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ABSTRACT

A near reatime flood detection algorithm giving a synoptic overview of the extent of
flooding in both urban and ruralemas, and capable of working during niginte and
daytime even if cloud was present, could be a useful tool for operational flood relief
managemenfThe paper describes an automatic algorithm usiglg resolutio Synthetic
Aperture Rada(SAR) satellitedata that builds on existing approaches, including the use

of image segmentation techniques prior to object classification to cope with the very
large number of pixels in these scenes. Flood detection in urban areas is guided by the
flood extent derivedn adjacent rural areas. The algorithnsuases that high resolution
topographicheight data are available for at least the urban areas of the scene, in order that
a SAR simulator may be used to estimate areas of radar shadow and layover. The
algorithm prove capable of detecting flooding in rural areas using Terra®AMth

good accuracy, classifying 89% of flooded pixels correctly, with an associated false



positive rate of 6%. Of the urban water pixels visible to TerraSAR5% were correctly
detected, wh a false positive rate of 24%. If all urban water pixels were considered,
including those in shadow and layover regions, these figures fell to 57% and 18%

respectively.

Index termsAlgorithms, hydrology, image processing, simulation.
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[. INTRODUCTION

Flooding is a major hazard in both rural and urban areas worldwide, and has occurred
regularly in the UK in recent times. The Wkods of 2007 caused the country’s largest
peacetime emergency since WWL. The impact of global warming means that the

probability of events of a similar scale happening in the futuirereasing2].

The Pitt Report set oud consider what leses could be learned from the 2007 floods
[3]. Amongits many recommendations, the report highlighted the need to hauemeal

or near reatime flood visualisation tools available to enable emergency responders to
react to and manage fasbving eventsand to target their limited resources at the
highestpriority areas. It was felt that a simple GIS that could be effectively updated with
timings, level and extent of flooding during a flood event would be a useful system to

keep the emergency servicesoimhed.

A near realtime flood detection algorithm giving a synoptic overview of the extent of
flooding in both urban and rural areas, and capable of working duringtmghtand
day-time even if cloud was present, cotidisbe a useful tool for operatial flood relief
management. The latest generation of very high resolution Synthetic Aperture Radar
(SAR) satellites now maksuch technology possiblé& near eattime algorithm might

allow the emergency services to view the -gegistered flood extenat very high
resolutionover the whole area evlaid on a base map a few hoafter overpass. This

could bedifficult to achieve by other means.



The vast majority of a flooded area may be rural rather than urban, butetyis
important to detect the urban flooding because of the increased risks and costs associated
with it. Flood extent can be detected in rural floods using SARs such as ERS and ASAR,
but these have too low a resolution (25m) to detect flooded streets in udsm a
However, a number of SARs with spatial resolutions as higBnar betterhave
recently been launched that are capable of detecting urban flooding. They include
TerraSARX, RADARSAT-2, and thefour COSMO SkyMed satellitesAn important

factor makingnear reatime operation possible is that accurate-gagstration carbe
performed rapidly. For example, the images from Terra3A¢&n be made available in
georegistered form to better than one pixel locational accuracy using precistedgew

of theorbit parameters4|.

In the absence of significant wind or rain, river flegdter generally appears dark in a
SAR image because the water acts as a specular reflector. A neameedlood
detection algorithm using a spbased automatic thresholdinprocedure applied to
multi-look singlepolarisation Terr8AR-X data has been implementatithe Centre for
SatelliteBased Crisis InformatioiZKI) at the German Aergmce CentreLR) [5].

This searches for water as regions of low SAR backscatter asirggiongrowing
iterated segmentation/classification approach, and requires minimal user interv&ntion.
further more generalutomaticchange detection methaging Markov image modéhg

on irregular graphéias been developed by the same authgjfsaphd applied to flood

detectionwith similar good success rural areas. Another automatic method for rural



flood detection combining radiometric thresholding with region growing is described in
[7]. A further method fo rural areas is described i8][ though this requires manual
intervention. A semtautomatic method for rural flood detection in mutemporal
COSMOSkyMed data using an electromagnetic scattering model is describ@dL0j. [
However, theséechniquesvould require modification to work iarban areas containing

radar shadow and layover.

A semtautomatic algorithm for the detection of floodwater in urban areas using
TerraSARX has also been developed previoudl§]| It uses the DLR SAR End@o-End
simulator (SETES) in conjunction with LIiDARLight Detection and Ranging)ata to
estimate regions of the image in which water would not be visible due to shadow or
layover caused by buildings and taller vegeta{ib?], [13]. Ground will be in radar
shadow if it is hidden from the radar by an adjacent intervening building. The shadowed
area will appear dark, and may be misclassified as water even if it is dry. In contrast, an
area of flooded ground in front of the wall of ailding viewed in the range direction

may be allocated to the same range bin as the wall, causing layover which generally
results in a strong return, and aspible misclassification offlooded ground as un
flooded. The algorithm is aimed at detecting ftbextents for calibrating and validating

an urban flood inundation model in an offline situation. It requires useractton at a
number of stagesncluding choosing training areas for water and-n@ater pixels, and

thisinvariably introduces an elemeof delay into the production of the final product.



