we propose the possibility of a highly persistent unobserved common factor 

in commercial real estate returns. Then, although the smoothing level of individual properties is 
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low, the aggregated process would display a high level of persistence, driven by the persistent 

common factor (since the idiosyncratic components of individual properties are expected to be 

canceled out by aggregation). 

Our study has important implications for both academics and practitioners. It is likely that 

commonly used statistical filtering procedures could over-unsmooth the appraisal index. The 

level of smoothing (assuming market efficiency) commonly suggested for a monthly appraisal 

index (around 0.9) seems to be too large. Individual properties do not show such a high level of 

smoothing, nor could any cross-sectional aggregation procedure or estimation bias in small 

samples be completely responsible for such a high level of smoothing. Our results also suggest 

that when analyzing property returns, different unsmoothing methods should be used for 

individual property data and for the index. For example, for an investor who tries to calculate an 

optimal portfolio including a few real estate properties together with other assets (such as 

equities, bonds, etc), appraisal-based returns of the properties should be unsmoothed with an 

ARMA(1,1) model. On the other hand, institutional investors who hold a large number of real 

estate assets should unsmooth the overall performance of these assets with an ARFIMA model to 

obtain an optimal asset allocation. Otherwise, the portfolio of real estate assets would be 

over-unsmoothed because the smoothing level estimated with an ARMA process is in most cases 

higher than the one computed with an ARFIMA model.     

The layout of the paper is as follows. The next section discusses the unsmoothing 

problem and provides a brief overview of the related literature. Section 3 describes the 

methodology used in this study and the sampling procedure for the individual IPD property 

returns. Section 4 investigates three explanations for the apparent smoothing difference between 

individual property and index returns. Section 5 concludes the paper. 
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2. Smoothing in Real Estate Returns 

The work on smoothing in appraisal-based real estate returns is often motivated by the 

apparent low historical volatility relative to mean returns on indices such as NCREIF in the US 

or the IPD index in the UK. This smoothness looks particularly evident when the ratio of mean 

return to standard deviation for real estate is compared to those of other asset classes such as 

equities or bonds. The academic arguments for the presence of smoothing in individual asset 

returns is based on the work of Quan and Quigley (1989, 1991). Empirical approaches to 

unsmoothing aggregate or benchmark real estate indices have previously been suggested by 

Blundell and Ward (1987), Geltner (1989) and Ross and Zissler (1991). Extensive summaries of 

the smoothing literature can be found in Geltner and Miller (2001) and Geltner, MacGregor and 

Schwann (2003), to which the interested reader is referred for a detailed background to the 

smoothing debate. It is important to point out that not all researchers agree with the widely 

accepted view that smoothing is present in real estate data; for example, Lai and Wang (1998) 

discuss a number of criticisms of the existing literature on smoothing. 

We first describe asset returns at the individual and index levels as in Bond and Hwang 

(2007). Rather than repeating that derivation, we summarize the presentation here and refer the 

interested reader to the original article for a detailed explanation. Under the assumption that asset 

returns follow a mean plus noise process;  

            (1) 

where     is the log-return of asset   at time  ,     
   

      
    and    and    are the 

expected return and standard deviation of the log-returns per unit of time, respectively. Bond and 
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Hwang (2007) show that the return process of asset i will follow an ARMA(1,1) process,  

                                       (2) 

where      represents the asset return at time   and      
   

       
   in the presence of 

smoothing and nonsynchronous appraisal. Here, the AR parameter (   ) represents the level of 

smoothing and the MA parameter (  ) represents the level of nonsynchronous appraisal. Further, 

in considering the aggregation of individual asset returns it can be shown that under the 

assumption that the AR parameters (smoothing levels) of individual assets follow a Beta 

distribution, then we have the following ARFIMA(0, ,1) representation of aggregate real estate 

returns: 

                          (3) 

where   is the market-wide, common factor. In this model, the long memory parameter   of 

an index return series represents the average smoothing level of individual property returns 

whereas   represents the average level of nonsynchronous appraisal.
6
 Therefore, as the overall 

smoothing level (    ) of individual properties increases in equation (2), we would expect   in 

equation (3) (aggregate smoothing level) to approach one. 

We extend Bond and Hwang (2007) by modelling the dynamics of individual asset 

returns (   ) with multiple factors. Let us assume that individual asset returns are modelled with 

multiple factors, such that  

            
 
         (4) 

where     represents the realisation of factor k at time t, and     is idiosyncratic error. The 

                                                 
6
 Bond and Hwang (2007) show that when     is iid normal and     follows a Beta distribution, nonsynchronous 

appraisal at the index level represents aggregated nonsynchronous appraisal of individual assets: i.e.,         , 
where       represents cross-sectional expectation. However, if these assumptions are not satisfied, the relationship 

between   and    may not hold.  