The objective of this paper is to build on a number of aspects of the existing algorithms,
to automate the steps requiring manual interaction and to take advantage of the
availability of LiDAR data inthe urban area, in order wevelopa near reatime

algorithmthat for the near redime processing steps is almost completely automatic

II. DESIGN CONSIDERATIONS

The algorithm design assumes that high resol{tiddm) LiDAR data are available for at

least the urban regions in the scene, in order that the SAR simulator may be run in
conjunction with the LIDAR data to generate maps of radar shadow and layover in urban
areas. The algorithm is therefore limited to urbanoreg of the globe that have been
mapped using airborne LIDAR. However, in the UK most major urban areas in flood
plains have now been mapped, and the same is true for many urban areas in other
developed countries. It is further assumed that some formrobdply less accurate)
Digital Elevation Model DEM) is available for the adjacent rural areas also. This could
be LIiDAR data, but is more likely to be a lower resolution DEM constructed from map
data (e.gOrdnance Surveyd.S) Landform ProfileDEM), aitborne INSAR or Shuttle
SRTM data (the last being available for large areas of the glolbe).rdason for
including a DEMis that false alarms from areas of low SAR backscatter may be
generated from higher tfftooded ground (e.g. radar shadow due to trdms)these can

be suppressed using a height threshold associated with the DEM.



As in [11], the approach adopted involves first detecting the flood extent in the rural
areas, and then detecting it in the urban areas using a secondary algorithm guiéed by th
rural flood extent. It is welknown in image processing that an improved classification
can be achieved by segmenting an image into regions of homogeneity and then
classifying them, rather than classifying each pixel independently using-pixper
classifier. The use of segmentation techniques provides a number of advantages
compared to pepixel classification. Because of the high resolution of these SARs (up to
1m), individualregions on the grounchay have high spectral variances, reducing the
accuray of perpixel classifiers. In addition, because the segments created correlate well
with real regions of the earth’s surface, further objetated features such as object size,
shape, texture and context may be used to improve the classificatiorcgckufal], an

active contour model (snake) was used to detect homogeneous regions in the rural flood,
with the snake being seeded as a thin closed contour covering Hfleoded river
channel. However, snakes require manual intervention and involviaustidlsprocessing

when applied to high resolution images such as Terra%AlRstead, the approach used

for rural flood detection in %] and [ is adopéd, which involves segmentation and

classification using the eCogniti@evelopersoftware[14].

In [5] and [], classification is performed by assigning all segmented homogeneous
regions(objects)of the SAR image with mean backscatter less than a given threshold to
the class ‘flood’. Estimation of this threshold uses parts (tiles) of the image kwown t
contain water, invariably contaminated by substantial quantities efvater pixels. The

threshold is estimated from a mixture of two clusters having different backscatter



characteristics using an-mixing techniqueln this case the threshold is chogg using
the fact thaLiDAR data of the urban areaust be available (unlike ir5], [6]), and by
assuming thathese dataontain water regions, as will invariably be the cabbe water
regions will generally give no LIDAR return because they have tad as specular
reflectors that have generated no backscatter at the sehsserdgionscan be used as
training areas for water (after filtering out hi§AR backscattefrom small objects such
as boats). Similarly, it ipossible to select nemater taining pixels by searching in un
shadowed areas above the level of the flooding. A simplectass Bayes classifier using
the Probability Distribution Functions (PBffor water and newater canthen be used
to select the threshold, assuming equal gerobabilities for both classes. This removes
the need tadoptan unmixing approach, as well as the needsédect training pixels

manually.

[ll. STUDY AREA AND DATA SET

The data set used for this study is based upon-thel20-year flood that took place on

the lower Severn around Tewkesbury, U.K., in July 2007. This resulted in substantial
flooding of urban and rural areas, about 1500 homes in Tewkesbury being flooded.
Tewkesbury lies at the confluence of the Severn, flowing in from the northwest, and the
Avon, flowing in from the northeast. The peak of the flood occurred on July 22, and the

river did not return to bankfull until July 31].



On July 25, TerraSAK acqured a3m-resolutionStripMap image of the regioffrig.1),
showing incredible detail of the flooded urban ar@ag. 2). The TerraSARX incidence
angle was 24°, and the image was mlolbk ground range spatially enhanc@dhe HH
polaiisation mode chosemprovided good discrimination between flooded and Ron
flooded regionsq], [15]. At the time of overpass, there was relatively low wind speed

and no rain.

Aerial photos of the flooding were acquired &uly 24 and 2711, 14, and these were
used to validate the flood extent extracted from the Terra®ARage The data set also
includedLiDAR data(2m resolution, 0.1m height accuraof)the unflooded areawith
coincident LIDAR and aerigbhotography coveringhe two regions identifiedn Fig. 1.
Rectangular regioi\ covers the Tewkesbury urban area (2.6 x 2kanyg the LiDAR
data here were used to provid®igital Surface Model@PSM), which included building
and vegetation heights as well as the ‘bemeh’ heights contained in a DENRegion B
covers a larger more rural area along the Seweith fiorth-south extentl2.3km east
west exten6km), and the data here were used to validate the Terr@Saddd extent in
the rural arealn the rural areas outside rectangle A, @is. Landform Profile DEM
generated from 1:10000 map conto[&¥] and having 10m spatial resolution and 2.5m
height accuracy was used as an example of a lower resolution, less acé&ivatbad
might be employed in rural ared3nally, the dta set included O.8lastemapdata[17]

of roads, railways and embankments in the area, which would invariably be present in

any simple GIS used by the emergency services.



IV. METHOD

Processing is carried out firstly within the region covered by LIDAR includingiiban
area(i.e. rectangle A inig. 1) using SAR and LiDAR data +eampled to 1npixel size.

This resampling naturally does not generate any additional spatial resolution in the SAR
image, but has the effect of maintaining resolution during the r@gmming proces
ultimately performed in the urban flood detectid?rocessing is then carried out on a
lower-resolution (2.5 pixel sizg SAR imag w@vering the whole of i§.1 (13x 18 km),

in order to speed up processing over the larger. diea results for rectangle in the

lower resolution image are finally replaced with those obtained at higher resoiteps.

in the proessing chain are shown Hg. 3.

A. Higher resolution processinig rectangle A

Steps in thehigher resolution processing ¢haapplied to ectangle A include pre

processing operations carried out prior togmacquisition, and near rei@ine operations

carriedout after the geoegistered image has been obtained.

1) Pre-processing

a) Delineation of urban areasThe main urban areas adelineated. Currently this

process is performed manually as it is anm@&cessing operation that is not thotical.
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b) Calculation of radar shadow and layovefhe calculatios of radar shadow and
layover are pdormed using the LIDAR DSM11]. Substatial areas of urban flood
water may not be visible to the SAR because of the presence of radar shadow and layover
due to buildings or taller vegetatiobhe effect is described id1]] and illustrated in Fig.

5 of [11]. In summary, sections of the imageradar shadow will appear dark in the SAR
images, and may simulate water even if they arlaaded. Other sections of ground

may be subject to layover from adjacent structures such as walls, generally leading to a
bright return even if the ground is fided. The DLR SAR End to End SimulatorESTES

[12], [13] is used to &imae regions of the Ter@AR-X image in which water wilhot

be visible due to the presence of shadow or layoMee estimation of these regions is
purely geometrical, andses theLiDAR DSM of the scene’s surface as well as the radar
flight trajectory and incidence angle. Due to the fdett only boolean informatiorsi
required destbing whether or not a pixelsi affected by layover or shadow, no
simulation of ralistic backscatteng values $ necessaryl'he binaryimages for shadow

and layover e combined to form a single image showing thadstwv and layover
regions (kg. 4). In Fig. 4, TerraSARX is travelling approximately Nort&outh and
looking West. It can be seen that msisadow and layover occurs in streets parallel to the
satellite direction of travel, whereas streets perpendicular to this have less

shadow/layover.

c) Construction of compound DEMA\ compound DEM is constructed for rectangle A,

being the DSM in the urbaareasand the [EM in the rural areas of the rectaagin the

rural areas, buildingnd vegetatioheightsare removed from the DSM to form thé&M

11



using theprocessing algorithm of thEnvironmentAgencyof England and WaleEA)
[18]. The compound DEMsirequired because different processing is applied in the urban

and rural areas of rectangle A. The slope of tB&10s also calculated in the rural areas.

d) Identification of high land height thresholdh order to identify a set of pixels in
regions of high land that potentially contain no water, the hdlghtabove which lie

10% of pixels in the rural BM is calculated.

e) Segmentation of shadow/layov&he shadow/layover objects are segmented ubig
multi-resolution segmentatiorigorithm of the eCognitioevelopersoftware[14]. This
algorithm is used at several stages in the processing, and is based oactht Nret
Evolution concept of19]. This employs an iterated bottemp segmentatiorethnique
based on paiwise merging of adjacent regionshe merging is governed by local
mutual best fitting algorithm, which aims to achieve the lowest increase in object
heterogeneity by merging the two adjacent regions separated by the smallesedista
feature space determined by mean spectral and textural fedtueemniaximum allowable
heterogeneity of the objects is set by a wedmed scale parameter, homogeneity
criterionh, which is comprised of object spectral homogenejtgnd shape homogeneity
hs (he + hs = 10099, with hs in turn being made up of object mpactnesdcompactand
object smoothnedsmooth(Ncompactt Nsmooth= 10099. The larger the scale parameigrthe
larger are the image objects. As the segmentation led shadow/layover objects is
applied to the simple binary shadow/layover imégg. 4), the default settings of the

scale parameters are usdd= 10, hs = 10%, heompact = 10%,). Objects in shadow or

12



layover (i.e. dark in Fig. 4)are assigned to thehadow/layover classvhile all other

objects are set unclassified

f) Segmentation of potential water and high lafitie unclassified objects in the above
segmentation are further segmented by applying the -neshiution segmentation
algorithm to the ompound LIiDAR DEM, again using the default scale settings. Regions
containing water in the DEM will have unassigned heights, and will be represented as
individual objects in the segmentation. These are classified as potential water objects. At
the same tim, objects having mean heights above that for high Iagd that do not
contain unassigned heights (so that they are not water), and are not in shadow/layover
regions (so that they do not contain shadow having similar low backscatter to arater),

clas®d as high land.

2) Near Realtime Rocessing

g) Speckle filteringof SARsubimage Near realtime processing may begirs &oon as
the multilook georegistered TeaSARX image becomes awable. Following [, this
is first speckldfiltered using adaptive filtering to reduce salidpaper noise usinthe
GammaMAP filter of [20] with a window size of 3 x 3 pixel¥he speckldiltered data
are used for processing in the rural areas, though in the udmmthe original SAR data

are emplogd instead to maintain spatial resolution.

13



h) Identification of water and high land objecfEhe objects classed as potential water
and high land inhe multiresolution segmentation produced durisigp (f) of pre-
processing are segmented further usinghe speckldiltered SAR image. The
segmentation scale parameters were set by a process -@nttadror based on visual
interpretation of the segmentation results, in order to produce objects such as fields
corresponding to thosesible in the SAR imag No special interpretation skills were
required in this proces$t was found that good result®wdd be obtained using large

scale parameteth = 100, coupled with a largeshape homogeneityh{ = 40%) and

larger compactnesshfompact = 40%) than thedefault settingsin order to select for
compact objects thatere not ovessegmentedThese parameters were used in this and
subsequent mukliesolution segmeations in tle processing chain, and are vezlvas
constants that do not need to feset by tle user at least for this SAR data typ€he
‘potential water’ objects should be largely made up of water regions contaminated with
objects such as boats. Segmented water objects should have a relatively large area and
low mean intensity, while objects suas boats should have small area and high mean
intensity. An uncontaminated set ofvater objects could be obtained by selecting
‘potential water’ objects hamng areas greater than 186 amd mean intensities less than