8 

 

factors may include type and location or other macroeconomic variables.
7
  

By combining (4) with (1), we can obtain the following multi-factor model:  

               
 
       . (5) 

When the multifactor model is cross-sectionally aggregated, the index return is 

             

                   
 

   
 

               
 
   , (6) 

where       represents cross-sectional expectation, and we have 

               
 
     (7) 

In other words, when we assume that individual asset returns are modelled with multiple factors, 

the innovation in the market index return is also a function of these factors. For some factors, 

          and thus these factors do not appear in the market index, whereas other factors 

matter at both the individual and market level. Therefore, even if the market-wide, common 

factor in (3) becomes a linear function of multiple factors as in (7), the ARFIMA(0,d,1) model in 

(3) holds regardless of the factor structure.   

In practice, however, the factors (    ) are not iid normal. For example, many 

macroeconomic variables, such as interest rates, economic growth and consumption, are highly 

autocorrelated. In order to model the persistence of these fundamental variables, let us assume 

that these factors follow a simple AR(1) process with autocorrelation coefficient equal to   : 

                                                 
7
 Although multi-factor models are well defined theoretically (Ross, 1996), it is not easy to identify factors in 

practice. As in Chen, Hsieh and Jordan (1997) macroeconomic variables can be used as proxies for factors in real 

estate properties. Alternative methods to obtain factors would be using factor analysis or characteristics of properties 

as in Fama and French (1992). 
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               . Using this simple AR(1) process in equation (7), we obtain an AR(1) 

process for     

             , (8) 

where the AR coefficient (  ) represents the persistence level of the market-wide common 

factor and                
 
     is the innovation of the market-wide, common factor at time 

 . Then the index should be modelled by the ARFIMA(1, ,1) process;
8
  

                                 (9) 

Moreover, if both         and     time-vary as in Jagannathan and Wang (1996), we need a 

more complex nonlinear model.
9 

 

While there are strong theoretical arguments to favor the ARFIMA model of aggregate 

real estate returns as a basis for unsmoothing real estate returns, it is necessary to provide further 

evidence of the suitability of the assumptions made to develop the model and also to examine the 

performance of the model compared to the standard representation of real estate returns. To 

provide this evidence we first turn to an analysis of individual appraisal returns for the properties 

that comprise the benchmark monthly IPD index in the UK. Using this information to calibrate 

the model, we provide simulation evidence to assess the suitability of the ARFIMA model to 

unsmooth appraisal-based returns. 

 

3. Data and Smoothing Level 

3.1 Data 

                                                 
8
 We can very easily extend the model for ARFIMA(p,d,1) when the market wide factor follows an AR(p) process. 

9
 We thank the referee for bringing this point to our attention. In this study we maintain the standard assumption 

that factors and factor loadings are not correlated in order to focus on the main purpose of the paper.  
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To conduct our analysis we collect information on the appraised value (capital gain) 

series of individual properties belonging to the IPD monthly index (appraisals are conducted on a 

monthly basis). As the focus of this paper is on appraisal smoothing, we concentrate on the 

capital gain series rather than the total returns that are calculated by aggregating capital gains and 

rental income. This is because rental income, which may represent a significant proportion of 

total return, is usually only subject to change once every five years in the UK,
10

 and thus does 

not reflect either the smoothing or nonsynchronous appraisal problem. 

The individual properties we use in our study are the constituents of the UK IPD Monthly 

Index since its inception in 1987 until 2005. We analyze properties that have been included in 

the index for at least 60 months, in order to minimize any adverse effects (i.e. small sample 

problems) that arise when the AR and MA parameters are estimated.
11

 After allowing for this 

restriction, we have a total number of 3,409 properties. We then filter out ‘outliers’ whose 

characteristics are significantly different from most of the others and thus could lead to 

inappropriate inferences in the analysis. We remove outliers using the following procedure: 

average returns of individual properties should be within three standard deviations of the average 

return of all properties, the monthly standard deviation of a property’s returns should be less than 

10 percent, and the maximum and minimum monthly returns should be less than 50 percent and 

                                                 
10

 The UK commercial real estate market works with five-yearly, upward-only rent reviews. This means that rents 

are only adjusted every five years. The adjustment is only upward if the market rent is above the current one. 

Otherwise, the rent does not change and is kept constant for another five-year period until the next rent review. 
11

 If we consider properties with longer measurement periods in the IPD, however, we acknowledge the fact that we 

may also be using a sub-sample of less-frequently transacted properties, and by implication properties with lower 

information content, compared to the overall IPD sample. In fact, if a property in the index is sold and subsequently 

bought by another player adhering to the IPD databank, the IPD records the purchased property with another 

identifier and it is then impossible to match the previous time series with the new one, even if the two refer to the 

same asset included in the index. By restricting the number of observations to a minimum of 60, we may 

consequently induce less volatility, thereby underestimating the degree of smoothing in the population of property 

returns. 
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larger than -30 percent, respectively. By applying this procedure we remove 166 properties. 