100 DN units.

i) Calculation d meanSAR backscattahreshold The mean intensity threshold that best
separates water objects from nwater objects is calculated. For the water objects, a
histogram of pixel intensities is constructed by weighting the mean intensity of each

object by its aga(note that this is nathe same asonstructingthe histogram from the

14



intensities of the pixels making up the water objeds3imilar histogram is constructed
from the areaweighted mean intensities othe high land objects (assumed to be an
uncontanmated sample of newater objects)Both histograms are normalised to assume
equal prior probabilites for each clas$he threshold T giving the minimum
misclassification of water and navater objecs is calculatedfrom the measured
histograms From Kg. 5, the minimum error rate is obtained using a threshold T of 57
DN units. This approach takes into account the fact that objects are being claatiied

than the individual pixels making up the objects.

J) Flood detection in rural areas of rectangle This step begins with &hsegmentation
produced in step (f)containing shadow/layover, potential teaand high land objects.
Potentid water and high land objects are reclassified as unclassified, and adjacent
unclassified objects are merged together to reduce the number of olbjjaets.
unclassified objects arien segmented further using theecklefiltered SAR image,
employing multiresolution segmentation uginthe scale parameters of step. (Al
resulting objects with a mean SAR backscatter intensity less than or equal to the
threshold T are classed as ‘flood’. This step classifies the majority of the flooded area in

rectangle A.

k) Calculation of local waterline height threshold mafs a precursor to flood detection
in urban areas, a local wdiee height threshold map is calculated using initial flood
map derived irthe previous stept seems reasonable to assume thatewin the urban

areas should not be at a substantially higher level than that in the nearby rural areas.
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Unless there is significant ponding (for example, on the falling limb of the hydrograph),
there should be very littlevater at higher urbma levels. Hhwever unless a height
threshold is imposed, there could be a substantial false posateeof water at these
levels as shown if11]. The spatial variability of this threshold reflects the fact that
different parts of the area can be flooded to diffieheightsFor example, the waterline
height along the river Severn in the northwest of rectangle A was 0.5m higher than that
along smaller tributaries in the southedsk]| The method detects local &id waterline
heights in regions of low EM slope wthin a range of +1.5m of the mean water height,
and interpolates these heights over rectangleRActangle A is divided into four
guadrants, each of size 1.3 x 1km. Within each quadrant, waterlines are detected by
applying the Sobel edge detector to theaby flood mapBecause the flood map has
errors at this stage, edges will be present at the true waterlines, but also in the interior of
the water objects due to regions of emergemetagion andshadow/layover regions
(because these have been segmented out), as wadlbas the waterline due to higher
water alarmsTo increase the signdéb-noise ratio of true edges, a dilation and erosion
operation is performed on the water objects to elimisatee of the artefactsrior to

finding edges Water objects are first dilated by 40 pixels, then eroded by the same
amount. It is required that an edge pixel is present at the same location before and after
dilation and erosion. This tends to select faretrwaterline segments on straighter
sections of exterior boundaries of water objedis. suppress false alarms further,
waterline heights in regions of lowHM slope within £1.5m of the mean water height

are selectedl'he slope threshold must be set qhigh (0.25), because in a valléiling

event the waterlines may be on moderate rather than shallow dilopeder to find the

16



mean waterline height in the quadrant, a histogram is constructed of the waterline
heights, and theositions ofthe histogrammaxima are found, including that of the main
maximum. Generally, the mean waterline height in the quadrant is set to correspond to
the height of the main maximum. However, if any substantial maxima greater than half
that of the main maximum is presentaahigher height, the highest of these is chosen
instead.This latter rule copes with the situation where a substantial number of erroneous
low waterline heights in the interior of water objects have not been elimirfated

shows the histograms for tiNW and SE quadrants of rectanglggee Fig. 2)together

with the mean waterline heights calculated. The local mean waterline heights in the four
guadrants are interpolated to a height threshold image using bilinear interpofation.
guard height thresholdf 0.3 m is added to this image to allow a height toleraiifci.

was required to detect local mean water line heights in anuwatea oflifferent size to
rectangle A, the method should divide the area into-owmarlapping tiles of area about
1kn?, so that sifficient waterline heights would bavailable to construct a sensible

histogram in each tile.

l) Rural flood refinementThe segmentation of theral flood generated in step {§) then
refined. Shadow/layover objects in the rural areas are often adjacent to rows of trees
along field boundaries, which are likely to be flooded if they are adjacent to flood
objects. As a result, shadow/layover objects in rural arghsawelativeborder to flood

» 0.3 are reclassified as flooded, iterating until no further changes ddwairtelative
border of an object is the ratio of its shared border length with flood objects to its total

border lengthln a similar manner, unclassified objeatsrural areas that are long and

17



thin and adjacent to flood objects are often hedgerows that are likely to be flooded even

though emergent. Provided such object¥th D UHODWLYH BR dodtlie WR ITORR(
along a roadrailway or embankmentand hae either a lengthZLGWK UDWLR o RU
FR P S D FWQhey sreereclassified as floodethe compactness of an object is the

product of its length and width divided by its gr@md the compactness criterion is

included because in some cases hedgercwg alwvo perpendicular field boundaries join

to form an Lshapgd object with low length/widthratio but high compactnes3he

thresholds above were determined experimentalypugh results were not owerl

sensitive to themThese rules for shadow/layovancaunclassified objects proved more

effective than a rule requiring that the mean height of such objects be less than or equal to

that of the adjacent flood objects.

While floodwater usually appears dark compared to the surroundifftpasted land
becase of specular reflection from the smooth water surface, wind or rain may cause
roughening of the water such that the backscatter from it may rise to similar or greater
levels than the surrounding lanEmeggent vegetation may also produtecreased
backsatter. Because different parts of the flooded reach may have different exposures to
wind, rain and emergent vegetation, it is unlikely that a singgan SAR backscatte
intensity threshold will be appropriate for all flood objects along the rétaould be
possible to perform a second iteration of the segmentation/classification scheme,
segmenting with a smaller scale factor and shene intensity threshold J[Sbut this

would tend to split an object exposed to wind into smaller dark and light objects, whereas

in fact the original large scale segmentation of the object may be correct but the object is

18



merely texturedThis problem did not appear to be particiylavidespread, and as a
result a simple rule was introduced to the effect that an unclassified object welative
ERUGHU WG@ER3 aadrie@& SAR backscatter intensity” (where T = 1.1T) is

reclassified as flooded. This rule is iterated urgifurther change occurs.

Although this rule maynisclassify some ufloodedobjects as flooded, these asll as

others aresubsequentiflargely reclassifed by setting unclassified any flood objects
having mean heights above the waterlimeight threshal. Furthermore, if any pixels
comprising a flood object have heights above this threshold, they are set unclassified.

This identifies the final rural flood classification in rectangle A.

m) Flood detection in urban arsaof rectangle A Flood detection irurban areas is
performed by a similar approach to trdgscribed in 11], whereby, following flood
delineation in rural areas, flood delineation in adjacent urban areas is performed using a
simpler regiorgrowing technique. The two methods are linked beethe simpler one

is initialised using knowledge of the waterline heights in the rural afdas.urba
regionrgrowing algorithm is ofhecessity different from the rural one, because it has been
found that the PDF of pixels in flooded urban streets readstantial tail towards higher
backscatter values compared to the PDF of rural water dik#lsThis appears to be
caused by high backscatter from street furniture (cars, etc) as well as inaccuracies in the
layover calculation caused by the limitegkolution of the LIDARINn order to maintain
spatial resolution in urban areas, the original rattk SAR data rather than the speekle

filtered data are used at this stade.set of seedregions having low backscatter is
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identified in the urban areasing training data to classify pixelgto urban water and
nonwater classes.Training areas for water are provided by the rivertewabjects
identified in step (h)Training areas for urban pixels not containing water are taken from
the high &nd objectsidentified in step (h) A Bayesian classificationsi performed

assuming equadrior probabilities for each aés R1] i.e.

if 3 &/ 9)>3 &|g) classifygas & else as& Q)

where 3 &| g) is the posteriorprobability of a pixel with DN valug being from class

& , where & = water and & = nonwater. Note that, in this case, pixels are being
classified individually rather than as objects, so that the minimum error rate can be
obtained directly from the Bag rule.The minimum error rate wasbtained with a

threshold Ty) of 68DN units(Fig. 7).

Unclassified pixels in the urban area #renclassified as wateseeddf they haveSAR
backscatter less thah, heights that are less than the spatiayying waterline height
threshold map calculated in step,(Bhd do not lie in shadow/layover arels[11], it

was found thathat seed pixels from the same body of urban water were generally close
together, though not always connected. Seed pixats different bodies of urban water

were generally much farther apart. Seed pixels are therefore clustered together using a
region growing approach involving iterateeh8ighbour pixel dilation and-8eighbour
connected componentdalling [22]. Clustering $ carried out on the basis of distance of a
pixel to the nearest seed pixel rather than similarity between the DN values of pixel and

seed. At each iteration, seed regions are dilated by a pixel, then the number of connected
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regions is foundln the dilaton process, the f&ampling described in Section IV ensures
that at each iteration only a dwide border is added to a region, maintaining the shape of
the region better than if pixels at the SAR resolution (3m) had been adeedly
dilation should combue until all pixels from the same water body are agglomerated into
that body, but none of the different water bodies are fused togkthmactice, iteration

is terminated after five iterations, when the number of connected regions began to show
relatively little change. At this point regionseaeroded by @ total amount by which they

havebeen dilated.

n) Urban flood refinementThe urban flood classtation map output from step (nig
included in the segmentation available at the end ofutsflood refinement (step,| by
performing a multresolution segmentation to refine the unclassified urban areas of this
segmentation to match the urban flooding, and classifying these objects as urban flood.
An attempt is then made to grow the amifloodobjects where possible by merging with
them unclassified or shaddlayover objects bordering them and of lower or similar
height. It isfirst necessary to break up #eshadoWayoverobjects having parts lying
above and other parts lying below the witer height threshold map where necessary
by performing a multresoluton segmentation using the threshold maphen
unclassified or shaddlayoverobjects in the urban aregath mean heights less than the
height threshold map and with alative borderW R X U E D @.3, QiR RI&ssitied as
urban flood provided that the mean heighthee object is less than or equal to the mean
height of the adjacenturban flood obje® This identifiesthe final urban flood

classification in rectangle A.
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B. Lowerresolution processing over the whole image

Processing of the whole image at lower resofutalows a similar flow path tthat used
for rural flood classification in rectangle A. However, the-precessing operations
carried out on the higher resolutiomage, such as the shadow/layover calculation, are

unnecessary at this stagad all processing steps are near-tieat.