Other procedures for removing outliers are related to the estimates of the ARMA(1,1) model.
12

 

We face a large number of estimation errors or unusual estimates, and remove properties for 

which the standard errors of AR and MA estimates are larger than 5 or properties that have 

parameters that are not stationary or invertible. The additional filtering procedure removes 849 

properties, the largest proportion of which is due to the nonstationarity and noninvertibility 

conditions imposed (621 properties). As suspected, the filtered-out properties have smaller 

numbers of observations than other properties in the sample (median observation is 85 months). 

After applying these filtering procedures we have 2,394 properties that are used for further 

analysis.  

The statistical properties of the filtered and unfiltered individual property returns are 

summarized in Table 1. During the 18 years for which we have data available, the average 

filtered monthly return of the individual properties is 0.25 percent with an average standard 

deviation of 2.32 percent. The unfiltered returns of the 3,409 properties show the average 

monthly return of 0.29, which is similar to that of the filtered returns. However, skewness and 

kurtosis of unfiltered returns are extremely large, such that Jarque-Bera statistics are more than 

10 million. Our filtering procedure seems to be arbitrary, but these statistical properties indicate 

that AR and MA estimates of the unfiltered returns would be too noisy to be used for the analysis 

of smoothing.. The statistics of the relevant index returns are reported in the last three columns in 

the table. The average return and standard deviation of the IPD capital gains index (IPDC) are 

0.29 and 0.79 percent respectively, while the IPD total return index reports an average return of 

                                                 
12

 We use the ARMA(1,1) model rather than AR(1) model in order to select properties that can be used for both 

smoothing and nonsynchronous appraisal. 
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0.88 percent. Thus, rental income consists of 68 percent of the total return. By way of 

comparison, returns on the FTSE Real Estate index are far more volatile and fat-tailed. 

The average Sharpe ratio of individual properties is 0.12 (or in annual terms, 0.4), which 

is far less than the ratio of 0.37 for the IPDC return. The difference is mainly due to the small 

standard deviation of the IPD capital gain return. This clearly shows that aggregation reduces 

volatility since idiosyncratic errors of individual properties are cancelled out by aggregation. 

Therefore, the high Sharpe ratio of the index does not automatically suggest that individual 

properties have similar Sharpe ratios. When we include rental income, which is fixed in most 

cases, individual properties have an average return of 0.88 percent with average standard 

deviation of approximately 2.32, giving a Sharpe ratio of 0.38. But this is still far less than the 

Sharpe ratio of 1.14 obtained from the IPD total return index; the Sharpe ratio of individual 

properties is approximately one third of that of the index. 

 

3.2  Smoothing at the Individual and Index Levels 

To analyze the issue of smoothing in real estate returns, we first estimate the parameters 

for an AR(1) process for the 2,394 individual properties selected in our sample. The AR(1) 

process models only the impact of smoothing. The kernel density of the estimated AR 

parameters is shown in Figure 1.
13

 The average value of AR parameters is only 0.14 with a 

standard deviation of 0.16 (see Panel B of Table 2). Around 16 percent of the estimated AR 

parameters are negative. The figure and statistics suggest weak evidence of smoothing at the 

individual property level; the estimated AR parameters are not significantly different from zero. 

                                                 
13

 We use a Gaussian kernel to empirically estimate the density function. 
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On the other hand, the AR estimate for the IPDC return shows a high level of persistence (i.e. the 

AR parameter estimate is 0.88, with standard error of 0.03; see Panel A of Table 2). 

One major problem with AR processes is that the estimated AR parameter is seriously 

biased downwards if there is a negative MA component. In other words, as discussed in Bond 

and Hwang (2007), when individual properties suffer from nonsynchronous appraisal problems 

in addition to smoothing, the true process follows an ARMA(1,1) process with a negative MA 

coefficient. In this case the AR(1) process is a misspecified version of the true ARMA(1,1) 

process, and the AR estimates obtained from the AR(1) model are biased downwards. Therefore, 

we estimate an ARMA(1,1) process for the individual property returns to obtain AR and MA 

parameters, each of which represents smoothing and nonsynchronous appraisal. Figures 1B and 

1C and Table 2 show some interesting patterns in the estimated AR and MA parameters. Firstly, 

the average value of estimated AR parameters is 0.43, which is around three times higher than 

that of the AR(1) process in Figure 1A. The density function is negatively skewed and the 

median is much higher (0.77). Thus the AR estimates from the ARMA(1,1) model suggest a 

much higher level of smoothing than those from the AR(1) model. Secondly, the average value 

of estimated MA parameters is -0.3 and the median is -0.58.
14

 As explained in Bond and Hwang 

(2007), these negative MA parameters suggest the existence of nonsynchronous appraisal. 

However, when the statistics from individual properties are compared with those of the index in 

Panel A of Table 2, the IPDC return still shows much higher levels of persistence. The estimated 

AR parameter is 0.95 from the ARMA(1,1) model.   

To conclude, this first part of our analysis suggests an intriguing set of results: both the 

                                                 
14

 We note that smoothing at the index level reflects ‘average’ smoothing at the individual level. Therefore, the 

difference between mean and median is less important in our study. 
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AR(1) and ARMA(1,1) models show a high degree of smoothing at the index level, but 

smoothing decreases significantly when we consider individual properties. Our results also 

indicate that different models may be required to investigate smoothing between individual 

properties and the index. In the remainder of the paper, we intend to explain the large difference 

in the smoothing levels and appropriate models for individual properties and the index.  

 

4  Some Explanations for the Smoothing Gap 

In this section we propose three explanations for the gap between smoothing levels for 

individual property data and the index. The first explanation concerns whether the large number 

of negative AR estimates observed (appraisal overreaction) actually represents the true 

probability density function of the individual AR parameters. We address this concern by 

showing the existence of estimation biases in relation to small samples. The second explanation 

refers to cross-sectional aggregation increasing the persistence level in the index, as proposed by 

Bond and Hwang (2007). The final explanation we investigate rests on whether underlying 

common factors in real estate are persistent. Although the extreme persistence at the index level 

can be partly explained by appraisal smoothing at the individual level, it also may be due to 

common factors that are highly persistent, as explained in section 2. 

 

4.1  Is Appraisal Overreaction Possible? 

In the sample estimates there are many negative AR estimates and positive MA estimates 

that are not consistent with smoothing and nonsynchronous appraisal, respectively. Appraisal 

overreaction suggests that appraisers overreact to information and higher valuations follow lower 
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valuations, and vice versa.
15

 We could apply Bayesian methods to estimate the empirical density 

functions. With a strong prior of no appraisal overreaction, we could remove the possibility of 

the bimodality in the posterior distribution. However, the strong prior is not an explanation for 

the empirical results of many negative AR estimates and positive MA estimates.  

In this subsection, we test if many negative AR estimates and positive MA estimates 

simply reflect estimation errors from short time series observations. Note that the AR and MA 

estimates are noisy and many of them are not significantly different from zero. Moreover, there 

may be biases in the estimates from the assets that have been included in the IPD index only for 

a relatively short period. In fact, we find that the correlation coefficient between AR estimates 

and the number of observations is positive and significant (0.183). Thus, properties that have 

been included in the index for short periods are likely to show lower or negative AR estimates. 

Figure 2 shows that the majority of properties have less than 150 months of observations and this 

could create small sample problems in our estimates. If we only consider properties that have 

stayed in the index for longer than 150 months, then Figure 3 shows that most of the AR and MA 

estimates are positive and negative, respectively. The median AR estimate is 0.83 and the 

median MA estimate is -0.67, both of which are closer to the AR and MA estimates of the IPDC 

index in Table 2. This empirical result raises the possibility that small samples create a 

downward bias in AR estimates and an upward bias in MA estimates. 

We hypothesize the possibility of estimation bias for the properties that have fewer 

monthly observations. In order to test the hypothesis, we perform simulations as follows. We 

generate 1,000 ARMA(1,1) series under the assumption that AR and MA parameters are 

                                                 
15

 Figure 1B and 1C may even be interpreted as bimodality or a mixture model. We tried triangular, uniform kernel, 

and others in addition to the Gaussian kernel. However, the large probabilities of negative AR estimates and positive 

MA estimates still exist.  
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distributed as in Figures 3B and 3C. To explain smoothing we only allow positive AR 

parameters. Each ARMA(1,1) series is generated to have 60 observations since our purpose is to 

evaluate the small sample bias. For the generated ARMA(1,1) series we estimate AR(1) and 

ARMA(1,1) models, and report kernel densities of the AR and MA estimates in Figure 4. 

The AR estimates from the AR(1) process hardly show any difference between Figures 

3A and 4A. On the other hand, for the ARMA(1,1) process, Figures 4B and 4C show a clear 

difference from Figures 3B and 3C, respectively. Even if the true AR parameters have the mass 

around 0.83 and are not negative (Figure 3B), the small sample estimates of AR parameters have 

many negative AR estimates. Similarly, the estimates of the MA parameter are upward biased.  

Therefore, the distributions of AR and MA estimates in Figures 1B and 1C are affected 

by a large number of small observations. The number of the properties that show the large 

negative AR and positive MA estimates is close to zero for the properties with longer time series 

(150 time series observations, see Figure 3B and 3C). However, it increases significantly for the 

properties with short time series (60 time series observations, see Figure 4B and 4C). Both cases 

indicate that the bimodality of the density functions is likely to come from the estimation errors 

from properties with short time series observations. Taking into account the downward bias in 

AR estimates implies that we could have a higher level of smoothing than suggested by the 

original individual AR estimates. However, our choice of 60 observations provides an extreme 

case and thus in reality the effects of the small sample bias would be smaller than those in our 

simulations. 