0) SAR imagespecke filtering The whole image ispecklefiltered using the method of

step (9)

p) Flood detection The speckldiltered SAR image is segmented using a multi
resolution segmentation emplogirthe scale parameters of step. (Fihe mean SAR
backscatter intensity threshotélculatel in step (i)is then used telassify the image

objects All objects with a mean intsity less than or equal to the threshold T areselds

as flood.It is valid to apply the same threshold T used in rural areas of rectangle A to the
whole image, because there is no reason to suppose that the mean SAR backscatter of
flood objects should ha different distributiosin the two casesAs with rectangle A,

this step classifiethe majority of the flooded area in the whole image.

gq) Calculation of waterline height threshol®nly a crude glodawaterline height
threshold couldbe set at thistage because of the low height accuracy of the O.S.
Landform Profile EM compared to the LIDAR BM. Although the quoted height

accuracy is x2.5m, experiments indicated that it was best to set the threshold
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conservatively, and a threshold of 25about 10mabove the highest point on the
riverbank along the reagtwas employed. The simplistic approaabopted for this

threshold setting means that it could be set duringppreessing

r) Flood refinementTheflood segmentatioms refined in a similar manner to thaged in

step (I) As the whole area is predominantly ruraiclassified objectshat are long and

thin and adjacent to flood objects are often hedgerows that are likely to be flooded even
though emergent. Providedctuobjects h* H D UHODWLYH BR dGibdiUieWR IORR(
along a road, railway or embankment, and HavHLWKHU D OHQJWK ZLGWK U
FR P S D FW2QtHey \ares reclassified as floodékb cope with the fact that a single

mean SAR intensity threshd is inappropriate for all flood objects along tleach, the

simple rule of step (lis again used wherelan unclassified object ¥ a relative border

WR IORFBI MHDQ 6%$5 EDFNVFDWWhete T © WIAQs\eclssified

as floodedthis procedure being iterated until no further change océ&wsn step (1)

flood objects havingneanheights abovéhe waterline height threshotd step (q) or any

pixels comprising a flood object having heights above this threstli@det uncladsed.

s) Merging of lower and higher resolutiatassificationimages The results for rectangle
A in the lower resolution image are replaced with those obtained at higher resolution,
though only in the rural areas of rectangleTAis identifies thdinal flood classification

over the whole image.
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V. PROCESSING OF THE VALIDATION DATA

Validation d the flood extents in regiegn A and B was carried out using aerial
photographmosais acquired approximately 19 hours before and 53 hours after the
satellite overpass. The method usedascribed in 11]. For each mosaja uniformly
distributed set of flood extent waterline points in areas of low slope were selected
manually and heighted using the LIDAR data. These heights were interpolated @ form
water height threshold map over the whole aresered by the aerial photassing
kriging. Areas in the LIDAR imagebelow the local height threshold were classed as
water. A height threshold map for the overpass time was then constructed using linear
interpolation between the two aerial photo height threshold maps, and areas in the LIDAR
images below the local height threshold were taken as the flood extent at overpass time
Some minor editing of this was necessary to correct obvious errors compdrecéial
photos acquired 19 hours prior to overpds®e aerial photo flood extents in regions A
and B derived in this manner were assumed to be-ggerfor the purposes of

validation.

VI. VALIDATION OF THE TERRASAR-X FLOOD EXTENT

The flood extenestimated by TerraSAK in the urban and rural areas was validated

using the flood extent estimated from the aerial photograRasults are considered

separately for the urban and rural areas.
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A. Urbanflood classification accuracy

The accuracy of theasic urbanlbod detection algorithm (step (Jnk first considered.

Of the urban watepixelsin rectangle A 7% were correctly detected by TerraSAR

giving a false negative rate of @b The associated false positive rate of urbarwater

pixels incarectly classified as water wad% (table ). Fig. 8 shows the correspondence
between the aerial photograph and TerraSARood extents that was achieved in the
main urban areas of Tewkesbury, superimposed on the LIDAR image (from which all but

the mainurban areas have been masked out).

These figures quantify the fraction of the urban flood extent that is visible to TerrdSAR
and also detected by it. However, it is more pertinent to consider the fraction of the urban
flood extent that is visible in theerial photos that is detected by TerraSARThis
fraction will be lower because flooded pixels in the shadow/layover regions must now be
included. If this wa done, only 5% of the urban water pixels were now detected by
TerraSARX, with a falsepositive rate of 1%. It can be seen that thdassification
obtained in the urbaarea is of limited accuracyartly because of TerraSARs poor

visibility of the ground surface due to shadow and layover.

The basc urban flood detectiostep(m) is followed by theurban flood refinementtasp
(n), and the effect of this was measured. Shadow/layover regions are implicitly included
at this stagein an attempt to grow urban flood objects where possible by merging them

with unclassified or shadow/layovebjects bordering them and of lower or similar
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height There was a small increase in the urban water detection rate {db&0&is was
offset by an increase in the false positive rat8@%. As a resul there seems to be no
advantagen applying the urln flood refinement step this caseThis may be due to the
limited resolution of the LIDAR data used in the shadow/layover calculatimhstep (n)

may prove more useful if higheesolution LIDAR data became available

The effect of using speckhdtered rather than original SAR data in this step was also
guantified. It was first necesyato calculate the SAR backscatter threshold giving the
minimum error rate for the speckidtered SAR data in an analogous faghito that
carried out in step (m)The revised SAR threshold was calculated to be 55 bits.u
Using this,and including flooded pixels in the shadow/layover regiamy 33% of
urban water pixels were correctly detected, with ancatenl false positive rate ofAl
This detetion rate was considerably lower than thatainedusing the original SAR data
(57%), though the false positive rate was also lower. The osalassification rateising
specklefiltered data was 72%compared to 6% using the original SAR data, thus

justifying the use of original data in this step.