 

4.2  The Effects of Cross-sectional Aggregation 

Bond and Hwang (2007) suggest that the persistence level of an index (a 
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cross-sectionally aggregated process) is not necessarily equivalent to the average persistence 

level of individual properties. When there is smoothing and thus AR parameters are positive, an 

index created by aggregating the individual AR processes becomes more persistent and thus the 

smoothing level calculated with the index could be inflated. In order to investigate whether 

cross-sectional aggregation increases the persistence level of the index, we construct an index 

return series by aggregating the 2,394 AR(1) series, each of which is generated with the 

estimated AR parameters in Figure 1A. For the constructed index return series, we estimate 

AR(1) and ARMA(1,1) models. The procedure is repeated 1,000 times and the results are 

reported in Panel A of Table 3. 

The estimated AR parameter for the pseudo index returns is 0.13 on average, which is 

similar to the average value of the AR parameters of the individual properties (0.14). The result 

indicates that if the AR(1) process represents the true process for the measure of smoothing, then 

we do not observe a high degree of smoothing (i.e. 0.88) at the index level by aggregation. The 

ARMA(1,1) model also does not support the high level of persistence; its average AR estimate 

increases by 0.1 but it is not significant. These two models of individual asset returns do not 

explain why we observe the high level of persistence in the IPD capital gain index. 

We repeat a similar technique, except this time using an ARMA(1,1) as an underlying 

model. An index return series is created by aggregating the 2,394 ARMA(1,1) series, each of 

which is generated with the estimated AR and MA parameters in Figures 1B and 1C respectively. 

For the constructed index return series, we estimate the AR(1) and ARMA(1,1) models. The 

procedure is repeated 1,000 times and results are reported in Panel B of Table 3. As explained in 

Bond and Hwang (2007) we observe larger average values of the AR and MA parameters from 

the simulations than the true values in the first two columns. However, because of the large 
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number of negative AR parameters we report in Figure 1B, the upward bias does not appear as 

severe as predicted by Bond and Hwang (2007). Interestingly, the AR parameter from the AR(1) 

process is still very low (0.14). 

The results in Table 3 suggest that some of the high smoothing level in the index can be 

explained by cross-sectional aggregation. Cross-sectional aggregation of individual asset returns 

increases smoothing levels at the aggregate level by 0.10 to 0.15. However, it is possible that the 

difference between the two degrees of persistence (i.e. individual property vs index levels) is 

explained by both the cross-sectional aggregation and the estimation bias we analyzed in the 

previous section. Either explanation does not seem to resolve the difference between smoothing 

at the individual property and index level, but a combination of the two may well represent the 

answer. 

 

4.3  Persistent Common Factors 

Another possible explanation is that there may be unobserved common factors that are 

highly persistent. When individual assets are cross-sectionally aggregated, idiosyncratic errors 

will disappear and only common factors survive the aggregation as in equation (7). Therefore, 

the market-wide error term,   , consists of multiple common factors. Even if appraisals fully 

reflect all available information (no appraisal smoothing), we would still observe a high level of 

persistence in the appraisal-based property returns if the common factors are highly 

autocorrelated; common factors may reflect changes in factors that move slowly over time. 

To investigate the effects of the persistence of common factors on the persistence at the 

index level, we simulate the ARMA process in (2) with a common factor. Note that the 

innovation of individual asset returns,    , in (2) is not iid any more, but includes common 
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factors that are persistent and an idiosyncratic error. For simplicity, we assume that there is only 

one common factor, i.e. K=1 in equation (7). Then we have               and thus 

      
        using (4). In order to analyze the effects of the persistence of the common 

factor on the persistence at the index level, we assume that the common factor (  ) follows an 

AR(1) process as in (8).  

In our simulation, we first generate the persistent common factor as 

               

where we set       , 0.3, 0.5, 0.7, and 0.9, and          . Once the persistent market-wide 

factor is generated, we generate the innovation     of individual assets using 

       
       , (10) 

which we obtain from equation (4) when there is only one factor. We set the distributions of   
  

and     as follows. We set   
         

  , and try different values for     but the results do not 

change in a meaningful way.
16

 Thus we report the results with          The common factor 

as a proportion of the innovation is set to 30 percent since the standard deviation of the IPD 

capital gain index return is around 30 percent of that of the individual properties. In other words, 

if we treat the IPDC return as a common factor, its standard deviation is around 30 percent of the 

one of individual property returns.
17

 Therefore, we scale    and     as follows:              

and                Under the assumption that there are both smoothing and nonsynchronous 

appraisal effects, we generate 2,394 ARMA(1,1) processes, each of which has 225 observations 

with the estimated AR and MA parameters as in Panel B of Table 3, and then cross-sectionally 

                                                 
16

This is because         regardless of   
   We set         since the factor  

 
 is the market factor, similar 

to beta in a CAPM framework. 
17

We also used different combinations of idiosyncratic errors to common factor, but the results do not change in a 

meaningful way. 
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aggregate the 2,394 AR(1,1) processes to create an index.  

 Once the process is generated, we estimate AR(1), ARMA(1,1), and ARFIMA(1, ,1) 

models. We repeat the generation and estimation procedure 1,000 times and report the results in 

Table 4. Note that when the common factor follows an AR(1) process with the AR parameter 

  , the index follows an ARFIMA(1, ,1) process analytically, where the AR parameter shows 

the persistence level of the unobserved common factor,   , the long memory parameter   

represents the level of smoothing in individual properties, and the MA parameter represents 

nonsynchronous appraisal. 

The last row of Panel A of Table 2 reports that when the average smoothing level of 

individual properties is estimated with the index, it is 0.32. The persistence of the common factor 

is 0.61, and the nonsynchronous appraisal effect explains the negative MA of -0.29. When the 

average smoothing level of individual properties is estimated with individual properties, Panel B 

of Table 2 shows that it is 0.43, which is close to 0.32. The results of our simulation in Table 4 

indicate that when    is close to 0.9, the estimates of the ARFIMA(1, ,1) model in Panel A of 

Table 2 can be obtained. As in Section 4.1, when only positive AR (and negative MA) 

parameters are allowed to generate ARMA(1,1) processes, the long memory parameter  , which  

represents the average level of appraisal smoothing for individual properties, would become 

much higher. 

Therefore, an unobserved common factor could explain the difference in the smoothing 

level between individual properties and the index. The close comparison between the simulation 

and estimation results indicates that the unobserved common factor could be highly persistent, 

while at the same time having a low level of smoothing at the individual property level (e.g. a 

coefficient of d of less than 0.5). 
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5  Conclusion 

This paper has investigated the suitability of widely used stochastic representations of 

real estate returns and in doing so we have attempted to explain some of the ‘stylized facts’ of 

real estate returns at an individual property level and an aggregate index level. This is important 

as many of the unsmoothing procedures used by researchers are based on assumptions about how 

appraisers’ behavior impacts reported individual property returns, but are at the same time almost 

always applied to aggregate index returns. We believe that applying these unsmoothing methods 

at the index level severely overestimates the implied level of smoothing that actually takes place 

at the individual property level. 

Our analysis of individual property-level returns identifies an intriguing difference in 

smoothing between individual property and index level returns. We observed small degrees of 

smoothing at the individual property level and yet a high level of persistence in aggregate index 

returns. This means that models of appraisal smoothing that apply AR filters to the aggregate 

index will overstate the extent of smoothing and may give misleading information about the 

nature of ‘true’ real estate return processes. We investigated three possible explanations for this 

difference. 

The first explanation concerned the extent to which estimation errors (in particular, small 

sample biases) may have impacted the estimates of the stochastic processes at the individual 

property level. These biases may have underestimated the extent to which smoothing is a 

problem at the individual property level. We found some evidence to suggest that the downward 

bias in the smoothing parameter is greater for properties with fewer observations. As many 

properties included in the IPD Monthly index had only been constituents for less that ten years, it 
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is possible that this could account for some of the discrepancy observed. Morever, our results 

indicate that property researchers outside the US, UK, or other countries where time series are 

long enough for analysis, need to minimise small sample biases. Advanced econometric tools 

such as bootstrapping or Bayesian methods that incorporate experts’ opinion could be useful for 

this purpose. 

The second explanation referred to the fact that the aggregation of individual property 

returns leads to high levels of persistence at the index level. Using the work of Bond and Hwang 

(2007) we considered the process of aggregation and found that, while this can account for part 

of the difference between smoothing at the individual property level and persistence at an index 

level, it may not account for all of it. 

Finally, we investigated the possibility that the stochastic process underlying individual 

appraisal-based property returns is more complex than previously thought. While most of the 

literature has focused on the autoregressive component of smoothed returns, and recent 

consideration has been given to an ARFIMA process to capture both smoothing and 

nonsynchronous appraisal, there may be evidence of common factors that are highly persistent. 

On the statistical evidence presented here, this explanation also describes the difference between 

the low level of smoothing at the individual property level and the high persistence in the 

aggregate index. If this model is appropriate, it would have important implications for our 

understanding of the property market at the micro level and would further raise questions about 

market efficiency and the nature of the appraisal process. 