B. Ruralflood classification accuracy

The accuracy of flood detection in rural areas wamarily assessed using the aerial

photo validation data of regioB. 89% of the watepixels in regionB were corectly

detected by TerraSAK, giving a false negative rate of 11%. The associated false

positive rate was 6%-ig. 9 shows the correspondence between the aerial photograph and
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TerraSARX flood extents that was achieved megion B, superimposed on the

TerraSAR-X image.

The effect of the coarseHM on the classification could not be reliably assessed using
the validation data in region B, as very little of region B was above the co&de D
waterline height threshold of 25m. However, over the whole image, the total number of
flood pixels set unclassified because they were above this threshold was only 1.4%, so
that, even assuminthat these werall false alarms, the effect of the coars&ND

appeared small.

The accuracy of flood detection in the rural area of rectangle A was 97%, giving a false
negative rate of 3%. The associated false positive rate2d®s duepartly to the
misclassification of a field that veaonly just flooded in the aal photos being classed as
un-floodedin the TerraSARX image However, the rural area in rectangle Aoisly a

small fraction fess than 10%cof that in regiorB.

VIl. OPERATIONAL CONSIDERATIONS

In order to obtain digh resolutionsatellite SAR imag®f a developing flood, it would

be necessary immediately after a storm forecast had been issued to initiate operations
similar to those involved in aimvocation of the Internation&harter ‘Space and Major
Disasters [23]. When the Charter is invekl, Space Agencies around the world direct

their satellites to image the flooding if possible. Current practice usually involves waiting
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until the disaster has developed somewhat before initiating the imaging, but this would
need to be modified to invokenaging immediately after thetorm forecast had been
issued.ESA’s Heterogeneous Mission Accessibility (HMA) proj€s4], which aims to

allow seamless access to data from multiple earth observation missioksalyisdihave

a role to play in this proces

In order to ensure that a SAR image was obtained in neatimesglit would be necessary

to minimise the time delay between an overpass and the production of the resulting SAR
flood extent.The preprocessing operatiorould be carried out ingpalld with tasking

the satellite to acquire the image of floodil@pnsidering TerraSAK as an example,
TerraSARX allows satellite taskingwice a day, so that the shadow/layover mapld

be generategrior to the image acquisition by running SETES on tH2AR data given

the SAR trajetory and proposed look angléhe CEM and vegetation height map could

be generated offine at an earlier date, and retrieved between satellite tasking and image
acquisition.Download of the image to the ground station, fokowby near redime
processingof the raw SAR to a muHiook image, automatic georegistration and
delineation ofthe flood extent, couléh theory be carried out within a felours after
overpassFor example, it is known that raw TerraSARimages of he UK can be
downloaded to the ground station, processed to imak images, and gegistered to
Enhanced Ellipsoid Corrected (EEC) form ready download to the user iabout4

hours, thoughhis facility would currently only appear to be available to scientific users
of TerraSARX data.A blueprint of the operational system required for near-trewd

supply of gedocated high resolution SAR data to users is provided by the FAIRE system
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dewloped at ESASRIN, which is able to provide users with processed ENVISAT
ASAR and ERS SAR images approximately 3 hours after acquisii@®n27]. As far as

is known,such a system has still to be develofechigh resolution SARmages

Table 2 give the times of the various near rale processing steps in the flood
delineation run on a 3GHzesktop PC. The @vall time of 19.1minutesfor this image

size (6750 x 6000 pixelsyrould be significatly reduced using additional eCognition
processing ndes [14]. In the preprocessing steps, the computing time would be
dominatedby the time taken to run the SA&mulator SETES on the LIDABRSM,
which for this DSMsize would be about 5 minutes, a figure which may also be reduced

using parallel processin@R( Speck, personal communication).

VIII. DISCUSSION

Fig. 10 shows a possible muiticale visualisation of the flood extenn the rural and

urban areas, assuming the normal situation where aerial photo data for validation are not
available. Fooding is shown in blue in the rural area and in yellow in the urban area.
Regions coloured brown in the urban area are areas of shadow/layover that are below the
waterline height threshold, and therefore may or may not be flooded, as effectively they
cannot be imagd by TerraSARX. It is assumed that shadow/layover regions above the
height threshold are not flooded. Urban flood refinement (stéyas not been employed

in generating Fig. @
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Although developed using TerraSARdata, t is likely that the algorithmvould also be
applicable to data from other high resolution sirgbarisation SARs. In this case,
cerain quantities treateds@onstants for TeraSARX data may need to be reset for the
new data type, as data grey valtanges and speckle may diffieetveen different
sensors. In particular, the scale paramietged in multiresolution segmentation of SAR

data, and the mean intensity threshold for potential water objects, may prove data
dependentThe thresholds used in sgfb) and (r)to identify hedjerows are geometrical
guantities, and should remain valid for other sensors provided that these have have

similar resolution to TerraSAK.

The algorithm used for detecting flooding in rural areas, while based on that of [5],
differs in some important spects. It is most similar to the initial largeale
segmentation and thresholding stage of [5] (see section 3.4.1 of [5]), though different
values for parametets hs andheompacthave been used. The subsequent stages involving
segmentation and classifition of objects at medium and then small scale have not been
employed. Partly this has been done to avoid the substantial computation involved in
these stage$or little reduction in overall error rateand partly because a different
approach has beenguted for rural flood refinement, involving a raising of the threshold

to classify windroughened water correctly (see step (I)). From the results presented, the
algorithm of [5] would appear to be somewhat more accurate than that developed here.
However,an objective comparison of the two algorithms was not possible. This study
used a different test area to that used in [5], as LIDAR data were available in rectangle B

to aid the processing of the aerial photografgse section V)Also, different aerial
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photography was used for validation in the two studiasd this was processed
differently. Neverthelessthe overall algorithnpresented herbas theclear advantage
over others that it is able to perform near+téak detection not just of rural floodingut
more importarly of urban floodingalsq even if the urban flood detection accuracy

obtained is limited due to radar shadow and layover.