In terms of advice to researchers on using unsmoothing procedures, there is strong 

evidence that simple AR filtering models are not appropriate. There is some evidence to support 

the use of the ARFIMA representations put forward by Bond and Hwang (2007). This class of 
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model is the only one that goes some way toward capturing the complexity of the relationship 

between individual property returns and the aggregate real estate index. Between several models, 

the ARFIMA (1, ,1) seems best able to replicate the persistence in the aggregregate index while 

also being most consistent with the level of appraisal smoothing found in our analysis of 

individual property returns. However, further work is required to understand the nature of the 

process that could give rise to a common factor representation of real estate returns.  
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Table 1  Statistical Properties of Individual Property Returns  
   

    
   

   

  

Capital Gains of Individual Properties 
Indices 

Unfiltered Returns (3409 Properties) Filtered Returns (2394 Properties) 

Mean 
Standard 

Deviation 

Number of 

Observations 
Mean 

Standard 

Deviation 

Number of 

Observations 

IPD Capital 

Gain Index 

IPD Total 

Return 

Index 

FTSE Real 

Estate 

Index 

 Mean 0.29 2.81 104.09 0.25 2.32 107.96 0.29  0.88  0.95  

 Median 0.28 2.23 94.00 0.25 2.12 99.00 0.22  0.82  1.29  

 Maximum 17.10 163.87 225.00 1.77 8.42 225.00 2.88  3.61  18.01  

 Minimum -3.28 0.20 60.00 -1.76 0.50 60.00 -2.24  -1.76  -30.87  

 Std. Dev. 0.61 4.39 37.38 0.37 0.99 38.58 0.79  0.77  5.79  

 Skewness 10.89 23.75 1.27 -0.24 1.30 1.15 0.32  0.25  -0.88  

 Kurtosis 272.29 737.04 4.39 4.34 5.55 3.93 0.75  1.21  3.69  

 Jarque-Bera 1.0E+07 7.7E+07 1,184.5 201.3 1,320.0 610.6 9.2 16.0 156.7 

 Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  

Autocorrelation 

with Lag 1             
0.88  0.88  0.17  

Note: The individual properties are the constituents of the UK IPD index, which have been used to construct the IPD index from 1987 to 2005. 

We take properties that have ever been included in the index for at least 60 months. With this restriction we initially take a total number of 3409 

properties, and report properties of capital gain returns of individual properties in the first three columns of the table. We also filter out 'outliers' 

whose properties are significantly different from most of the others. Outliers are removed with the following procedure. Average returns of 

individual properties should be within the three standard deviations of the average returns, monthly standard deviation of property returns 

should be less than 10 percent, and maximum and minimum monthly returns should be less than 50 percent and larger than -30 percent 

respectively. Using estimates of the ARMA(1,1) model we also remove properties for which the standard errors of AR amd MA estimates are 

larger than 5 or properties that are not stationary or invertible. After applying these filtering procedures we have 2394 properties that are used 

for our analysis. 
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Table 2  Estimates of AR(1) and ARMA(1,1) Models 

      A. Estimates for the IPD Capital Gain Index Returns 

  AR Parameter MA Paramater d Parameter 
AR3 

Parameter 
AIC 

AR(1) Process 
0.881       0.872 

(0.031)         

ARMA(1,1) Process 
0.946 -0.315 

 
  0.786 

(0.022) (0.059)       

ARFIMA(1,d,1) 

Process 

0.930  -0.427  0.136    0.790  

(0.032) (0.124) (0.141)     

ARFIMA(1,d,1) 

Process 

0.609 -0.292 0.319 0.236 0.788 

(0.179) (0.140) (0.152) (0.111)   

      
B. Estimates for the 2394 Individual Properties Returns 

  Estimated Models 
  

  AR(1) Process ARMA(1,1) Process 

  
  AR Parameter AR Parameter 

MA 

Paramater 

  Mean 0.141 0.425 -0.296 

  Median 0.130 0.770 -0.580 

  Standard Deviations  0.156 0.631 0.601 

  Skewness 0.218 -1.078 0.918 

  Kurtosis 4.161 2.586 2.325 

  
Notes: The models in panel A are estimated using 225 monthly returns of the IPD Capital Gain index 

from January 1987 to September 2005. In panel A we add an AR(3) component to model seasonality in 

the monthly IPD Capital Gain index returns, which arises on a quarterly basis. The estimates in panel B 

are calculated using 2,394 individual properties described in Table 1. 
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Table 3  Estimates of AR(1) Model and Simulated Index from AR(1) Process 

      A. Estimates from Simulated Index Returns Using AR(1) Process 

  Data generating 

Process: AR(1) 

Process 

Estimated Models 
 

  
AR(1) 

Process 
ARMA(1,1) Process 

 
  AR Parameter AR Parameter 

AR 

Parameter 

MA 

Paramater 

 Average 

Estimate 
0.141 0.128 0.248 -0.145 

 Standard Errors 

of Estimates 
(0.156) (0.066) (0.354) (0.359) 

 

      B. Estimates from Simulated Index Returns Using ARMA(1,1) Process 

  
Data Generating Process: 

ARMA(1,1) Process 

Estimated Models 

  
AR(1) 

Process 
ARMA(1,1) Process 

  AR Parameter 
MA 

Paramater 

AR 

Parameter 
AR Parameter 

MA 

Paramater 

Average 

Estimate 
0.425 -0.296 0.138 0.565 -0.442 

Standard Errors 

of Estimates 
(0.631) (0.601) (0.073) (0.411) (0.422) 

      
Notes: The table summarizes the simulation results. We construct an index return series (225 

observations) by aggregating the 2,394 AR(1) series, each of which are generated using the estimated AR 

parameters. Error terms are drawn randomly from the normal distributions whose standard deviations are 

set to estimated standard deviations of residuals. For the constructed index return series, we estimate 

AR(1) and ARMA(1,1) models. The procedure is repeated 1000 times. 
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Table 4  Simulations for Common Factors 

          Persistence of 

Common 

Factor 

Estimated Models 

  
AR(1) 

Process 
ARMA(1,1) Process 

ARFIMA(1,d,1) Process 

  AR Parameter AR Parameter 
AR 

Parameter 

MA 

Paramater 

d 

Parameter 

AR 

Paramater 

MA 

Paramater 

Average Estimate 

0.100 

0.245 0.522 -0.305 0.123 0.103 0.002 

Standard Errors of 

Estimates 
(0.077) (0.291) (0.312) (0.243) (0.439) (0.410) 

Average Estimate 

0.300 

0.438 0.523 -0.109 0.079 0.264 0.079 

Standard Errors of 

Estimates 
(0.060) (0.159) (0.193) (0.273) (0.411) (0.315) 

Average Estimate 

0.500 

0.642 0.658 -0.032 0.121 0.488 0.019 

Standard Errors of 

Estimates 
(0.061) (0.100) (0.116) (0.307) (0.313) (0.270) 

Average Estimate 

0.700 

0.797 0.781 0.044 0.140 0.692 -0.007 

Standard Errors of 

Estimates 
(0.041) (0.054) (0.075) (0.294) (0.177) (0.230) 

Average Estimate 

0.900 

0.940 0.928 0.097 0.288 0.771 -0.028 

Standard Errors of 

Estimates 
(0.023) (0.029) (0.066) (0.279) (0.291) (0.204) 

        
Notes: The table summarizes the simulation results. We construct an index return series (225 observations) by aggregating the 2,394 

AR(1) series each of which are generated with the estimated AR parameters. Error terms are drawn randomly from the normal 

distributions whose standard deviations are set to estimated standard deviations of residuals. For the constructed index return series, 

we estimate the AR(1), ARMA(1,1), and ARFIMA(1,d,1) models. The procedure is repeated 1000 times. As in Table 2 ARMA(1,1) 

processes are generated using the estimated AR and MA parameters. 
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Figure 1A  Kernel Density of AR Estimates of AR(1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         
Statistics of AR Estimates 

 Mean Median  Std. Dev.  Skewness  Kurtosis 

 0.141 0.130 0.156 0.218 4.161 

 
         Figure 1B  Kernel Density of AR Estimates of ARMA(1,1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         
Statistics of AR Estimates 

 Mean Median  Std. Dev.  Skewness  Kurtosis 

 0.425 0.770 0.631 -1.078 2.586 

          Figure 1C  Kernel Density of MA Estimates of ARMA(1,1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         
Statistics of AR Estimates 

 Mean Median  Std. Dev.  Skewness  Kurtosis 

 -0.296 -0.580 0.601 0.918 2.325 
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Figure 2  Number of Observations 
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Figure 3A  Kernel Density of AR Estimates of AR(1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         Statistics of AR 

Estimates 

 Mean Median  Std. Dev.  Skewness  Kurtosis 

 0.166 0.166 0.121 0.145 2.956 

  

Figure 3B  Kernel Density of AR Estimates of ARMA(1,1) Process 
 

         

         

         

         

         

         

         

         

         

         

         

         

         Statistics of AR 

Estimates 

 Mean Median  Std. Dev.  Skewness  Kurtosis 

 0.675 0.830 0.435 -2.609 9.077 

  

Figure 3C  Kernel Density of MA Estimates of ARMA(1,1) Process 
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Figure 4A  Kernel Density of AR Estimates of AR(1) Process 

 

 
 

        

         

         

         

         

         

         

         

         

         

         

                Mean Median  Std. Dev.  Skewness  Kurtosis 

 True AR Parameters 0.181 0.173 0.112 0.328 2.981 

 Statistics of AR Estimates 0.156 0.150 0.166 0.051 2.961 

 
         Figure 4B  Kernel Density of AR Estimates of ARMA(1,1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

                Mean Median  Std. Dev.  Skewness  Kurtosis 

 True AR Parameters 0.797 0.840 0.163 -2.166 8.551 

 Statistics of AR Estimates 0.449 0.609 0.463 -1.156 3.447 

 
         Figure 4C  Kernel Density of MA Estimates of ARMA(1,1) Process 
 

 
 

        

         

         

         

         

         

         

         

         

         

                Mean Median  Std. Dev.  Skewness  Kurtosis 

 True MA Parameters -0.647 -0.700 0.200 1.572 6.370 

 Statistics of AR Estimates -0.301 -0.413 0.458 0.963 3.094 
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