The approach that has been adopted for detecting flood extent involves first detecting
flooding in the rural am@s, and themetecting it in the urban areas using a secondary
algorithm guided by the rural flood extetitshould be noted that, as a result, the method

will not work in a situation where a flood is totally contained within an urban area.

Because of th time delay involved in downloading the SAR data and processing the
image to extract the flood extent, the imagereemts the flood situation a few hours
previously rather than the current situatiohn alternative method of using the
information in themagethat avoids this limitatiomvould beto use itin conjunction with

a hydraulic model of river flood flow. The flood waterline from the image could be
intersected with the LIDAR BEM to obtain water surface elevations along the waterline,
and these add be assimilated into the model run, correcting the water surface elevations
predicted by the model where necessa§].[Zhis would help to keep the model ‘on
track’, so that the model’s prediction of the current flood extent could be viewed with
more ©nfidence.The model would also predict water surface elevations within the

shadow/layover regions.
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IX. CONCLUSION

An automatic near redime flood delineation algorithm has been developed that is
capable ofdetecing flooding in rural areas with good accuracy, and in urban areas with
reasonable accuracyVhile good classification accuragyasobtained irrural areas, the
accuracy was reduced urban areapartly because of TerraSAR's poor visibility of

the groundsurface due to shadow and layovdihe operational requirements for
acquiring a high resolution satellite SAR ineagf a developing flood andeterminng

the resulting SAR flood extent in near réiahe were also conséed, and it was
concluded that, whal technically feasible, appropriate systems for general users still have
to be developed for high resolution SAR imagg&dimitation of this work is that it is
based on data from a single flood evéen though theceneanvolvedcontains a large
area vith many example situationshe algorithm needs to be tesfedher usingother
events. The mbbd of suppressing false alarms in the urban flood delineation using a
spatially distributed height threshold could be imprgvadd the effect of increased

spatial resolution in the urban area could be studied.
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Tables

Speckle- | Shadow/layover| Urban flood % of urban % false % false
filtered | masked out in refinement? | water pixels | negatives | positives
SAR? aerial photos? correctly
classified
No Yes No 75 25 24
No No No 57 43 18
No No Yes 59 41 26
Yes No No 35 65 7

Table 1.Accuracy of urban water detection.

Operation Time
(mins)

Higher resolution

SAR subimagespecke filtering 0.2
Identification of water and high land objects 1.5
Calculation of mean SAR backscatter threshold | 0.1
Flood detection imural areas of rectangle A 1.7
Calculation of local waterline height threshold mg 0.5
Rural flood refinement 0.1
Flood detection in urban areas of rectangle A 0.2
Urban flood refinement 2.5
Lower resolution

SAR image specklfiltering 2.0
Flood detection 10.0
Flood refinement 0.1
Merging of lower and higher resolution images 0.1
Total 191

Table 2 Timings of near realime processing operations.
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Figure captions

1. TerraSARX image of the lower Severn/Avon July 200dod (dark areas are water)
(© DLR 2007) Rectangle A includes the urban arealefvkesbury and regiorB the

rural validation area.

2. TerraSARX image showing detail in the urban areas of Tewkesbury (2.6 x 2@&m) (

DLR 2007).

3. Steps in the processimtain.

4. Regions (black) unseen by TerraSXRn the LIDAR DSM due to combined shadow

and layovel(after[11]).

5. Variation of misclassified water and norater objecs with object mean intensity

threshold T.

6. Histogramsof selected waterline heightsr the NW and SE quadrants of rectangle A

(see Fig. 2)The upper histogram peak is at 11.8m for the NW quadaadt 11.4m for

the SE quadrant.

7. Variation of misclassified water and narater pixels with pixel intensitynteshold T.
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8. Correspondence between the TerraSARnd aerial photograph flood extents in main
urban areas of Tewkesbury, superimposed on tBARi image (yellow = wet in SAR

and aerial phot red = wet in SAR onlygreen = wet in aerial phaonly).

9. Correspondendeetween the TerraSAR and aerial photogrdpflood extents over the
rural validation area (regioB), superimposd on the TerraSAKX image (ble =wet in

SAR and aerial photos, red = wet in SAR only, green = wet in aerial photgs only

10. Possible multscale visualisation of flood extents(g) rural (blue = predicted flood)

and(b) urban areagyellow = predicted floodbrown = shadow/layover areas that may be

flooded.
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Higher resolution pre-processing operations

a)
b)
c)
d)
e)

f)

Delineation of urban areas.

Calculation and radar shadow and layover.
Construction of compound DEM

Identification of high land height threshold.
Segmentation of shadow/layover.
Segmentation of potential water and high land.

A 4

Higher resolution near real-time processing operations.

g)
h)

SAR subimagespecke filtering.

Identification of water and high larabjects.
Calculation of mean SAR backscatter threshold.
Flood detection in rural areas of rectangle A.
Calculation of local waterline height threshold map.
Rural flood refinement.

m) Flood detection in urban areas of rectangl@iging

original SAR data)

- Classification of urban flood seed regions.

- Application of urban water height threshold.
- Seed region growing.

Urban flood refinement.

A 4

Lower resolution near reaktime processingoperations.

0) SAR imagespecke filtering.
p) Flood detection.
g) Calculation of watenhe height threshold.

y)
s)

Flood refinement.
Merging of lower and higher resolution images.

Figure 3.
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